Dynamic Changes in Antimicrobial Resistance in Fecal Escherichia coli from Neonatal Dairy Calves: An Individual Follow-Up Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sample Collection
2.3. Treatment History
2.4. E. coli Isolation and DNA Extraction
2.5. Identification of Antimicrobial Resistance Genes
2.6. Antimicrobial Susceptibility Test
2.7. Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Taft, D.H.; Maldonado-Gomez, M.X.; Johnson, D.; Treiber, M.L.; Lemay, D.G.; DePeters, E.J.; Mills, D.A. The fecal resistome of dairy cattle is associated with diet during nursing. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A.G.; Cissell, R.; Liamthong, S. Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 2007, 4, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Springer, H.R.; Denagamage, T.N.; Fenton, G.D.; Haley, B.J.; Van Kessel, J.A.S.; Hovingh, E.P. Antimicrobial resistance in fecal Escherichia coli and Salmonella enterica from dairy calves: A systematic review. Foodborne Pathog. Dis. 2019, 16, 23–34. [Google Scholar] [CrossRef] [PubMed]
- DeFrancesco, K.A.; Cobbold, R.N.; Rice, D.H.; Besser, T.E.; Hancock, D.D. Antimicrobial resistance of commensal Escherichia coli from dairy cattle associated with recent multi-resistant salmonellosis outbreaks. Vet. Microbiol. 2004, 98, 55–61. [Google Scholar] [CrossRef]
- Khachatryan, A.R.; Hancock, D.D.; Besser, T.E.; Call, D.R. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Appl. Environ. Microbiol. 2004, 70, 752–757. [Google Scholar] [CrossRef] [Green Version]
- Berge, A.; Atwill, E.R.; Sischo, W. Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev. Vet. Med. 2005, 69, 25–38. [Google Scholar] [CrossRef]
- Watson, E.; Jeckel, S.; Snow, L.; Stubbs, R.; Teale, C.; Wearing, H.; Horton, R.; Toszeghy, M.; Tearne, O.; Ellis-Iversen, J. Epidemiology of extended spectrum beta-lactamase E. coli (CTX-M-15) on a commercial dairy farm. Vet. Microbiol. 2012, 154, 339–346. [Google Scholar] [CrossRef]
- Khachatryan, A.R.; Besser, T.E.; Hancock, D.D.; Call, D.R. Use of a nonmedicated dietary supplement correlates with increased prevalence of streptomycin-sulfa-tetracycline-resistant Escherichia coli on a dairy farm. Appl. Environ. Microbiol. 2006, 72, 4583–4588. [Google Scholar] [CrossRef] [Green Version]
- Edrington, T.; Farrow, R.; Carter, B.; Islas, A.; Hagevoort, G.; Callaway, T.; Anderson, R.; Nisbet, D. Age and diet effects on fecal populations and antibiotic resistance of a multi-drug resistant Escherichia coli in dairy calves. Agric. Food Anal. Bacteriol. 2012, 2, 162–174. [Google Scholar]
- Cao, H.; Pradhan, A.K.; Karns, J.S.; Hovingh, E.; Wolfgang, D.R.; Vinyard, B.T.; Kim, S.W.; Salaheen, S.; Haley, B.J.; Van Kessel, J.A.S. Age-associated distribution of antimicrobial-resistant Salmonella enterica and Escherichia coli isolated from dairy herds in Pennsylvania, 2013–2015. Foodborne Pathog. Dis. 2019, 16, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fecteau, G.; Baillargeon, P.; Higgins, R.; Paré, J.; Fortin, M. Bacterial contamination of colostrum fed to newborn calves in Québec dairy herds. Can. Vet. J. 2002, 43, 523–527. [Google Scholar] [PubMed]
- Lima, S.F.; Teixeira, A.G.; Lima, F.S.; Ganda, E.K.; Higgins, C.H.; Oikonomou, G.; Bicalho, R.C. The bovine colostrum microbiome and its association with clinical mastitis. J. Dairy Sci. 2017, 100, 3031–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, C.J.; Gleeson, D.; O’Toole, P.W.; Cotter, P.D. Impacts of seasonal housing and teat preparation on raw milk microbiota: A high-throughput sequencing study. Appl. Environ. Microbiol. 2017, 83, e02694-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebreyes, W.A.; Altier, C. Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar typhimurium isolates from swine. J. Clin. Microbiol. 2002, 40, 2813–2822. [Google Scholar] [CrossRef] [Green Version]
- Lanz, R.; Kuhnert, P.; Boerlin, P. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet. Microbiol. 2003, 91, 73–84. [Google Scholar] [CrossRef]
- Guillaume, G.; Verbrugge, D.; Chasseur-Libotte, M.-L.; Moens, W.; Collard, J.-M. PCR typing of tetracycline resistance determinants (Tet A–E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol. Ecol. 2000, 32, 77–85. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing Twenty-Fifth Informational Supplement; CLSI Document M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Danish Integrated Antimicrobial Resistance Monitoring and Research Programme, Lyngby, Denmark. DANMAP 2018-Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. Available online: http://www.danmap.org/downloads/reports (accessed on 30 September 2019).
- Mathew, A.; Saxton, A.; Upchurch, W.; Chattin, S. Multiple antibiotic resistance patterns of Escherichia coli isolates from swine farms. Appl. Environ. Microbiol. 1999, 65, 2770–2772. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, S.C.; Straley, B.A.; Hegde, N.V.; Sawant, A.A.; DebRoy, C.; Jayarao, B.M. Molecular epidemiology of ceftiofur-resistant Escherichia coli isolates from dairy calves. Appl. Environ. Microbiol. 2006, 72, 3940–3948. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.; Siler, J.; Ng, J.; Davis, M.; Grohn, Y.; Warnick, L. Effect of on-farm use of antimicrobial drugs on resistance in fecal Escherichia coli of preweaned dairy calves. J. Dairy Sci. 2014, 97, 7644–7654. [Google Scholar] [CrossRef] [Green Version]
- Walk, S.T.; Mladonicky, J.M.; Middleton, J.A.; Heidt, A.J.; Cunningham, J.R.; Bartlett, P.; Sato, K.; Whittam, T.S. Influence of antibiotic selection on genetic composition of Escherichia coli populations from conventional and organic dairy farms. Appl. Environ. Microbiol. 2007, 73, 5982–5989. [Google Scholar] [CrossRef] [Green Version]
- Haley, B.J.; Kim, S.-W.; Salaheen, S.; Hovingh, E.; Van Kessel, J.A.S. Differences in the microbial community and resistome structures of feces from preweaned calves and lactating dairy cows in commercial dairy herds. Foodborne Pathog. Dis. 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-K.; Kim, D.; Moon, D.-C.; Cho, Y.; Rho, M. Antibiotic resistomes discovered in the gut microbiomes of Korean swine and cattle. GigaScience 2020, 9, giaa043. [Google Scholar] [CrossRef] [PubMed]
- Skočková, A.; Cupáková, Š.; Karpíšková, R.; Janštová, B. Detection of tetracycline resistance genes in Escherichia coli from raw cow’s milk. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 777–784. [Google Scholar]
- Koo, H.-J.; Woo, G.-J. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. Int. J. Food Microbiol. 2011, 145, 407–413. [Google Scholar] [CrossRef]
- Enne, V.I.; Livermore, D.M.; Stephens, P.; Hall, L.M. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 2001, 357, 1325–1328. [Google Scholar] [CrossRef]
- Sawant, A.A.; Hegde, N.V.; Straley, B.A.; Donaldson, S.C.; Love, B.C.; Knabel, S.J.; Jayarao, B.M. Antimicrobial-resistant enteric bacteria from dairy cattle. Appl. Environ. Microbiol. 2007, 73, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Mirzaagha, P.; Louie, M.; Sharma, R.; Yanke, L.J.; Topp, E.; McAllister, T.A. Distribution and characterization of ampicillin-and tetracycline-resistant Escherichia coli from feedlot cattle fed subtherapeutic antimicrobials. BMC Microbiol. 2011, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Singer, R.S.; Patterson, S.K.; Wallace, R.L. Effects of therapeutic ceftiofur administration to dairy cattle on Escherichia coli dynamics in the intestinal tract. Appl. Environ. Microbiol. 2008, 74, 6956–6962. [Google Scholar] [CrossRef] [Green Version]
- Windeyer, M.; Leslie, K.; Godden, S.M.; Hodgins, D.; Lissemore, K.; LeBlanc, S. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef]
- Algammal, A.M.; El-Kholy, A.W.; Riad, E.M.; Mohamed, H.E.; Elhaig, M.M.; Al Yousef, S.A.; Hozzein, W.N.; Ghobashy, M.O.I. Genes encoding the virulence and the antimicrobial resistance in Enterotoxigenic and Shiga-toxigenic E. coli isolated from diarrheic calves. Toxins 2020, 12, 383. [Google Scholar] [CrossRef]
Group | Calf No. | Breed | History of Clinical Signs and Antibiotic Use | ||
---|---|---|---|---|---|
Clinical Sign (Day after Birth) | Antibiotic Use (Day after Birth) | Antibiotic Use On Their Dams (Day before Calf Birth) | |||
Once daily sampling (Experiment 1) | 1 | Jersey | – | – | – |
2 | Holstein | – | – | – | |
3 | Holstein | – | – | – | |
4 | Holstein | – | – | – | |
5 | Holstein | – | – | – | |
6 | Holstein | – | – | – | |
7 | Holstein | – | – | – | |
8 | Holstein | – | – | – | |
9 | Holstein | – | – | – | |
10 | Holstein | – | – | – | |
Once weekly sampling (Experiment 2) | 11 | Holstein | – | – | – |
12 | Holstein | – | – | – | |
13 | Holstein | – | – | – | |
14 | Holstein | – | – | – | |
15 | Holstein | – | – | – | |
16 | Jersey | – | – | – | |
17 | Holstein | – | – | – | |
18 | Holstein | – | – | – | |
19 | Holstein | – | – | – | |
20 | Holstein | – | – | – | |
21 | Holstein | – | – | – | |
22 | Holstein | – | – | – | |
23 | Holstein | Diarrhea (15, 19 d) | Ceftiofur (15 d) | – | |
24 | Holstein | Diarrhea (14–16 d) Diarrhea (21–25 d) | Ceftiofur (14–16 d) Ceftiofur (23–25 d) | – | |
25 | Jersy | Diarrhea (15–19 d) | Ceftiofur (15–18 d) | – | |
26 | Holstein | Diarrhea (16 d) | Ceftiofur (16 d) | – | |
27 | Holstein | Diarrhea (23 d) | Ceftiofur (23–24 d) | Ceftiofur (156 d) | |
28 | Holstein | – | – | Ceftiofur (329 d) | |
29 | Holstein | – | – | Ceftiofur (95 d) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.-I.; Ha, S.; Roh, J.-H.; Hur, T.-Y.; Yoo, J.G. Dynamic Changes in Antimicrobial Resistance in Fecal Escherichia coli from Neonatal Dairy Calves: An Individual Follow-Up Study. Animals 2020, 10, 1776. https://doi.org/10.3390/ani10101776
Oh S-I, Ha S, Roh J-H, Hur T-Y, Yoo JG. Dynamic Changes in Antimicrobial Resistance in Fecal Escherichia coli from Neonatal Dairy Calves: An Individual Follow-Up Study. Animals. 2020; 10(10):1776. https://doi.org/10.3390/ani10101776
Chicago/Turabian StyleOh, Sang-Ik, Seungmin Ha, Jae-Hee Roh, Tai-Young Hur, and Jae Gyu Yoo. 2020. "Dynamic Changes in Antimicrobial Resistance in Fecal Escherichia coli from Neonatal Dairy Calves: An Individual Follow-Up Study" Animals 10, no. 10: 1776. https://doi.org/10.3390/ani10101776
APA StyleOh, S. -I., Ha, S., Roh, J. -H., Hur, T. -Y., & Yoo, J. G. (2020). Dynamic Changes in Antimicrobial Resistance in Fecal Escherichia coli from Neonatal Dairy Calves: An Individual Follow-Up Study. Animals, 10(10), 1776. https://doi.org/10.3390/ani10101776