Combined Supplementation of Nano-Zinc Oxide and Thyme Oil Improves the Nutrient Digestibility and Reproductive Fertility in the Male Californian Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals, Design and Management
2.2. Zinc Oxide Nanoparticles and Thyme Oil Preparation
2.3. Nutrients Digestibility Trial
2.4. Semen Collection and Evaluation
2.5. Blood Biochemical Assay
2.6. Statistical Analysis
3. Results
3.1. Nutrient Digestibility Coefficients
3.2. Semen Quality
3.3. Serobiochemical Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Egwurugwu, J.N.; Ifedi, C.U.; Uchefuna, R.C.; Ezeokafor, E.N.; Alagwu, E.A. Effects of zinc on male sex hormones and semen quality in rats. Niger. J. Physiol. Sci. 2013, 28, 17–22. [Google Scholar]
- Tsai, Y.H.; Mao, S.Y.; Li, M.Z.; Huang, J.T.; Lien, T.F. Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Anim. Feed Sci. Technol. 2016, 213, 99–107. [Google Scholar] [CrossRef]
- Wang, Z.L. Characterization of Nanophase Material; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000; p. 1. [Google Scholar]
- Swain, P.S.; Rao, S.B.N.; Rajendran, D.; Dominic, G.; Selvaraju, S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016, 2, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2000, 21, 53–57. [Google Scholar] [PubMed]
- Eggert-Kruse, W.; Zwick, E.M.; Batschulat, K.; Rohr, G.; Armbruster, F.P.; Petzoldt, D.; Strowitzki, T. Are zinc levels in seminal plasma associated with seminal leukocytes and other determinants of semen quality? Fertil. Steril. 2002, 77, 260–269. [Google Scholar] [CrossRef]
- El-Masry, K.A.; Nasr, A.S.; Kamal, T.H. Influences of season and dietary supplementation with selenium and vitamin E or zinc on some blood constituents and semen quality of New-Zealand white rabbit males. World Rabbit Sci. 1994, 2, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Colagar, A.H.; Marzony, E.T.; Chaichi, M.J. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr. Res. 2009, 29, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Academy Press Inc: New York, NY, USA, 2003; pp. 265–292. [Google Scholar]
- Abdel-Wareth, A.A.A.; Kehraus, S.; Hippenstiel, F.; Südekum, K.H. Effects of thyme and oregano on growth performance of broilers from 4 to 42 days of age and on microbial counts in crop, small intestine and caecum of 42-day-old broilers. Anim. Feed Sci. Technol. 2012, 178, 198–202. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Lohakare, J.D. Effect of dietary supplementation of peppermint on performance, egg quality, and serum metabolic profile of Hy-Line Brown hens during the late laying period. Anim. Feed Sci. Technol. 2014, 197, 114–120. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Taha, E.M.M.; Südekum, K.H.; Lohakare, J. Thyme oil inclusion levels in a rabbit ration: Evaluation of productive performance, carcass criteria and meat quality under hot environmental conditions. Anim. Nutr. 2018, 4, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Hippenstiel, F.; Abdel-Wareth, A.A.A.; Kehraus, S.; Südekum, K.H. Effects of selected herbs and essential oils, and their active components on feed intake and performance of broilers—A review. Arch. Geflügelkd. 2011, 75, 226–234. [Google Scholar]
- Alagawany, M.; Ashour, E.A.; Reda, F.M.; Abd El-Hac, M.E. Effect of Supplementation of Yucca schidigera Extract to Growing Rabbit Diets on Growth Performance, Carcass Characteristics, Serum Biochemistry and Liver Oxidative Status. Asian J. Anim. Vet. Adv. 2014, 9, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Rašković, A.; Pavlović, N.; Kvrgić, M.; Sudji, J.; Mitić, G.; Čapo, I.; Mikov, M. Effects of pharmaceutical formulations containing thyme on carbon tetrachloride-induced liver injury in rats. BMC Complement. Altern. Med. 2015, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Placha, I.; Chrastinova, L.; Laukova, A.; Cobanova, K.; Takacova, J.; Strompfova, V.; Chrenkova, M.; Formelova, Z.; Faix, S. Effect of thyme oil on small intestine integrity and antioxidant status, phagocytic activity and gastrointestinal microbiota in rabbits. Acta Vet. Hung. 2013, 61, 197–208. [Google Scholar] [CrossRef]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of thymus vulgaris, thymus zygis and thymus hyemalis essential oils. Food Cont. 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Abdulkarimi, R.; Daneshyar, M.; Aghazadeh, A. Thyme (Thymus vulgaris) extract consumption darkens liver, lowers blood cholesterol, proportional liver and abdominal fat weights in broiler chickens. Ital. J. Anim. Sci. 2011, 10, e20. [Google Scholar] [CrossRef]
- Cohen, J.; DeLoid, G.; Pyrgiotakis, G.; Demokritou, P. Interactions of engineered nanomaterials in physiological media and implications forin vitrodosimetry. Nanotoxicology 2012, 7, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Mostafa Abozid, M.; Asker, M.M.S. Chemical composition, antioxidant and antimicrobial activity of the essential oil of the thyme and rosemary. Int. J. Acad. Res. 2013, 5, 186–195. [Google Scholar] [CrossRef]
- Perez, J.M.; Lbas, F.; Gidenne, T.; Martens, L.; Xicato, G.; Perigi-Bini, R.; Dallo-Zotte, A.; Cossu, M.E.; Carazzolo, A.; Villamide, M.J.; et al. European reference method for in vivo determination of diet digestibility. World Rabbit Sci. 1995, 3, 41–43. [Google Scholar]
- Hall, J.A.; Melendez, L.D.; Jewell, D.E. Using gross energy improves metabolizable energy predictive equations for pet foods whereas undigested protein and fiber content predict stool quality. PLoS ONE 2013, 8, e54405. [Google Scholar] [CrossRef] [Green Version]
- El-Desoky, N.I.; Hashem, N.M.; Elkomy, A.; Abo-elezz, Z.R. Physiological response and semen quality of rabbit bucks supplemented with Moringa leaves ethanolic extract during summer season. Animal 2017, 11, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1. [Google Scholar] [CrossRef]
- Bozkurt, M.; Hippenstiel, F.; Abdel-Wareth, A.A.A.; Kehraus, S.; Küçükyilmaz, K.; Südekum, K.H. Effects of selected herbs and essential oils on performance, egg quality and some metabolic activities in laying hense A review. Eur. Poult. Sci. 2014, 78, 15. [Google Scholar]
- Attia, Y.A.; Bakhashwain, A.A.; Bertu, N.K. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Ital. J. Anim. Sci. 2017, 16, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Gerencser, Z.S.; Szendrő, Z.; Matics, Z.; Radnai, I.; Kovacs, M.; Nagy, I.; Cullere, M.; Dal Bosco, A.; Dalle Zotte, A. Effect of dietary supplementation of spirulina (Arthrospira platensis) and thyme (Thymus vulgaris) on apparent digestibility and productive performance of growing rabbits. World Rabbit Sci. 2014, 22, 1–9. [Google Scholar] [CrossRef]
- Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 2011, 46, 2560–2566. [Google Scholar] [CrossRef]
- Gao, X.; Matsui, H. Peptide-Based Nanotubes and Their Applications in Bionanotechnology. Adv. Mater. 2005, 17, 2037–2050. [Google Scholar] [CrossRef]
- Yin Win, K.; Feng, S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26, 2713–2722. [Google Scholar] [CrossRef]
- Liao, C.D.; Hung, W.L.; Jan, K.C.; Yeh, A.I.; Ho, C.T.; Hwang, L.S. Nano/sub-microsized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem. 2010, 119, 896–902. [Google Scholar] [CrossRef]
- Mateos, G.G.; Blas, C. Minerals, vitamins and additives. In The Nutrition of the Rabbit; Blas, C., Wiseman, J., Eds.; CABI Publish: London, UK, 1998; Volume 9, pp. 145–175. [Google Scholar]
- Chrastinová, Ľ.; Čobanová, K.; Chrenková, M.; Poláčiková, M.; Formelová, Z.; Lauková, A.; Ondruška, Ľ.; Simonová, P.M.; Strompfová, V.; Mlyneková, Z.; et al. Effect of dietary zinc supplementation on nutrients digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovak J. Anim. Sci. 2016, 49, 23–31. [Google Scholar]
- Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, R.S. The Role of Zinc in Growth and Cell Proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCall, K.A.; Huang, C.-c.; Fierke, C.A. Function and Mechanism of Zinc Metalloenzymes. J. Nutr. 2000, 130, 1437S–1446S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.K.; Mudgal, V.; Dass, R.S. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Anim. Feed Sci. Technol. 2008, 144, 82–96. [Google Scholar] [CrossRef]
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Effects of dietary protein level and zinc oxide supplementation on performance responses and gastrointestinal tract characteristics in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli. Anim. Prod. Sci. 2010, 50, 827–836. [Google Scholar] [CrossRef]
- Sarvari, B.G.; Seyedi, A.H.; Shahryar, H.A.; Sarikhan, M.; Ghavidel, S.Z. Effects of dietary zinc oxide and a blend of organic acids on broiler live performance, carcass traits, and serum parameters. Br. J. Poult. Sci. 2015, 17, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, V.; Ghazanfari, S.; Mohammadi-sangcheshmeh, A.; Nazaran, M.H. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br. Poult. Sci. 2015, 56, 486–493. [Google Scholar] [CrossRef]
- Ribeiro, A.D.B.; Ferraz Junior, M.V.C.; Polizel, D.M.; Miszura1, A.A.; Barroso, J.P.R.; Cunha, A.R.; Souza, T.T.; Ferreira, E.M.; Susin, I.; Pires, A.V. Effect of thyme essential oil on rumen parameters, nutrient digestibility, and nitrogen balance in wethers fed high concentrate diets. Arq. Bras. Med. Vet. Zootec. 2020, 72, 573–580. [Google Scholar] [CrossRef]
- Chandak, M.; Thosar, N.; Bhat, M.; Basak, S. Evaluation of antimicrobial activity of two endodontic sealers: Zinc oxide with thyme oil and zinc oxide eugenol against root canal microorganisms—An in vitro study. Int. J. Clin. Pediat. Dent. 2018, 11, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.M.; Choct, M.; Iji, P.A.; Bruerton, K. Optimal dietary inclusion of organically complexed zinc for broiler chickens. Br. Poult. Sci. 2009, 50, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Fang, V.S.; Furuhashi, N. Partial Alleviation of the Antitesticular Effect of Pipecolinomethylhydroxyindane by Zinc in Rats. J. Endocrinol. 1978, 79, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.; Ansari, M.R.; Kumar, R.; Mudga, V.; Varshney, V.P.; Dass, R.S. Effect of inorganic and organic zinc supplementation on serum testosterone level in murrah buffalo (Bubalus bubalis) bulls. Ind. J. Anim. Sci. 2009, 79, 61. [Google Scholar]
- Moce, E.; Arouca, M.; Lavara, R.; Pascual, J.J. Effect of dietary zinc and vitamin supplementation on semen characteristics of high growth rate males during Summer season. In Proceedings of the 7th World Rabbit Congress, Valencia, Spain, 4–7 July 2000. [Google Scholar]
- Oliveira, C.E.A.; Badu, C.A.; Ferreira, W.M.; Kamwa, E.B.; Lana, A.M.Q. Effects of dietary zinc supplementation on spermatic characteristics of rabbit breeders. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004; pp. 315–321. [Google Scholar]
- Cheah, Y.; Yang, W. Functions of essential nutrition for high quality spermatogenesis. Adv. Biosci. Biotechnol. 2011, 2, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Mantzoros, C.S.; Beck, F.W.J.; Hess, J.W.; Brewer, G.J. Zinc status and serum testosterone levels of healthy adults. Nutrition 1996, 12, 344–348. [Google Scholar] [CrossRef]
- Acconcia, F.; Marino, M. Steroid hormones: Synthesis, secretion, and transport. In Principles of Endocrinology and Hormone Action; Belfiore, A., LeRoith, D., Eds.; Endocrinology; Springer: Cham, Germany, 2017. [Google Scholar] [CrossRef]
- Reza, E.H.; Kobra, S.; Leila, S.; Vahid, Y.B.; Esmaiel, A. Investigation of the zinc oxide nanoparticles effect on testosterone, cholesterol and cortisol in rats. Res. J. Recent Sci. 2014, 3, 14–19. [Google Scholar]
- Chu, Q.; Chi, Z.; Zhang, X.; Liang, D.; Wang, X.; Zhao, Y.; Zhang, L.; Zhang, P. A potential role for zinc transporter 7 in testosterone synthesis in mouse Leydig tumor cells. Int. J. Mol. Med. 2016, 37, 1619–1626. [Google Scholar] [CrossRef] [Green Version]
- Nashwa, A.H.A.; Nahed, M. El-M.; Rania, A.H.A. Assessing the effect of thyme and rosemary as antiaflatoxicosis on fertility in male rats. J. Am. Sci. 2015, 11, 294–302. [Google Scholar]
- Skonieczna, J.; Madej, J.P.; Będziński, R. Accessory genital glands in the New Zealand White rabbit: A morphometrical and histological study. J. Vet. Res. 2019, 63, 251–257. [Google Scholar] [CrossRef] [Green Version]
Ingredients | % | Chemical Analysis | % |
---|---|---|---|
Yellow maize grain | 32.00 | Dry matter | 91.40 |
Wheat bran | 20.00 | Ash | 9.80 |
Soybean meal (44% CP) | 18.00 | Crude protein | 17.00 |
Wheat straw | 12.00 | Crude fiber | 12.60 |
Lucerne hay | 5.00 | Ether extract | 2.90 |
Rice bran | 5.00 | Digestible energy (MJ/kg) | 9.42 |
Linseed straw | 2.80 | Calcium | 1.30 |
Sunflower meal | 2.50 | Phosphorus | 0.86 |
Lime stone | 2.00 | Lysine | 0.60 |
Sodium chloride | 0.30 | Methionine | 0.41 |
Vitamin-mineral premix 1 | 0.30 | ||
dl-Methionine | 0.10 | ||
Zinc | 0.09 |
Chemical Compounds | Rt. | Area % | Mol. Weight (g/mol) | Chemical Formula |
---|---|---|---|---|
p-Cymene | 6.99 | 23.59 | 134.218 | C10H14 |
Β-linalool | 9.61 | 0.74 | 154.25 | C10H18O |
Carvone (Carvacrol) | 15.70 | 9.80 | 150.22 | C10H14O |
Anethole | 17.49 | 2.50 | 148.2 | C10H12O |
Thymol | 17.70 | 39.45 | 150.22 | C10H14O |
Carvacrol | 18.09 | 2.07 | 150.217 | C10H14O |
trans-Caryophyllene | 22.46 | 0.98 | 204.36 | C15H24 |
γ-terpinene | 25.14 | 12.49 | 136.23 | C10H16 |
Aromadenrene | 34.84 | 2.12 | 204.35 | C15H24 |
Ledol | 48.66 | 2.24 | 222.358 | C15H26 |
Items | Nutrient Digestibility% | p-Value | |||
---|---|---|---|---|---|
Treatments (Mean ± SEM) | |||||
Control | ZnO-NPs | THO | ZnO-NPs + THO | ||
Feed inatke g/day | 155 ± 2.01 | 157 ± 2.11 | 158 ± 2.21 | 159 ± 2.05 | 0.089 |
Dry matter | 64.70 ± 1.02 b | 67.32 ± 1.03 a | 68.38 ± 0.71 a | 67.04 ± 0.69 a | 0.001 |
Crude protein | 78.06 ± 1.13 b | 84.30 ± 1.06 a | 85.56 ± 0.51 a | 84.30 ± 1.33 a | 0.001 |
Ether extract | 80.98 ± 0.89 b | 87.24 ± 1.55 a | 88.40 ± 1.46 a | 86.98 ± 0.58 a | 0.040 |
Crude fiber | 24.92 ± 1.67 b | 27.40 ± 1.02 a | 27.91 ± 0.61 a | 27.05 ± 1.22 a | 0.035 |
Energy | 66.71 ± 1.30 b | 67.90 ± 1.34 a | 69.52 ± 1.42 a | 68.24 ± 1.23 a | 0.031 |
Items | Treatments (Mean ± SEM) | p-Value | |||
---|---|---|---|---|---|
Control | ZnO-NPs | THO | ZnO-NPs + THO | ||
Live sperm % | 77.34 ± 0.68 b | 83.99 ± 0.84 a | 84.20 ± 0.59 a | 84.50 ± 0.70 a | 0.003 |
Abnormal sperm % | 17.40 ± 0.41 a | 15.58 ± 0.51 b | 15.10 ± 0.50 b | 15.20 ± 0.37 b | 0.001 |
Sperm motility % | 56.67 ± 1.51 b | 75.00 ± 1.49 a | 75.67 ± 0.86 a | 73.33 ± 0.68 a | 0.002 |
Semen volume, ml | 0.63 ± 0.01 c | 0.74 ± 0.01 b | 0.72 ± 0.02 b | 0.76 ± 0.01 a | <0.05–0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Wareth, A.A.A.; Al-Kahtani, M.A.; Alsyaad, K.M.; Shalaby, F.M.; Saadeldin, I.M.; Alshammari, F.A.; Mobashar, M.; Suleiman, M.H.A.; Ali, A.H.H.; Taqi, M.O.; et al. Combined Supplementation of Nano-Zinc Oxide and Thyme Oil Improves the Nutrient Digestibility and Reproductive Fertility in the Male Californian Rabbits. Animals 2020, 10, 2234. https://doi.org/10.3390/ani10122234
Abdel-Wareth AAA, Al-Kahtani MA, Alsyaad KM, Shalaby FM, Saadeldin IM, Alshammari FA, Mobashar M, Suleiman MHA, Ali AHH, Taqi MO, et al. Combined Supplementation of Nano-Zinc Oxide and Thyme Oil Improves the Nutrient Digestibility and Reproductive Fertility in the Male Californian Rabbits. Animals. 2020; 10(12):2234. https://doi.org/10.3390/ani10122234
Chicago/Turabian StyleAbdel-Wareth, Ahmed A. A., Mohammed Ali Al-Kahtani, Khalid Mushabab Alsyaad, Fatma Mohsen Shalaby, Islam M. Saadeldin, Fahdah Ayed Alshammari, Muhammad Mobashar, Mohamed H. A. Suleiman, Abdalla H. H. Ali, Mohamed O. Taqi, and et al. 2020. "Combined Supplementation of Nano-Zinc Oxide and Thyme Oil Improves the Nutrient Digestibility and Reproductive Fertility in the Male Californian Rabbits" Animals 10, no. 12: 2234. https://doi.org/10.3390/ani10122234
APA StyleAbdel-Wareth, A. A. A., Al-Kahtani, M. A., Alsyaad, K. M., Shalaby, F. M., Saadeldin, I. M., Alshammari, F. A., Mobashar, M., Suleiman, M. H. A., Ali, A. H. H., Taqi, M. O., El-Sayed, H. G. M., El-Sadek, M. S. A., Metwally, A. E., & Ahmed, A. E. (2020). Combined Supplementation of Nano-Zinc Oxide and Thyme Oil Improves the Nutrient Digestibility and Reproductive Fertility in the Male Californian Rabbits. Animals, 10(12), 2234. https://doi.org/10.3390/ani10122234