Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geo-Referenced Records of the Spectacled Bear
2.3. Environmental Variables
2.4. Selection of Environmental Variables
2.5. Modeling Approach and Potential Distribution Changes
2.6. Identification of Habitat Changes and Priority Areas for Research and Conservation
3. Results
3.1. Model Performance and the Importance of Environmental Variables
3.2. Potential Current and Climate Change Scenario Distribution of the Spectacled Bear
3.3. Habitat Change and High-Priority Areas for Research and Conservation
4. Discussion
4.1. Variables and the Performance of the Models
4.2. Distribution and Changes of Habitat
4.3. Conservation of the Spectacled Bear
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peyton, B. Ecology, Distribution, and Food Habits of Spectacled Bears, Tremarctos ornatus, in Peru. J. Mammal. 1980, 61, 639–652. [Google Scholar] [CrossRef]
- Figueroa, P.J. Ecología y Conservación del Oso Andino (Tremarctos ornatus) en las Áreas Naturales Protegidas del Peru. Ph.D. Thesis, Facultad de Ciencias, Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, Alicante, Spain, 2016. [Google Scholar]
- Cuesta, F.; Peralvo, M.F.; van Manen, F.T. Andean bear habitat use in the Oyacachi River Basin, Ecuador. Ursus 2003, 14, 198–209. [Google Scholar]
- Figueroa, J.; Stucchi, M. El Oso Andino: Alcances Sobre su Historia Natural; Asociación para la Investigación y Conservación de la Biodiversidad (AICB): Lima, Perú, 2009. [Google Scholar]
- Figueroa, J.; Stucchi, M.; Rojas-VeraPinto, R. El Oso Andino (Tremarctos ornatus) Como Especie Clave Para la Conservación del Bosque Seco del Marañón (Cajamarca–Amazonas, Perú); Cooperación Técnica Alemana (GIZ): Lima, Peru; Asociación para la Investigación y Conservación de la Biodiversidad (AICB): Lima, Perú, 2013. [Google Scholar]
- Wallace, R.; Reinaga, A.; Siles, T.; Baiker, J.; Goldstein, I.; Ríos-Uzeda, B.; van Horn, R.; Vargas, R.; Vélez-liendo, X.; Albarracín, V.; et al. Unidades de Conservación Prioritarias del Oso Andino en Bolivia y en Perú; Wallace, R., Ed.; Wildlife Conservation Society: New York, NY, USA; Centro de Biodiversidad y Genética de la Universidad Mayor de San Simón de Bolivia: Cochabamba, Bolivia; Universidad Cayetano Heredia de Perú: Lima, Peru; Universidad de Antwerpen de Bélgica: Antwerpen, Belgium, 2014; ISBN 9789997481221. [Google Scholar]
- Crespo-Gascón, S.; Guerrero-Casado, J. The role of the spectacled bear (Tremarctos ornatus) as an umbrella species for Andean ecoregions. Wildl. Res. 2019, 46, 176. [Google Scholar] [CrossRef]
- Rodríguez, D.; Cuesta, F.; Goldstein, I.; Bracho, A.E.; Naranjo, L.G.; Hernández, O.L. Estrategia Ecorregional Para la Conservacion del Oso Andino en los Andes del Norte; WWF Colombia: Cali, Colombia; Fundacion Wii: Bogota, Colombia; EcoCiencia: Quito, Ecuador; Wildlife Conservation Society: New York, NY, USA, 2003. [Google Scholar]
- Rojas-VeraPinto, R.; Zegarra, R.E.; Gutiérrez, R.; Beraún, Y. Conviviendo Con el Oso Andino en el Perú: Diagnóstico y Pautas Para el Amnejo de los Conflictos Humano-Oso; FZS Peru: Cusco, Peru; Sernanp-Manu: Lima, Peru, 2019. [Google Scholar]
- SERFOR. Libro Rojo de la Fauna Silvestre Amenazada del Perú; Cossíos, M.E.D., Catenazzi, G.A., Angulo, P.F., Ochoa, C.J.A., Pérez, Z.J., Eds.; Servicio Nacional Forestal y de Fauna Silvestre (SERFOR): Lima, Perú, 2018; ISBN 9786124690822. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2020-1. Available online: https://www.iucnredlist.org (accessed on 31 March 2020).
- Velez-Liendo, X.; García-Rangel, S. The IUCN Red List of Threatened Species, e.T22066A123792952. Tremarctos ornatus (errata version published in 2018). 2017. Available online: http://www.iucnredlist.org/details/22066/0 (accessed on 6 October 2020).
- MINAGRI. Decreto Supremo N° 004-2014-MINAGR: Decreto Supremo que Aprueba la Actualización de la Lista de Clasificación y Categorización de las Especies Amenazadas de Fauna Silvestre Legalmente Protegidas. Diario Oficial El Peruano 2014, 1071436-2, 520497–520504. [Google Scholar]
- MINAM. Listado de Especies de Fauna Silvestre CITES-Perú; Dirección General de Diversidad Biológica: Lima, Peru, 2018. [Google Scholar]
- SERNANP. Áreas Naturales Protegidas de Administración Nacional con Categoria Definitiva; SERNANP: Lima, Peru, 2020. [Google Scholar]
- García-Rangel, S. Andean bear Tremarctos ornatus natural history and conservation. Mammal Rev. 2012, 42, 85–119. [Google Scholar] [CrossRef]
- Figueroa, J.; Stucchi, M.; Rojas-VeraPinto, R. Modelación de la distribución del oso andino Tremarctos ornatus en el bosque seco del Marañón (Perú). Revisita Mex. Biodivers. 2016, 87, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, M.; Jusoff, K.; Madani, N.; Mahmud, A.R.; Bahman, A.R.; Kumar, L. Predictive Modeling and Mapping of Malayan Sun Bear (Helarctos malayanus) Distribution Using Maximum Entropy. PLoS ONE 2012, 7, e48104. [Google Scholar] [CrossRef] [Green Version]
- Mateo, R.G.; Felicísimo, A.M.; Muñoz, J. Modelos de distribución de especies: Una revisión sintética. Rev. Chil. Hist. Nat. 2011, 84, 217–240. [Google Scholar] [CrossRef] [Green Version]
- Coudrat, C.N.Z.; Nekaris, K.A.I. Modelling Niche Differentiation of Co-Existing, Elusive and Morphologically Similar Species: A Case Study of Four Macaque Species in Nakai-Nam Theun National Protected Area, Laos. Animals 2013, 3, 45–62. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Carvalheiro, L.G.; Polce, C.; van Loon, E.E.; Raes, N.; Reemer, M.; Biesmeijer, J.C. Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria—Dutch Hoverflies as a Case Study. PLoS ONE 2013, 8, e63708. [Google Scholar] [CrossRef] [Green Version]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Mateo-Sánchez, M.C.; Cushman, S.A.; Saura, S. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int. J. Geogr. Inf. Sci. 2013, 28, 1531–1546. [Google Scholar] [CrossRef]
- Jung, D.H. Analysis of Hibernating Habitat of Asiatic Black Bear(Ursus thibetanus ussuricus) based on the Presence-Only Model using MaxEnt and Geographic Information System: A Comparative Study of Habitat for Non-Hibernating Period. J. Korean Assoc. Geogr. Inf. Stud. 2016, 19, 102–113. [Google Scholar] [CrossRef]
- Doko, T.; Fukui, H.; Kooiman, A.; Toxopeus, A.G.; Ichinose, T.; Chen, W.; Skidmore, A.K. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecol. Model. 2011, 222, 748–761. [Google Scholar] [CrossRef]
- Almasieh, K.; Kaboli, M.; Beier, P. Identifying habitat cores and corridors for the Iranian black bear in Iran. Ursus 2016, 27, 18–30. [Google Scholar] [CrossRef]
- Velez–Liendo, X.; Strubbe, D.; Matthysen, E. Effects of variable selection on modelling habitat and potential distribution of the Andean bear in Bolivia. Ursus 2013, 24, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.G.; Yang, D.; Cho, Y.; Song, K.H.; Oh, J.G. Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) using Maxent Modeling Approach. Korean J. Ecol. Environ. 2016, 49, 197–207. [Google Scholar] [CrossRef]
- MINAM. Mapa Nacional de Ecosistemas del Perú: Memoria Descriptiva; Dirección General de Ordenamiento Territorial Ambiental: Lima, Peru, 2019. [Google Scholar]
- MINAM. Definiciones Conceptuales de los Ecosistemas del Perú; Dirección General de Diversidad Biológica: Lima, Peru, 2019. [Google Scholar]
- Vargas Rivera, J. Clima. In Estudios Temáticos para la Zonificación Ecológica Económica del Departamento de Amazonas; Instituto de Investigaciones de la Amazonía Peruana (IIAP): Iquitos, Peru; Programa de Investigaciones en Cambio Climático, Desarrollo Territorial y Ambiente (PROTERRA): Chachapoyas, Perú, 2010; Volume 1, pp. 1–27. [Google Scholar]
- GBIF. GBIF Memorandum of Understanding; GBIF: Suwon, Korea, 2010. [Google Scholar]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Paisley, S. Andean Bears and People in Apolobamba, Bolivia: Culture, Conflict and Conservation. Ph.D. Thesis, University of Kent, Canterbury, UK, 2001. [Google Scholar]
- Fick, S.E.; Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Farr, T.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodríguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- MINEDU. Descarga de Información Espacial del MED. Available online: http://sigmed.minedu.gob.pe/descargas/ (accessed on 15 June 2017).
- Rodríguez, A.F.; Limachi, H.L.; Reátegui, R.F.; Escobedo, T.R.; Ramírez, B.J.; Encarnación, C.F.; Maco, G.J.; Guzman, C.W.; Castro, M.W.; Fachin, M.L.; et al. Zonificación Ecológica y Económica (ZEE) del Departamento de Amazonas; Instituto de Investigaciones de la Amazonía Peruana: Iquitos, Peru, 2010. [Google Scholar]
- Buchhorn, M.; Smets, B.; Bertels, L.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100 m: Epoch 2015: Globe; Dataset of the Global Component of the Copernicus Land Monitoring Service 2019. In Proceedings of the Living Planet Symposium, Milan, Italy, 13–17 May 2019. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Márquez, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2012, 36, 27–46. [Google Scholar] [CrossRef]
- De Marco, J.P.; Corrêa, N.C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 2018, 13, e0202403. [Google Scholar] [CrossRef]
- Laurente, M. Modeling the Effects of Climate Change on the Distribution of Cedrela odorata L. “Cedro” in the Peruvian Amazon. Biologist 2015, 13, 213–224. [Google Scholar]
- Kariyawasam, C.S.; Kumar, L.; Ratnayake, S.S. Invasive Plant Species Establishment and Range Dynamics in Sri Lanka under Climate Change. Entropy 2019, 21, 571. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Otieno, B.A.; Nahrung, H.F.; Steinbauer, M.J. Where Did You Come From? Where Did You Go? Investigating the Origin of Invasive Leptocybe Species using Distribution Modelling. Forests 2019, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Manel, S.; Williams, H.C.; Ormerod, S.J. Evaluating presence-absence models in ecology: The need to account for prevalence. J. Appl. Ecol. 2002, 38, 921–931. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2011, 21, 498–507. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Tao, J. Predicting the Potential Distribution of Paeonia veitchii (Paeoniaceae) in China by Incorporating Climate Change into a Maxent Model. Forests 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- MTC. Descarga de Datos Espaciales. Available online: https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on 2 August 2020).
- MINAM. Geoservidor MINAM: Intercambio de Datos. Available online: http://geoservidor.minam.gob.pe/recursos/intercambio-de-datos/ (accessed on 19 April 2020).
- SERNANP. GEO ANP—Visor de las Áreas Naturales Protegidas. Available online: http://geo.sernanp.gob.pe/visorsernanp/ (accessed on 19 April 2020).
- Peyton, B. Spectacled Bear Conservation Action Plan. In Bears: Status Survey and Conservation Action Plan; Servheen, C., Herrero, S., Peyton, B., Eds.; IUCN/SSC Bear and Polar Bear Specialist Groups: Gland, Switzereland, 1999; pp. 157–164. [Google Scholar]
- MINAM. GEOBOSQUES: Bosque y Pérdida de Bosque. Available online: http://geobosques.minam.gob.pe/geobosque/view/perdida.php (accessed on 15 December 2019).
- Briceño, N.R.; Castillo, E.B.; Quintana, J.L.M.; Oliva, M.; López, R.S. Deforestación en la Amazonía peruana: Índices de cambios de cobertura y uso del suelo basado en SIG. BAGE 2019, 81, 1–34. [Google Scholar]
- Osterman, W.; Goss, J.; Sperling, E.; Jiménez, C.; Cornejo, F.M. Preliminary observations on the behavior of a peculiar andean bear population in the tropical andes of northeastern Peru. In Proceedings of the 25th International Conference on Bear Research and Management, Quito, Ecuador, 12–17 November 2017; Molina, S., Zug, B., Vélez-Liendo, X., Can, E., Groff, C., Tirira, D., Cisneros, R., Torres, M.D.L., VanManen, F., Dharaiya, N., et al., Eds.; Quito Tierra de Osos: Quito, Ecuador, 2017; p. 77. [Google Scholar]
- Gonzales, F.N.; Neira-Llerena, J.; Llerena, G.; Zeballos, H. Small vertebrates in the spectacled bear’s diet (Tremarctos ornatus Cuvier, 1825) in the north of Peru. Rev. Peruana Biol. 2016, 23, 61. [Google Scholar] [CrossRef] [Green Version]
- Lamont, B.B.; Connell, S. Biogeography of Banksia in southwestern Australia. J. Biogeogr. 1996, 23, 295–309. [Google Scholar] [CrossRef]
- Sarmiento, F.O.; Kooperman, G.J. A Socio-Hydrological Perspective on Recent and Future Precipitation Changes Over Tropical Montane Cloud Forests in the Andes. Front. Earth Sci. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Sarmiento, F. Landscape Regeneration by Seeds and Successional Pathways to Restore Fragile Tropandean Slopelands. Mt. Res. Dev. 1997, 17, 239. [Google Scholar] [CrossRef] [Green Version]
- Briceño, N.R.; Sánchez, D.C.; Castillo, E.B.; Gurbillón, M.B.; Sarmiento, F.; Sotomayor, D.; Oliva, M.; López, R.S. Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity. 2020, 12, 305. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, M.M.; Sajama, M.J.; Gutiérrez-Ortega, J.S.; Ortega-Baes, P.; Estrada-Castillón, A.E. Identification of endemic vascular plant species hotspots and the effectiveness of the protected areas for their conservation in Sierra Madre Oriental, Mexico. J. Nat. Conserv. 2018, 46, 6–27. [Google Scholar] [CrossRef]
- SERFOR. Plan Nacional Para la Conservación del Oso Andino (Tremarctos ornatus) en el Perú; Periodo 2016–2026; Servicio Nacional Forestal y de Fauna Silvestre (SERFOR): Lima, Perú, 2016; ISBN 9788578110796. [Google Scholar]
Performance | Current | 2050 | 2070 | ||||||
---|---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | ||
AUC | 0.907 | 0.909 | 0.913 | 0.908 | 0.903 | 0.909 | 0.907 | 0.915 | 0.905 |
Std Dev | 0.014 | 0.014 | 0.012 | 0.011 | 0.008 | 0.007 | 0.011 | 0.012 | 0.014 |
Variables | Current | 2050 | 2070 | ||||||
---|---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | ||
bio02 | 1.5 | 4.0 | 2.5 | 2.3 | 1.9 | 3.3 | 2.6 | 4.4 | 1.9 |
bio03 | 1.7 | 4.6 | 3.8 | 2.6 | 1.8 | 2.4 | 2.3 | 2.3 | 0.6 |
bio04 | 0.8 | 2.0 | 1.6 | 0.8 | 2.4 | 1.7 | 0.5 | 0.7 | 2.0 |
bio07 | 5.1 | 5.9 | 5.2 | 6.8 | 2.2 | 6.4 | 2.2 | 3.7 | 3.6 |
bio09 | 33.3 | 14.2 | 21.7 | 14.0 | 22.6 | 15.3 | 22.7 | 25.4 | 20.5 |
bio12 | 3.1 | 2.9 | 2.9 | 3.1 | 2.3 | 2.8 | 3.4 | 2.7 | 2.9 |
bio14 | 14.6 | 31.0 | 26.8 | 36.5 | 28.4 | 37.7 | 27.3 | 22.9 | 30.6 |
bio15 | 13.7 | 2.4 | 2.6 | 8.3 | 2.6 | 3.9 | 4.7 | 4.2 | 3.1 |
Elevation | 2.2 | 1.9 | 4.5 | 1.1 | 8.6 | 1.2 | 2.6 | 2.0 | 2.1 |
Slope | 3.7 | 3.8 | 5.3 | 3.9 | 4.2 | 6.2 | 5.0 | 4.4 | 5.8 |
Water | 1.6 | 2.4 | 2.2 | 1.8 | 1.5 | 2.1 | 2.3 | 3.1 | 2.8 |
Forest | 18.8 | 25.0 | 20.9 | 18.8 | 21.5 | 18.0 | 24.4 | 24.3 | 24.1 |
Total (%) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Habitat Potential | Current (km2) | 2050 1 | 2070 (%) 1,2 | ||||||
---|---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | ||
High | 836.22 | 1291.78 | 1182.01 | 1110.70 | 1380.81 | 1241.46 | 1320.69 | 1313.54 | 1228.92 |
54.5 | 41.4 | 32.8 | 65.1 | 48.5 (−3.9) | 57.9 (11.7) | 57.1 (18.3) | 47.0 (−11.0) | ||
Moderate | 6081.88 | 5138.23 | 4841.07 | 5636.84 | 5237.86 | 5108.22 | 5007.23 | 4479.66 | 5648.26 |
−15.5 | −20.4 | −7.3 | −13.9 | −16.0 (−0.6) | −17.7 (3.4) | −26.3 (−20.5) | −7.1 (7.8) | ||
Low | 8718.98 | 8090.52 | 7886.08 | 7978.52 | 8520.09 | 8114.29 | 7808.02 | 7584.25 | 8435.83 |
−7.2 | −9.6 | −8.5 | −2.3 | −6.9 (0.3) | −10.4 (−1.0) | −13.0 (−4.9) | −3.2 (−1.0) | ||
Total | 15637.08 | 14520.53 | 13909.16 | 14726.06 | 15138.76 | 14463.97 | 14135.94 | 13377.45 | 15313.01 |
−7.1 | −11.1 | −5.8 | −3.2 | −7.5 (−0.4) | −9.6 (1.6) | −14.5 (−9.2) | −2.1 (1.2) |
Habitat Potential | Current IUCN (km2) | 2050 1 | 2070 1,2 | ||||||
---|---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | ||
High | 286.79 | 643.17 | 639.60 | 544.85 | 616.40 | 598.75 | 687.07 | 608.98 | 541.70 |
124.3 | 123.0 | 90.0 | 114.9 | 108.8 (−6.9) | 139.6 (7.4) | 112.3 (11.8) | 88.9 (−12.1) | ||
Moderate | 2114.56 | 2005.35 | 1836.56 | 2148.76 | 1820.37 | 1947.08 | 1943.70 | 1554.85 | 1861.10 |
−5.2 | −13.1 | 1.6 | −13.9 | −7.9 (−2.9) | −8.1 (5.8) | −26.5 (−27.6) | −12.0 (2.2) | ||
Low | 2112.60 | 1727.78 | 1773.77 | 1894.49 | 1935.98 | 1720.07 | 1800.52 | 1855.32 | 1905.27 |
−18.2 | −16.0 | −10.3 | −8.4 | −18.6 (−0.4) | −14.8 (1.5) | −12.2 (−2.1) | −9.8 (−1.6) | ||
Total | 4513.94 | 4376.31 | 4249.93 | 4588.10 | 4372.75 | 4265.89 | 4431.29 | 4019.15 | 4308.06 |
−3.0 | −5.8 | 1.6 | −3.1 | −5.5 (−2.5) | −1.8 (4.3) | −11.0 (−12.4) | −4.6 (−1.5) |
Functional Units of the Ecosystem 1 | Current | 2050 2 | 2070 2 | IUCN Extant | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | |||
B-aY | 3306.78 | 3131.59 | 3152.04 | 3249.92 | 3150.87 | 3154.37 | 3220.79 | 3017.18 | 3247.13 | 1594.54 |
21.0 (99.1) | 21.6 (93.8) | 22.7 (94.4) | 22.1 (97.4) | 20.8 (94.4) | 21.8 (94.5) | 22.8 (96.5) | 22.6 (90.4) | 21.2 (97.3) | 26.5 (47.8) | |
B-bY | 434.22 | 531.55 | 490.01 | 468.71 | 519.33 | 488.27 | 478.62 | 515.68 | 488.00 | 1179.97 |
2.8 (2.6) | 3.7 (3.2) | 3.5 (3.0) | 3.2 (2.8) | 3.4 (3.2) | 3.4 (3) | 3.4 (2.9) | 3.9 (3.1) | 3.2 (3.0) | 19.6 (7.2) | |
Bes-in | 635.97 | 547.94 | 529.65 | 560.46 | 468.76 | 513.78 | 553.37 | 498.85 | 662.00 | 3.09 |
4.1 (67.9) | 3.8 (58.5) | 3.8 (56.6) | 3.8 (59.9) | 3.1 (50.1) | 3.6 (54.9) | 3.9 (59.1) | 3.7 (53.3) | 4.3 (70.7) | 0.1 (0.3) | |
B-mY | 5541.04 | 4880.56 | 4340.57 | 4916.05 | 5466.58 | 4927.62 | 4467.73 | 4132.46 | 5201.75 | 1256.61 |
35.4 (69.4) | 33.6 (61.1) | 31.2 (54.3) | 33.4 (61.5) | 36.1 (68.4) | 34.1 (61.7) | 31.6 (55.9) | 30.9 (51.7) | 34.0 (65.1) | 20.9 (15.7) | |
Jal | 1407.49 | 1235.26 | 1302.16 | 1374.86 | 1373.31 | 1292.78 | 1313.94 | 1243.68 | 1369.05 | 623.52 |
9.0 (97.8) | 8.5 (85.8) | 9.4 (90.5) | 9.3 (95.5) | 9.1 (95.4) | 8.9 (89.8) | 9.3 (91.3) | 9.3 (86.4) | 8.9 (95.1) | 10.4 (43.3) | |
Ma | 321.86 | 312.39 | 318.21 | 320.11 | 310.82 | 319.06 | 319.19 | 309.73 | 319.45 | 41.93 |
2.1 (98.9) | 2.2 (96.0) | 2.3 (97.8) | 2.2 (98.4) | 2.1 (95.5) | 2.2 (98) | 2.3 (98.1) | 2.3 (95.2) | 2.1 (98.2) | 0.7 (12.9) | |
PH | 1460.26 | 1453.60 | 1442.36 | 1456.18 | 1444.68 | 1442.99 | 1444.52 | 1412.13 | 1458.54 | 737.57 |
9.3 (98.8) | 10.0 (98.3) | 10.4 (97.5) | 9.9 (98.5) | 9.5 (97.7) | 10.0 (97.6) | 10.2 (97.7) | 10.6 (95.5) | 9.5 (98.6) | 12.3 (49.9) | |
Vsec | 2394.09 | 2289.94 | 2232.60 | 2274.34 | 2320.23 | 2221.65 | 2236.51 | 2161.23 | 2380.32 | 572.64 |
15.3 (81.5) | 15.8 (78.0) | 16.1 (76.0) | 15.4 (77.5) | 15.3 (79) | 15.4 (75.7) | 15.8 (76.2) | 16.2 (73.6) | 15.5 (81.1) | 9.5 (19.5) | |
Agri | 117.25 | 119.61 | 87.06 | 91.22 | 70.60 | 88.60 | 86.69 | 72.81 | 168.23 | 3.76 |
0.7 (29.9) | 0.8 (30.5) | 0.6 (22.2) | 0.6 (23.2) | 0.5 (18.0) | 0.6 (22.6) | 0.6 (22.1) | 0.5 (18.5) | 1.1 (42.9) | 0.1 (1.0) | |
Others | 18.13 | 18.10 | 14.49 | 14.20 | 13.58 | 14.84 | 14.58 | 13.70 | 18.54 | 5.06 |
0.7 (3.9) | 0.8 (3.9) | 0.6 (3.1) | 0.6 (3.1) | 0.5 (2.9) | 0.6 (3.2) | 0.6 (3.2) | 0.5 (3.0) | 1.1 (4.0) | 0.1 (1.1) |
NPA Modalities 1 | Current | 2050 2 | 2070 2 | IUCN Extant | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | |||
NP | 29.65 | 80.27 | 2.57 | 0.74 | 0.96 | 0.07 | 24.02 | 31.30 | 4.17 | 0.00 |
0.2 (3.4) | 0.6 (9.1) | 0.0 (0.3) | 0.0 (0.1) | 0.0 (0.1) | 0.0 (0.0) | 0.2 (2.7) | 0.2 (3.5) | 0.0 (0.5) | 0.0 (0.0) | |
NS | 191.69 | 243.83 | 249.25 | 219.59 | 255.48 | 254.85 | 213.52 | 241.29 | 245.68 | 0.00 |
1.2 (48.9) | 1.7 (62.2) | 1.8 (63.6) | 1.5 (56.0) | 1.7 (65.1) | 1.8 (65.0) | 1.5 (54.4) | 1.8 (61.5) | 1.6 (62.6) | 0.0 (0.0) | |
CR | 67.61 | 135.35 | 134.45 | 101.49 | 131.45 | 127.90 | 96.36 | 114.52 | 117.63 | 0.00 |
0.4 (5.7) | 0.9 (11.4) | 1.0 (11.3) | 0.7 (8.6) | 0.9 (11.1) | 0.9 (10.8) | 0.7 (8.1) | 0.9 (9.7) | 0.8 (9.9) | 0.0 (0.0) | |
RZ | 76.63 | 67.53 | 74.65 | 69.23 | 143.22 | 114.87 | 46.00 | 76.07 | 115.33 | 0.00 |
0.5 (5.5) | 0.5 (4.8) | 0.5 (5.3) | 0.5 (4.9) | 0.9 (10.2) | 0.8 (8.2) | 0.3 (3.3) | 0.6 (5.4) | 0.8 (8.2) | 0.0 (0.0) | |
RCA | 614.22 | 435.32 | 423.55 | 481.38 | 563.93 | 503.77 | 498.47 | 444.49 | 619.13 | 7.86 |
3.9 (97.7) | 3.0 (69.2) | 3.0 (67.4) | 3.3 (76.6) | 3.7 (89.7) | 3.5 (80.1) | 3.5 (79.3) | 3.3 (70.7) | 4.0 (98.5) | 0.1 (1.2) | |
PCA | 1427.39 | 1258.53 | 1281.45 | 1385.11 | 1344.08 | 1300.19 | 1300.85 | 1126.94 | 1321.21 | 732.63 |
9.1 (96.3) | 8.7 (84.9) | 9.2 (86.4) | 9.4 (93.4) | 8.9 (90.7) | 9.0 (87.7) | 9.2 (87.8) | 8.4 (76.0) | 8.6 (89.1) | 12.2 (49.4) | |
Total | 2407.19 | 2220.83 | 2165.93 | 2257.53 | 2439.12 | 2301.66 | 2179.21 | 2034.62 | 2423.15 | 740.49 |
15.4 (40.3) | 15.3 (37.2) | 15.6 (36.2) | 15.3 (37.8) | 16.1 (40.8) | 15.9 (38.5) | 15.4 (36.5) | 15.2 (34.0) | 15.8 (40.5) | 12.3 (12.4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza Mori, G.; Barboza Castillo, E.; Torres Guzmán, C.; Cotrina Sánchez, D.A.; Guzman Valqui, B.K.; Oliva, M.; Bandopadhyay, S.; Salas López, R.; Rojas Briceño, N.B. Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals 2020, 10, 1816. https://doi.org/10.3390/ani10101816
Meza Mori G, Barboza Castillo E, Torres Guzmán C, Cotrina Sánchez DA, Guzman Valqui BK, Oliva M, Bandopadhyay S, Salas López R, Rojas Briceño NB. Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals. 2020; 10(10):1816. https://doi.org/10.3390/ani10101816
Chicago/Turabian StyleMeza Mori, Gerson, Elgar Barboza Castillo, Cristóbal Torres Guzmán, Dany A. Cotrina Sánchez, Betty K. Guzman Valqui, Manuel Oliva, Subhajit Bandopadhyay, Rolando Salas López, and Nilton B. Rojas Briceño. 2020. "Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru" Animals 10, no. 10: 1816. https://doi.org/10.3390/ani10101816
APA StyleMeza Mori, G., Barboza Castillo, E., Torres Guzmán, C., Cotrina Sánchez, D. A., Guzman Valqui, B. K., Oliva, M., Bandopadhyay, S., Salas López, R., & Rojas Briceño, N. B. (2020). Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals, 10(10), 1816. https://doi.org/10.3390/ani10101816