Increased Stopover Duration and Low Body Condition of the Pied Flycatcher (Ficedula hypoleuca) at an Autumn Stopover Site
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analyses
3. Results
3.1. Migration Strategies
3.2. Body Condition
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alerstam, T.; Högstedt, G. Bird migration and reproduction in relation to habitats for survival and breeding. Ornis. Scand. 1982, 13, 25–37. [Google Scholar] [CrossRef]
- Boyle, A. Why Do Birds Migrate? The Role of Food, Habitat, Predation, and Competition. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2006. [Google Scholar]
- Somveille, M.; Rodrigues, A.S.; Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 2015, 24, 664–674. [Google Scholar] [CrossRef]
- Klaassen, R.H.; Hake, M.; Strandberg, R.; Koks, B.J.; Trierweiler, C.; Exo, K.M.; Bairlein, F.; Alerstam, T. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 2014, 83, 176–184. [Google Scholar] [CrossRef]
- Lok, T.; Overdijk, O.; Piersma, T. Migration Sometimes Takes a Toll: Spoonbills Suffer Higher Mortality During Longer Northward Migrations Spoonbills as a Model System: A Demographic Cost-Benefit Analysis of Differential Migration. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2013. [Google Scholar]
- Schaub, M.; Kania, W.; Köppen, U. Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J. Anim. Ecol. 2005, 74, 656–666. [Google Scholar] [CrossRef]
- Sillett, T.S.; Holmes, R.T. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 2002, 71, 296–308. [Google Scholar] [CrossRef]
- Blem, C.R. The energetics of migration. In Animal Migration, Orientation, and Navigation; Gauthreaux, S.A., Ed.; Academic Press: New York, NY, USA, 1980; pp. 175–224. [Google Scholar]
- Biebach, H.; Friedrich, W.; Heine, G. Interaction of bodymass, fat, foraging and stopover period in trans-Sahara migrating passerine birds. Oecologia 1986, 69, 370–379. [Google Scholar] [CrossRef]
- Schaub, M.; Jenni, L. Stopover durations of three warbler species along their autumn migration route. Oecologia 2001, 128, 217–227. [Google Scholar] [CrossRef]
- Schaub, M.; Jenni, L. Body mass of six long-distance migrant passerine species along the autumn migration route. J. Ornithol. 2000, 141, 441–460. [Google Scholar] [CrossRef]
- Moore, F.R.; Kerlinger, P.; Simons, T.R. Stopover on a Gulf coast barrier island by spring trans-Gulf migrants. Wilson Bull. 1990, 487–500. [Google Scholar]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef]
- Bairlein, F. Migratory birds under threat. Science 2016, 354, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Both, C.; Van Turnhout, C.A.; Bijlsma, R.G.; Siepel, H.; Van Strien, A.J.; Foppen, R.P. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. Roy. Soc. B-Biol. Sci. 2009, 277, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, N.; Böhning-Gaese, K. Potential impact of global climate change on species richness of long-distance migrants. Conserv. Biol. 2003, 17, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.E.; Both, C.; Lambrechts, M.M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 2004, 35, 89–110. [Google Scholar]
- Gienapp, P.; Leimu, R.; Merilä, J. Responses to climate change in avian migration time—Microevolution versus phenotypic plasticity. Clim. Res. 2007, 35, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Schmaljohann, H.; Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Chang. 2017, 7, 573–576. [Google Scholar] [CrossRef]
- Sokolov, L.V.; Markovets, M.Y.; Shapoval, A.P.; Morozov, Y.G. Long-term trends in the timing of spring migration of passerines on the Courish Spit of the Baltic Sea. Avian Ecol. Behav. 1998, 1, 1–21. [Google Scholar]
- Rainio, K.; Laaksonen, T.; Ahola, M.; Vähätalo, A.V.; Lehikoinen, E. Climatic responses in spring migration of boreal and arctic birds in relation to wintering area and taxonomy. J. Avian Biol. 2006, 37, 507–515. [Google Scholar] [CrossRef]
- Gordo, O.; Brotons, L.; Ferrer, X.; Comas, P. Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Glob. Chang. Biol. 2005, 11, 12–21. [Google Scholar] [CrossRef]
- Both, C.G.; Bijlsma, R.E.; Visser, M. Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J. Avian Biol. 2005, 36, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Cotton, P.A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. USA 2003, 100, 12219–12222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenni, L.; Kéry, M. Timing of autumn bird migration under climate change: Advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. B-Biol. Sci. 2003, 270, 1467–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meller, K.; Lehikoinen, A.; Vähätalo, A.V. The effects of hatching date on timing of autumn migration in partial migrants–an individual approach. J. Avian Biol. 2013, 44, 272–280. [Google Scholar] [CrossRef]
- Faaborg, J.; Holmes, R.T.; Anders, A.D.; Bildstein, K.L.; Dugger, K.M.; Gauthreaux, S.A., Jr.; Heglung, P.; Hobson, K.A.; Jahn, A.E.; Johnson, D.H.; et al. Conserving migratory land birds in the New World: Do we know enough? Ecol. Applic. 2010, 20, 398–418. [Google Scholar] [CrossRef] [PubMed]
- Bibby, C.; Green, R. Foraging behaviour of migrant pied flycatchers, Ficedula hypoleuca, on temporary territories. J. Anim. Ecol. 1980, 49, 507–521. [Google Scholar] [CrossRef]
- Ouwehand, J.; Both, C. Alternate non-stop migration strategies of pied flycatchers to cross the Sahara desert. Biol. Lett. 2016, 12, 20151060. [Google Scholar] [CrossRef] [Green Version]
- BirdLife International. Ficedula hypoleuca. The IUCN Red List of Threatened Species 2018: e.T22709308A131952521. 2018. Available online: http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22709308A87938122.en (accessed on 10 October 2020).
- Both, C.; Bouwhuis, S.; Lessells, C.; Visser, M.E. Climate change and population declines in a long-distance migratory bird. Nature 2006, 441, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, N.; Coutinho, M. Rainfall changes and rainfall erosivity increase in the Algarve (Portugal). Catena 1995, 24, 55–68. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, C.I.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.J.; Simonson, W.; Flegg, L.A.; Santos, P.; Hall, J. A comparison of the resilience of four habitats to fire, and the implications of changes in community composition for conservation: A case study from the Serra de Monchique, Portugal. Plant. Ecol. Divers. 2009, 2, 45–56. [Google Scholar] [CrossRef]
- Trigo, R.M.; Pereira, J.M.; Pereira, M.G.; Mota, B.; Calado, T.J.; Dacamara, C.C.; Santo, F.E. Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int. J. Climatol. 2006, 26, 1741–1757. [Google Scholar] [CrossRef]
- Kaiser, A. A new multi-category classification of subcutaneous fat deposits of songbirds (Una Nueva Clasificación, con Multi-categorías, para los Depósitos de Grasa en Aves Canoras). J. Field Ornithol. 1993, 64, 246–255. [Google Scholar]
- Demongin, L. Identification Guide to Birds in the Hand; Cambridge University Press: Cambridge, UK, 2016; pp. 1–392. [Google Scholar]
- Schaub, M.; Pradel, R.; Jenni, L.; Lebreton, J.D. Migrating birds stop over longer than usually thought: An improved capture–recapture analysis. Ecology 2001, 82, 852–859. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Sanford, W. An {R} Companion to Applied Regression, 2nd ed.; Sage Publications Inc.: Thousand Oaks, NJ, USA, 2011; pp. 1–608. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theor. Prac. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Kock, N.; Lynn, G. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 2012, 13, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 10 October 2020).
- Berthold, P.; Fiedler, W.; Schlenker, R.; Querner, U. 25-Year study of the population development of Central European songbirds: A general decline, most evident in long-distance migrants. Naturwissenschaften 1998, 85, 350–353. [Google Scholar] [CrossRef]
- Both, C. Flexibility of timing of avian migration to climate change masked by environmental constraints en route. Curr. Biol. 2010, 20, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Briedis, M.; Hahn, S.; Krist, M.; Adamík, P. Finish with a sprint: Evidence for time-selected last leg of migration in a long-distance migratory songbird. Ecol. Evol. 2018, 8, 6899–6908. [Google Scholar] [CrossRef]
- Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 1999, 68, 940–950. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmann, C.A.; Zeegers, T.; van Klink, R.; Vermeulen, R.; van Wielink, P.; Spijkers, H.; Jongejans, E. Analysis of Insect Monitoring Data from De Kaaistoep and Drenthe; Natuurmonumenten: Graveland, The Netherlands, 2018; pp. 1–39. [Google Scholar]
- Melero, Y.; Stefanescu, C.; Pino, J. General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Conserv. 2016, 201, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Lobo, J.M. Decline of roller dung beetle (Scarabaeinae) populations in the Iberian peninsula during the 20th century. Biol. Conserv. 2001, 97, 43–50. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Tøttrup, A.P.; Thorup, K.; Rainio, K.; Yosef, R.; Lehikoinen, E.; Rahbek, C. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 2008, 4, 685–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, A.J. Mass/length residuals: Measures of body condition or generators of spurious results? Ecology 2001, 82, 1473–1483. [Google Scholar] [CrossRef]
- Salewski, V.; Kery, M.; Herremans, M.; Liechti, F.; Jenni, L. Estimating fat and protein fuel from fat and muscle scores in passerines. Ibis 2009, 151, 640–653. [Google Scholar] [CrossRef]
- Delingat, J.; Dierschke, V.; Schmaljohann, H.; Bairlein, F. Diurnal patterns of body mass change during stopover in a migrating songbird, the northern wheatear Oenanthe oenanthe. J. Avian Biol. 2009, 40, 625–634. [Google Scholar] [CrossRef]
- Carmi, N.; Pinshow, B.; Porter, W.P.; Jaeger, J. Water and energy limitations on flight duration in small migrating birds. Auk 1992, 109, 268–276. [Google Scholar]
- Nilsson, C.; Klaassen, R.H.; Alerstam, T. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 2013, 181, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Schmaljohann, H. Proximate mechanisms affecting seasonal differences in migration speed of avian species. Sci. Rep. 2018, 8, 4106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Variable |
---|---|
Migration strategy | Annual total amount of individuals captured |
Average arrival date at the study site | |
Average departure date from the study site | |
Average minimum stopover duration of recaptured individuals | |
Body condition | Average mass in grams |
Average fat score | |
Average mass in grams at arrival 1 | |
Average mass in grams at departure 1 | |
Average fat score at arrival 1 | |
Average fat score at departure 1 | |
Average mass gain in grams 1 | |
Average gain in fat score 1 | |
Average mass gain speed in grams per day 1 | |
Average speed of gain in fat score per day 1 | |
Local climate | Average temperature during the autumn migration period |
Total precipitation during the autumn migration period |
Group | N | Average Mass Gain (g) | Average Mass Gain Speed (g/day) | Average Mass at Departure (g) |
---|---|---|---|---|
Young males | 25 | 2.03 | 0.47 | 16.50 |
Young females | 20 | 1.75 | 0.48 | 15.55 |
Old males | 8 | 1.90 | 0.49 | 15.85 |
Old females | 17 | 0.54 | 0.15 | 15.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goffin, B.; Felgueiras, M.; Hof, A.R. Increased Stopover Duration and Low Body Condition of the Pied Flycatcher (Ficedula hypoleuca) at an Autumn Stopover Site. Animals 2020, 10, 2208. https://doi.org/10.3390/ani10122208
Goffin B, Felgueiras M, Hof AR. Increased Stopover Duration and Low Body Condition of the Pied Flycatcher (Ficedula hypoleuca) at an Autumn Stopover Site. Animals. 2020; 10(12):2208. https://doi.org/10.3390/ani10122208
Chicago/Turabian StyleGoffin, Bernice, Marcial Felgueiras, and Anouschka R. Hof. 2020. "Increased Stopover Duration and Low Body Condition of the Pied Flycatcher (Ficedula hypoleuca) at an Autumn Stopover Site" Animals 10, no. 12: 2208. https://doi.org/10.3390/ani10122208
APA StyleGoffin, B., Felgueiras, M., & Hof, A. R. (2020). Increased Stopover Duration and Low Body Condition of the Pied Flycatcher (Ficedula hypoleuca) at an Autumn Stopover Site. Animals, 10(12), 2208. https://doi.org/10.3390/ani10122208