Effect of Different Amounts of Hybrid Barley in Diets on the Growth Performance and Selected Biochemical Parameters of Blood Serum Characterizing Health Status in Fattening Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Feeding
2.2. Measurement of Blood
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sobotka, W.; Denaburski, J.; Jabłońska, A. The effect of grain species and feed enzymes on production results, slaughter value and meat quality in pigs. Pol. J. Nat. Sci. 2011, 26, 37–46. [Google Scholar]
- Turyk, Z.; Osek, M.; Janocha, A.; Olkowski, B. Feeding diets based on barley or triticale during fattening of high-meat PIC pigs: Effects on carcass characteristics and meat quality parameters. Acta Vet. Beogr. 2011, 61, 67–75. [Google Scholar] [CrossRef]
- Hanczakowski, P.; Szymczyk, B.; Hanczakowska, E. Fatty acid profile and cholesterol content of meat from pigs fed different fats. Ann. Anim. Sci. 2009, 9, 157–163. [Google Scholar]
- Gläser, K.R.; Wenk, C.; Scheeder, M.R. Effect of dietary mono- and polyunsaturated fatty acids on the fatty acid composition of pigs’ adipose tissues. Arch. Anim. Nutr. 2002, 56, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Kim, Y.Y.; Han, I.K. Effects of fat sources on growth performance, nutrient digestibility, serum traits and intestinal morphology in weaning pigs. Asian Australas. J. Anim. Sci. 2003, 16, 1035–1040. [Google Scholar] [CrossRef]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am. J. Clin. Nutr. 2004, 80, 1185–1193. [Google Scholar] [CrossRef]
- Kalra, S.; Jood, S. Effect of dietary barley β-glucan on cholesterol and lipoprotein fractions in rats. J. Cereal Sci. 2000, 31, 141–145. [Google Scholar] [CrossRef]
- The Kielanowski Institute of Animal Physiology and Nutrition PAN. Nutrient Requirements of Swine: Nutrient Requirements and Nutritional Value of Feed for Swine; Grela, E.R., Skomiał, J., Eds.; The Kielanowski Institute of Animal Physiology and Nutrition PAN: Jabłonna, Poland, 2014. (In Polish) [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Statsoft. Statistica (Data Analysis Software System) 2014, Ver. 13; Statsoft: Tulsa, OK, USA, 2014. [Google Scholar]
- Sawosz, E.; Chwalibog, A.; Skomiał, J.; Kosieradzka, I.; Zięcik, A.J. The effect of dietary energy concentration on the hormone profile and lipid metabolism in growing pigs. J. Anim. Feed Sci. 2005, 14 (Suppl. 1), 393–396. [Google Scholar] [CrossRef]
- Aymerich, P.; Soldevila, C.; Bonet, J.; Gasa, J.; Coma, J.; Solà-Oriol, D. The implications of nutritional strategies that modify dietary energy and lysine for growth performance in two different swine production systems. Animals 2020, 10, 1638–1656. [Google Scholar] [CrossRef] [PubMed]
- Nitikanchana, S.; Dritz, S.S.; Tokach, M.D.; DeRouchey, J.M.; Goodband, R.D.; White, B.J. Regression analysis to predict growth performance from dietary net energy in growing-finishing pigs. J. Anim. Sci. 2015, 93, 2826–2839. [Google Scholar] [CrossRef]
- Więcek, J.; Rekiel, A.; Skomiał, J. Wyniki produkcyjne oraz poziom wskaźników metaboliczno-hormonalnych w kompensacyjnym tuczu świń. Production results and the level of metabolic-hormonal rates in compensatory fattening of pigs. Med. Weter. 2008, 64, 1320–1323. (In Polish) [Google Scholar]
- Więcek, J.; Skomiał, J.; Rekiel, A.; Florowski, T.; Dasiewicz, K.; Kosińska, M. Fattening and slaughter parameters in the first period of fattening of pigs fed restrictive or semi ad libitum diets. Pol. J. Food Nutr. Sci. 2008, 58, 329–334. [Google Scholar]
- Marin, M.; Hodoşan, C.; Diniţă, G.; Nicolae, C.G. The influence of the chemical composition of maize, barley and peas hybrids on the digestibility of compound feed for pigs. AgroLife Sci. J. 2017, 6, 127–132. [Google Scholar]
- Szuba-Trznadel, A.; Fuchs, B. Ocena Jęczmienia Hybrydowego Jako Podstawowej Paszy w Tuczu Świń. 2015. Available online: http://www3.syngenta.com/country/pl/pl/media/newsy/Pages/20150615_jeczmien_hybrydowy_jako_podstawowa_pasza.aspx (accessed on 15 June 2015). (In Polish).
- Kwon, W.B.; Touchette, K.J.; Simongiovanni, A.; Syriopoulos, K.; Wessefs, A.; Stein, H.H. Effects of dietary leucine and tryptophan supplementations on serotonin metabolism and growth performance of growing pigs. In Energy and Protein Metabolism and Nutrition; Chizzotti, M.L., Ed.; EAAP Scientific Series; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; Volume 138, p. 504. [Google Scholar]
- Kwon, W.B.; Touchette, K.J.; Simongiovanni, A.; Syriopoulos, K.; Wessels, A.; Stein, H.H. Excess dietary leucine in diets for growing pigs reduces growth performance, biological value of protein, protein retention, and serotonin synthesis. J. Anim. Sci. 2019, 97, 4282–4292. [Google Scholar] [CrossRef]
- Lam, D.; Garfield, A.; Marston, O.; Shaw, J.; Heisler, L. Brain serotonin system in the coordination of food intake and body weight. Pharmacol. Biochem. Behav. 2010, 97, 84–91. [Google Scholar] [CrossRef] [PubMed]
- The Kielanowski Institute of Animal Physiology and Nutrition PAN. Nutrient Requirements of Swine: Nutrient Requirements and Nutritional Value of Feed for Swine; The Kielanowski Institute of Animal Physiology and Nutrition PAN: Jabłonna, Poland, 1993. (In Polish) [Google Scholar]
- Zhou, X.; Beltranena, E.; Zijlstra, R.T. Effect of feeding wheat- or barley-based diets with low or high nutrient density on nutrient digestibility and growth performance in weaned pigs. Anim. Feed Sci. Technol. 2016, 218, 93–99. [Google Scholar] [CrossRef]
- Daza, A.; Latorre, M.A.; Olivares, A.; Amazán, D.; López-Bote, C.J. Effect of replacement of a conventional diet by granulated barley during finishing period on growth performance and carcass and meat characteristics in 130-kg gilts. Livest. Sci. 2012, 148, 196–200. [Google Scholar] [CrossRef]
- Daza, A.; Latorre, M.A.; López-Bote, C.J. The effect of granulated barley as single major ingredient in the growing or finishing diet on productive performance, carcass, meat and fat quality of heavy pigs. Animal 2012, 6, 1543–1553. [Google Scholar] [CrossRef] [Green Version]
- Daza, A.; Latorre, M.A.; López-Bote, C.J. The use of barley as single ingredient in the diet provided during the finishing period may improve the meat quality of heavy pigs from DO (Designation of Origin) Teruel ham (Spain). Span. J. Agric. Res. 2010, 8, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.G.; Wulf, D.M.; Maddock, R.J.; Peters, D.N.; Pedersen, C.; Liu, Y.; Stein, H.H. Effects of dietary barley on growth performance, carcass traits and pork quality of finishing pigs. Rev. Colomb. Cienc. Pecu. (RCCP) 2014, 27, 102–113. [Google Scholar]
- Senčić, D.; Antunović, Z.; Kanisek, J.; Šperanda, M. Fattening, meatiness and economic efficiency of fattening pigs. Acta Vet. Beogr. 2005, 55, 327–334. [Google Scholar] [CrossRef]
- Turyk, Z.; Osek, M.; Milczarek, A.; Janocha, A. Meat chemical composition and blood serum lipids of pigs fed mixtures containing barley or triticale. Rocz. Nauk. PTZ 2015, 11, 71–79. (In Polish) [Google Scholar]
- Banaszkiewicz, T.; Kaszperuk, K.; Bombik, T. Effect of cereal grain type used in diets on the fattening performance and slaughter value of pigs. Acta Sci. Pol. Zootech. 2015, 14, 15–24. [Google Scholar]
- Pond, W.G.; Insull, W.; Mersmann, H.J.; Wong, W.W.; Harris, K.B.; Cross, H.R.; Smith, E.O.; Heath, J.P.; Kömüves, L.G. Effect of dietary fat and cholesterol level on growing pigs selected for three generations for high or low serum cholesterol level at age 56 days. J. Anim. Sci. 1992, 70, 2462–2470. [Google Scholar] [CrossRef]
- Martins, J.M.; Riottot, M.; de Abreu, M.C.; Viegas-Crespo, A.M.; Lança, M.J.; Almeida, J.A.; Freire, J.B.; Bento, O.P. Cholesterol-Lowering effects of dietary blue lupin (Lupinus angustifolius L.) in intact and ileorectal anastomosed pigs. J. Lipid Res. 2005, 16, 1539–1547. [Google Scholar] [CrossRef] [Green Version]
- Winnicka, A. Reference Values of Basic Laboratorium Tests in Veterinary Medicine, 4th ed.; SGWW: Warszawa, Poland, 2008. (In Polish) [Google Scholar]
- Newman, R.K.; Klopfenstein, C.F.; Newman, C.W.; Guritno, N.; Hofer, P.J. Composition of the cholesterol-lowering properties of whole barley, oat bran, wheat red dog in chicks and rats. Cereal Chem. 1992, 69, 240–244. [Google Scholar]
- Ranhotra, G.S.; Gelroth, J.A.; Astroth, K.; Bhatty, R.S. Relative lipidemic responses in rats fed barley and oat meals and their fractions. Cereal Chem. 1991, 68, 548–551. [Google Scholar]
- Kasprowicz-Potocka, M. Barley—Main cereal in nutrition of pigs. Trzoda Chlewna 2016, 1, 27–29. (In Polish) [Google Scholar]
- Delaney, B.; Nicolosi, R.J.; Wilson, T.A.; Carlson, T.; Frazer, S.; Zheng, G.H.; Hess, R.; Ostergren, K.; Haworth, J.; Knutson, N. β-Glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian Golden Hamsters. J. Nutr. 2003, 133, 468–475. [Google Scholar] [CrossRef]
- Rieckhoff, D.; Trautwein, E.A.; Mälkki, Y.; Erbersdobler, H.F. Effects of different cereal fibers on cholesterol and bile acid metabolism in the Syrian Golden Hamster. Cereal Chem. 1999, 76, 788–795. [Google Scholar] [CrossRef]
- Gallaher, D.D. Dietary fiber and its physiological effects. In Essentials of Functional Foods; Schmidl, M.K., Labuza, T.P., Eds.; Aspen Publishers: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kahlon, T.S.; Chow, F.I.; Knuckles, B.E.; Chiu, M.M. Cholesterol-Lowering effects in hamsters of β-glucan-enriched barley fraction, dehulled whole barley, rice bran, and oat bran and their combinations. Cereal Chem. 1993, 70, 435–440. [Google Scholar]
- Sehayek, E.; Nath, C.; Heinemann, T.; McGee, M.; Seidman, C.E.; Samuel, P.; Breslow, J.L. U-Shape relationship between change in dietary cholesterol absorption and plasma lipoprotein responsiveness and evidence for extreme interindividual variation in dietary cholesterol absorption in humans. J. Lipid Res. 1998, 39, 2415–2422. [Google Scholar] [PubMed]
- Wang, L.; Newman, R.K.; Newman, C.W.; Hofer, P.J. Barley β-glucans alter intestinal viscosity and reduce plasma cholesterol concentrations in chicks. J. Nutr. 1992, 122, 2292–2297. [Google Scholar] [CrossRef] [PubMed]
- Ǻman, P. Cholesterol-Lowering effects of barley dietary fiber in humans: Scientific support for a generic health claim. Scand. J. Food Nutr. 2016, 50, 173–176. [Google Scholar] [CrossRef]
- Nicolosi, R.; Bell, S.J.; Bistrian, B.R.; Greenberg, I.; Forse, R.A.; Blackburn, G.L. Plasma lipid changes after supplementation with β-glucan fiber from yeast. Am. J. Clin. Nutr. 1999, 70, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, N.; McGillivray, C.; Bai, Q.; Wood, J.D.; Evans, G.; Chang, K.C. Restriction of dietary energy and protein induces changes in young porcine skeletal muscles. J. Nutr. 2004, 134, 2191–2199. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemia; PWN: Warszawa, Poland, 2005; pp. 851–856. (In Polish) [Google Scholar]
- Kerckhoffs, D.; Hornstra, G.; Mensink, R.P. Cholesterol-Lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am. J. Clin. Nutr. 2003, 78, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Noori, M.; Darabi, M.; Rahimipour, A.; Rahbani, M.; Abadi, N.A.; Darabi, M.; Ghatrehsamani, K. Fatty acid composition of HDL phospholipids and coronary artery disease. J. Clin. Lipidol. 2009, 3, 39–44. [Google Scholar] [CrossRef]
- Stein, O.; Dabach, Y.; Ben-Naim, M.; Halperin, G.; Stein, Y. Effects of oleic acid and macrophage recruitment on cholesterol efflux in cell culture and In Vivo. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 596–601. [Google Scholar] [CrossRef]
- Jenkins, A.L.; Jenkins, D.J.A.; Zdravkovic, U.; Würsch, P.; Vuksan, V. Depression of the glycemic index by high levels of β-glucan fiber in two functional foods tested in type 2 diabetes. Eur. J. Clin. Nutr. 2002, 56, 622–628. [Google Scholar] [CrossRef]
- Tosh, S.M. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. Eur. J. Clin. Nutr. 2013, 67, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Figares, I.; Lachica, M.; Rivera-Ferre, M.G.; Nieto, R.; Garcia del Rio, C.; Aguilera, J.F. Comparative serum metabolites and hormonal profile of Iberian and Landrace growing pigs fed equilibrated or lysine-deficient diets. In Progress in Research on Energy and Protein Metabolism; EAAP Publication Series; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; Volume 109. [Google Scholar]
- Jin, K.Y.; Hong, J.S.; Sin, D.W.; Kang, H.K.; Jo, Y.Y.; Lee, G.I.; Jin, X.H.; Jang, C.J.; Jeong, J.H.; Kim, Y.Y. Evaluation of barley to replace milk by-product in weaning pig’s diet. J. Anim. Sci. Technol. 2019, 61, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Nyachoti, C.M.; Omogbenigun, F.O.; Rademacher, M.; Blank, G. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 2006, 84, 125–134. [Google Scholar] [CrossRef]
- Liu, H.; Allee, G.L.; Touchette, K.J.; Frank, J.W.; Spencer, J.D. Effect of reducing protein and adding amino acids on performance, carcass characteristic and nitrogen excretion and the valine requirement of early-finishing barrows. J. Anim. Sci. 2000, 78 (Suppl. 2), 69. [Google Scholar]
- Zervas, S.; Zijlstra, R.T. Effects of dietary protein and fiber on nitrogen excretion patterns and plasma urea in grower pigs. J. Anim. Sci. 2002, 80, 3247–3256. [Google Scholar] [CrossRef]
- Drażbo, A.; Sobotka, W. The effect of dietary protein and amino acid supplementation on nitrogen metabolism and fattening traits in growing-finishing pigs. Zesz. Nauk. UP Wroc. Biol. Hod. Zwierz. LXII 2011, 62, 123–129. (In Polish) [Google Scholar]
- Świątkiewicz, M. Poziom azotu mocznikowego jako wskaźnik zapotrzebowania na lizynę u świń. Postep. Nauk Rol. 2003, 50, 37–46. (In Polish) [Google Scholar]
Item | Treatment | ||
---|---|---|---|
Hybrid Barley 80% | Hybrid Barley 40% Wheat 40% | Wheat—80% | |
Number of animals in group | 48 | 48 | 48 |
Number of pens in group | 6 | 6 | 6 |
Item | Components | |
---|---|---|
Hybrid Barley | Wheat | |
Nutrients, %·kg−1 | ||
Dry matter | 91.14 | 91.1 |
Crude ash | 2.1 | 1.9 |
Crude protein | 11.02 | 12.2 |
Crude fiber | 5.82 | 3.11 |
Crude fat | 1.23 | 2.32 |
Amino acids, g·kg−1 | ||
Lysine | 3.68 | 3.88 |
Methionine + Cystine | 4.11 | 4.6 |
Tryptophan | 1.42 | 1.01 |
Arginine | 4.68 | 5.18 |
Histidine | 2.49 | 2.52 |
Phenylalanine | 5.55 | 5.57 |
Tyrosine | 2.11 | 3.02 |
Leucine | 7.49 | 7.6 |
Isoleucine | 3.56 | 3.94 |
Valine | 4.99 | 4.92 |
Alanine | 4.17 | 3.48 |
Glycine | 4.32 | 4.21 |
Proline | 12.06 | 11.87 |
Threonine | 3.64 | 3.63 |
Serine | 4.6 | 4.51 |
Glutamic acid | 25.15 | 20.11 |
Amino acid index | 65 | 59 |
Item | Treatment | ||
---|---|---|---|
Hybrid Barley—80% | Hybrid Barley—40% Wheat—40% | Wheat—80% | |
(in %) | |||
Hybrid barley | 84.8 | 42.2 | - |
Wheat | - | 42.2 | 84.05 |
Soybean meal | 10.6 | 11 | 11.35 |
Premix * | 2.5 | 2.5 | 2.5 |
Fodder yeast | 2 | 2 | 2 |
Optazyme Lidermix® ** | 0.1 | 0.1 | 0.1 |
Nutritive value (g in 1 kg of mixture) | |||
Metabolizable Energy, MJ | 12.7 | 12.9 | 13.2 |
Crude protein | 155 | 158.1 | 164.5 |
Crude fat | 11.7 | 16.3 | 20.9 |
Crude fiber | 53.4 | 41.9 | 30.5 |
Lysine | 9.14 | 9.32 | 9.49 |
Methionine | 2.84 | 2.9 | 2.96 |
Threonine | 5.45 | 5.51 | 5.56 |
Tryptophan | 1.96 | 1.81 | 1.66 |
Ca | 4.43 | 4.57 | 4.7 |
P | 5.36 | 5.37 | 5.37 |
Na | 1.64 | 1.64 | 1.64 |
Content crude protein (g) and lysine (g) per 1 MJ ME | |||
Crude protein/Metabolizable energy | 12.2 | 12.2 | 12.5 |
Lysine/Metabolizable energy | 0.73 | 0.72 | 0.73 |
Amino acids in ratio to lysine content | |||
Methionine + Cystine | 64 | 64 | 65 |
Threonine | 60 | 59 | 59 |
Tryptophan | 21 | 19 | 18 |
Specification | Treatment | ||||
---|---|---|---|---|---|
Hybrid Barley—80% | Hybrid Barley—40% Wheat—40% | Wheat—80% | SEM | p-Value | |
Performance results | |||||
Body weight (BW), kg | |||||
initial | 54.39 | 56.04 | 55.52 | 1.607 | 0.358 |
final | 119.48 | 119.66 | 121.97 | 1.711 | 0.085 |
Average daily body weight gains (ADG), g·day−1 | 834 | 826 | 851 | 5.894 | 0.174 |
Average daily feed intake (ADFI) per head, kg·day−1 | 2.34 | 2.32 | 2.35 | 2.145 | 0.774 |
Feed conversion ratio (FCR), kg feed∙kg BWG−1 | 2.81 | 2.82 | 2.77 | 0.026 | 0.349 |
Average results of slaughter yield of fatteners | |||||
Cold carcass weight, kg | 88.79 | 88.48 | 89.36 | 1.366 | 0.727 |
Fat thickness, mm | 20.13 | 21.97 | 17.90 | 0.899 | 0.403 |
Muscle thickness, mm | 55.34 | 56.13 | 59.93 | 1.146 | 0.110 |
Slaughter yield, % | 74.30 | 73.74 | 73.25 | 1.123 | 0.973 |
Meatiness, % | 54.00 | 54.35 | 54.52 | 0.809 | 0.683 |
Specification | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
Hybrid Barley—80% | Hybrid Barley—40% Wheat—40% | Wheat—80% | |||
Total cholesterol, mmol∙dm−3 | 2.08 a | 2.37 b | 2.49 b | 1.105 | 0.021 |
HDL, mmol∙dm−3 | 1.04 A | 0.97 A | 0.84 B | 0.035 | 0.001 |
LDL, mmol∙dm−3 | 1.05 a | 1.10 ab | 1.18 b | 0.033 | 0.026 |
Triglycerides, mmol∙dm−3 | 0.50 a | 0.59 a | 0.72 b | 0.056 | 0.013 |
Specification | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
Hybrid Barley—80% | Hybrid Barley—40% Wheat—40% | Wheat—80% | |||
Total protein, g∙dm−3 | 63.64 | 62.43 | 64.96 | 1.08 | 0.752 |
Albumin, g∙dm−3 | 31.16 | 31.26 | 32.54 | 0.9 | 0.508 |
α-globulin, g∙dm−3 | 13 | 12.6 | 13.42 | 0.4 | 0.368 |
β-globulin, g∙dm−3 | 11.9 | 11.9 | 12.3 | 0.41 | 0.714 |
γ-globulin, g∙dm−3 | 7.58 | 6.67 | 6.7 | 0.58 | 0.516 |
Glucose, mmol∙dm−3 | 4.5 | 4.3 | 4.35 | 0.29 | 0.864 |
Urea, mmol∙dm−3 | 4.1 | 4 | 4.05 | 0.19 | 0.936 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szuba-Trznadel, A.; Hikawczuk, T.; Korzeniowska, M.; Fuchs, B. Effect of Different Amounts of Hybrid Barley in Diets on the Growth Performance and Selected Biochemical Parameters of Blood Serum Characterizing Health Status in Fattening Pigs. Animals 2020, 10, 1987. https://doi.org/10.3390/ani10111987
Szuba-Trznadel A, Hikawczuk T, Korzeniowska M, Fuchs B. Effect of Different Amounts of Hybrid Barley in Diets on the Growth Performance and Selected Biochemical Parameters of Blood Serum Characterizing Health Status in Fattening Pigs. Animals. 2020; 10(11):1987. https://doi.org/10.3390/ani10111987
Chicago/Turabian StyleSzuba-Trznadel, Anna, Tomasz Hikawczuk, Małgorzata Korzeniowska, and Bogusław Fuchs. 2020. "Effect of Different Amounts of Hybrid Barley in Diets on the Growth Performance and Selected Biochemical Parameters of Blood Serum Characterizing Health Status in Fattening Pigs" Animals 10, no. 11: 1987. https://doi.org/10.3390/ani10111987
APA StyleSzuba-Trznadel, A., Hikawczuk, T., Korzeniowska, M., & Fuchs, B. (2020). Effect of Different Amounts of Hybrid Barley in Diets on the Growth Performance and Selected Biochemical Parameters of Blood Serum Characterizing Health Status in Fattening Pigs. Animals, 10(11), 1987. https://doi.org/10.3390/ani10111987