Utilization of Avocado and Mango Fruit Wastes in Multi-Nutrient Blocks for Goats Feeding: In Vitro Evaluation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Avocado and Mango Fruit Wastes
2.2. Animals and Feeding
2.3. Experimental Design
2.3.1. Experiment 1. In Vitro Fermentation of Avocado and Mango Fruit Wastes
2.3.2. Experiment 2. In Vitro Fermentation of Multi-Nutrient Blocks (MB) Including Avocado and Mango Fruit Wastes and of Diets Based on Alfalfa Hay and MB
2.4. Chemical Analyses
2.5. Calculations and Statistical Analyses
3. Results and Discussion
3.1. Experiment 1. Chemical Composition and In Vitro Rumen Fermentation of Avocado and Mango Fruit Wastes
3.2. Experiment 2. In Vitro Fermentation of Multi-Nutrient Blocks (MB) Including Avocado and Mango Fruit Wastes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Ruiz-Cruz, S.; Gardea-Béjar, A.A.; Yahia, E.M.; Ornelas-Paz, J.J.; Pérez-Martínez, J.D.; Rios-Velasco, C.; Ibarra Junquera, V. The importance of the bioactive compounds of avocado fruit (Persea americana Mill) on human health. Biotecnia 2019, 21, 154–162. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 6 November 2020).
- Migliore, G.; Farina, V.; Tinervia, S.; Matranga, G.; Schifani, G. Consumer interest towards tropical fruit: Factors affecting avocado fruit consumption in Italy. Agri. Food Econ. 2017, 5, 24–36. [Google Scholar] [CrossRef]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.-L.; Norulaini, N.A.N.; Sahena, F.; Omar, A.K.M. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef]
- Kim, H.; Moon, J.Y.; Kim, H.; Lee, D.-S.; Cho, M.; Choi, H.-K.; Kim, Y.S.; Mosaddik, A.; Cho, S.M. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem. 2010, 121, 429–436. [Google Scholar] [CrossRef]
- Eliyahu, D.; Yosef, E.; Weinberg, Z.G.; Hen, Y.; Nikbachat, M.; Solomon, R.; Mabjeesh, S.J.; Miron, J. Composition, preservation and digestibility by sheep of wet by-products from the food industry. Anim. Feed Sci. Technol. 2015, 207, 1–9. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Morales-García, E.Y.; Martín-García, A.I.; Ben Salem, H.; Nefzaoui, A.; Sanz-Sampelayo, M.R. Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, and milk yield and composition in goats. J. Dairy Sci. 2010, 93, 2076–2087. [Google Scholar] [CrossRef] [Green Version]
- Ben-Salem, H.; Nefzaoui, A. Feed blocks as alternative supplements for sheep and goats. Small Rumin. Res. 2003, 49, 275–288. [Google Scholar] [CrossRef]
- De Evan, T.; Carro, M.D.; Yepes, J.E.F.; Haro, A.; Arbesú, L.; Romero-Huelva, R.; Molina-Alcaide, E. Effects of Feeding Multinutrient Blocks Including Avocado Pulp and Peels to Dairy Goats on Feed Intake and Milk Yield and Composition. Animals 2020, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Sruamsiri, S.; Silman, P. Nutritive value and nutrient digestibility of ensiled mango by-products. Maejo Int. J. Sci. Technol. 2009, 3, 371–378. [Google Scholar]
- Sanon, H.O.; Kanwe, A.B.; Millogo, A.; Ledin, I. Chemical composition, digestibility, and voluntary feed intake of mango residues by sheep. Trop. Anim. Health Prod. 2013, 45, 665–669. [Google Scholar] [CrossRef]
- Silva, J.L.; Guim, A.; de Carvalho, F.F.R.; Mattos, C.W.; Menezes, D.R.; Coelho, M.C.S.C.; Garcia, D.A.; Pereira Neto, J.D.; Soares, L.F.P. Replacement of corn with mango meal for dairy goats. Rev. Colomb. Cien. Pec. 2016, 29, 178–187. [Google Scholar] [CrossRef]
- Rao, D.S.; Ravi, A.; Yedukondalu, R. Inclusion of dried mango (Mangifera indica) peels in finisher rations of pigs on their performance. Indian J. Anim. Nutr. 2003, 20, 120–123. [Google Scholar]
- Odunsi, A.A. Response of laying hens and growing broilers to the dietary inclusion of mango (Mangifera indica L.) seed kernel meal. Trop. Anim. Health Prod. 2005, 37, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, M.; Bakshi, M.P.S. Utilization of Fruit and Vegetable Wastes as Livestock Feed and as Substrates for Generation of Other Value-Added Products; Makkar, H.P.S., Ed.; FAO: Rome, Italy, 2013. [Google Scholar]
- Prieto, C.; Aguilera, J.F.; Lara, L.; Fonolla, J. Protein and energy requirements for maintenance of indigenous Granadina goats. Br. J. Nutr. 1990, 63, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina-Alcaide, E.; Carro, M.D.; Roleda, M.Y.; Weisbjerg, M.R.; Lind, V.; Novoa-Garrido, M. In vitro ruminal fermentation and methane production of different seaweed species. Anim. Feed Sci. Technol. 2017, 228, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Goering, H.K.; Van Soest, P.J. Forage Fibre Analyses (Apparatus, Reagents, Procedures and Some Applications); Agriculture Handbook No. 379; Agricultural Research Service, USDA: Washington, DC, USA, 1970. [Google Scholar]
- Van Soest, P.J.; Win, R.; Moor, L. Estimation of the true digestibility of forages by the in vitro digestion of cell walls. In Proceedings of the 10th International Grassland Congress, Helsinki, Finland, 7–16 July 1966; pp. 438–441. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Isaac, M.D.; García, M.A.; Aguilera, J.F.; Molina-Alcaide, E. A comparative study of nutrient digestibility, kinetics of digestion and passage and rumen fermentation pattern in goats and sheep offered medium quality forages at the maintenance level of feeding. Arch. Tierernahr. 1994, 46, 37–50. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® Users Guide, Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A comparative study on rumen fermentation of energy supplements in vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; López, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranilla, M.J.; López, S.; Giráldez, F.J.; Valdés, C.; Carro, M.D. Comparative digestibility and digesta flow kinetics in two breeds of sheep. Anim. Sci. 1998, 66, 389–396. [Google Scholar] [CrossRef]
- Berardini, N.; Knodler, M.; Schieber, A.; Carle, R. Utilization of mango peels as a source of pectin and polyphenolics. Innov. Food Sci. Emerg. Technol. 2005, 6, 442–452. [Google Scholar] [CrossRef]
- Negesse, T.; Makkar, H.P.S.; Becker, K. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Anim. Feed Sci. Technol. 2009, 154, 204–217. [Google Scholar] [CrossRef]
- Pearson, D. Seasonal English market variations in the composition of South African and Israeli avocados. J. Sci. Food Agric. 1975, 26, 207–213. [Google Scholar] [CrossRef]
- Slater, G.G.; Shankman, S.; Shepherd, J.S.; Alfin-Slater, R.B. Seasonal variation in the composition of Californian avocado. J. Agric. Food Chem. 1975, 23, 468–474. [Google Scholar] [CrossRef]
- Geerkens, C.H.; Nagel, A.; Just, K.M.; Miller-Rostek, P.; Kammerer, D.R.; Schweiggert, R.M.; Carle, R. Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocoll. 2015, 51, 241–251. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- FEDNA (Federación Española para el Desarrollo de la Nutrición Animal). Available online: http://www.fundacionfedna.org/ (accessed on 6 November 2020).
- Menke, K.H.; Steingass, H. Estimation of energetic feed value obtained from chemical analysis and in vitro gas production. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Grant, L.J.; Mikkelsen, D.; Ouwerkerk, D.; Klieve, A.V.; Gidley, M.J.; Williams, B.A. Whole fruit pulp (mango) and a soluble fibre (pectin) impact bacterial diversity and abundance differently within the porcine large intestine. Bioact. Carbohydr. Diet. Fibre 2019, 19, 100192. [Google Scholar] [CrossRef]
- Marcos, C.N.; García-Rebollar, P.; de Blas, C.; Carro, M.D. Variability in chemical composition and in vitro ruminal fermentation of olive cake in Spain. Animals 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Danielsson, R.; Ramin, M.; Bertilsson, J.; Lund, P.; Huhtanen, P. Evaluation of a gas in vitro system for predicting methane production in vivo. J. Dairy Sci. 2017, 100, 8881–8894. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.R.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 2007, 91, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Krumreich, F.D.; Borges, C.D.; Mendonça, C.R.B.; Jansen-Alves, C.; Zambiazi, R.C. Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chem. 2018, 257, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Skenjana, A.; van Ryssen, J.B.J.; van Niekerk, W.A. In vitro digestibility and in situ degradability of avocado meal and macadamia waste products in sheep. S. Afr. J. Anim. Sci. 2006, 36, 78–81. [Google Scholar]
- Sanon, H.; Kanwe, A. Valorisation of mango peels and seed kernels in animal feeding: Nutritive value and voluntary feed intake by sheep. Adv. Anim. Biosci. 2010, 1, 445–446. [Google Scholar] [CrossRef] [Green Version]
- Naveen, Z.; Prasad, J.R.; Rao, Z.P. Chemical composition and in vitro dry matter digestibility of some fruit wastes. Tamilnadu J. Vet. Anim. Sci. 2007, 3, 1–3. [Google Scholar]
- Pereira, L.G.R.; Barreiros, D.C.; Oliveira, L.S.; Ferreira, A.L.; Mauricio, R.M.; Azevêdo, J.A.G.; Figueiredo, M.P.; Sousa, L.F.; da Cruz, P.G. Chemical composition and ruminal fermentation kinetics of fruit by-products in south Bahia. Livest. Res. Rural Dev. 2008, 20, 1–13. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- De Evan, T.; Vintimilla, A.; Molina-Alcaide, E.; Ranilla, M.J.; Carro, M.D. Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies. Animals 2020, 10, 1247. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2020. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
Ingredient | AMB 2 | MMB 3 |
---|---|---|
Avocado pulp and peels | 150 | - |
Mango pulp and peels | - | 290 |
Sunflower meal | 250 | 258 |
Wheat bran | 221 | 200 |
Corn | 220 | 100 |
Barley straw | 80.0 | 90.0 |
Beet molasses | 49.5 | 21.0 |
Quicklime | 20.0 | 20.0 |
Urea | 4.1 | 4.0 |
Palm soap | 0.4 | 12.0 |
Vitamin–mineral mixture | 5.0 | 5.0 |
Sample | DM (g/kg Fresh Matter) | Organic Matter (OM) | Nitrogen (N) | Neutral Detergent Fiber (NDF) | Acid Detergent Fiber (ADF) | Acid Detergent Lignin | Ether Extract (EE) | Lignification 1 | Non-Structural Carbohydrates (NSC) 2 | Gross Energy (MJ/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Avocado and mango wastes 3 | ||||||||||
Avocado peels | 236 | 981 | 15.8 | 115 | 104 | 34.8 | 589 | 30.3 | 182 | 30.5 |
Avocado pulp:peels mixture | 244 | 982 | 16.0 | 89.8 | 63.1 | 3.97 | 638 | 4.41 | 184 | 30.9 |
Mango peels | 208 | 974 | 5.13 | 118 | 95.1 | 16.0 | 13.9 | 13.6 | 810 | 18.0 |
Mango pulp:peels mixture | 174 | 975 | 7.07 | 95.5 | 63.5 | 11.3 | 7.34 | 11.8 | 828 | 17.5 |
Conventional feeds | ||||||||||
Corn grains | 881 | 988 | 15.0 | 154 | 30.4 | 3.28 | 41.9 | 2.13 | 699 | 18.9 |
Wheat middlings | 886 | 964 | 28.3 | 372 | 111 | 23.7 | 37.8 | 6.37 | 377 | 19.4 |
Parameter | Avocado | Mango | SEM 1 | p = | Corn Grains | Wheat Middlings | ||||
---|---|---|---|---|---|---|---|---|---|---|
Peels | Pulp:Peels (81:19 w/w) | Peels | Pulp:Peels (65:35 w/w) | Fruit | Fraction | Fruit × Fraction | ||||
Gas production parameters 2 | ||||||||||
PGP (mL) | 60.7 | 56.5 | 156 | 153 | 2.30 | <0.001 | 0.215 | 0.809 | 157 | 123 |
c (per h) | 5.18 | 7.56 | 6.04 | 7.21 | 0.474 | 0.628 | 0.033 | 0.292 | 4.32 | 8.12 |
lag (h) | 0.00 | 0.00 | 0.00 | 0.00 | - | - | - | - | 1.62 | 0.00 |
AGPR (mL/h) | 2.27 | 3.08 | 6.77 | 7.91 | 0.464 | 0.002 | 0.126 | 0.746 | 4.46 | 7.20 |
DMED (g/kg DM) 3 | 470 | 626 | 598 | 619 | 21.3 | 0.065 | 0.026 | 0.051 | 50.6 | 56.8 |
TDMD (g/kg DM) 4 | 742 | 874 | 895 | 882 | 29.8 | 0.073 | 0.140 | 0.092 | 919 | 780 |
Fermentation parameters | ||||||||||
pH | 6.79 | 6.80 | 6.45 | 6.42 | 0.031 | <0.001 | 0.841 | 0.558 | 6.56 | 6.68 |
Total volatile fatty acids (VFA; mmol/vial) | 1.20 | 1.20 | 2.49 | 2.76 | 0.111 | <0.001 | 0.317 | 0.327 | 2.33 | 2.21 |
Individual VFA (mol/100 mol) | ||||||||||
Acetate (Ac) | 69.1 | 63.4 | 58.3 | 57.2 | 1.30 | 0.007 | 0.078 | 0.181 | 52.1 | 58.8 |
Propionate (Pr) | 24.0 | 26.5 | 29.3 | 30.4 | 1.88 | 0.092 | 0.403 | 0.740 | 27.3 | 27.4 |
Butyrate | 7.12 | 9.05 | 11.9 | 11.8 | 0.778 | 0.017 | 0.328 | 0.281 | 18.8 | 11.2 |
Minor VFA 5 | 0.431 | 1.06 | 0.513 | 0.649 | 0.0826 | 0.138 | 0.019 | 0.058 | 1.80 | 2.53 |
Acetate/Propionate (mol/mol) | 2.90 | 2.39 | 2.01 | 1.89 | 0.207 | 0.043 | 0.224 | 0.422 | 1.96 | 2.17 |
NH3-N (mg/100 mL) | 6.58 | 14.6 | 1.40 | 0.97 | 0.746 | 0.001 | 0.015 | 0.011 | 1.75 | 13.5 |
CH4 (ml/g DM incubated) | 30.7 | 31.1 | 68.2 | 61.5 | 1.01 | <0.001 | 0.052 | 0.039 | 67.6 | 57.6 |
CH4/VFA (mL/mmol) | 10.2 | 10.4 | 11.0 | 8.95 | 0.42 | 0.513 | 0.105 | 0.083 | 11.6 | 10.4 |
Sample | DM (g/kg Fresh Matter) | Organic Matter (OM) | Nitrogen (N) | Neutral Detergent Fiber (NDF) | Acid Detergent Fiber (ADF) | Acid Detergent Lignin | Ether Extract (EE) | Lignification 1 | Non-structural Carbohydrates (NSC) 2 | Gross Energy (MJ/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Multi-nutrient blocks and feed mixtures | ||||||||||
AMB 3 | 915 | 921 | 32.2 | 413 | 246 | 94.3 | 43.5 | 22.8 | 263 | 18.7 |
MMB 4 | 905 | 912 | 35.0 | 454 | 289 | 103 | 24.3 | 22.7 | 215 | 18.3 |
AMB: alfalfa hay | 907 | 903 | 32.2 | 434 | 302 | 92.5 | 33.3 | 21.3 | 235 | 18.1 |
MMB: alfalfa hay | 925 | 898 | 33.6 | 457 | 325 | 96.2 | 24.1 | 21.1 | 207 | 17.9 |
Other feeds | ||||||||||
Alfalfa hay | 889 | 884 | 32.1 | 458 | 360 | 89.4 | 23.7 | 19.5 | 202 | 17.5 |
Parameter | AMB | MMB | SEM 1 | p = | Alfalfa Hay | ||||
---|---|---|---|---|---|---|---|---|---|
Alone | Mixed Diet | Alone | Mixed Diet | MB 2 | Fermentation Substrate | MB × Fermentation Substrate | |||
Gas production parameters 3 | |||||||||
PGP (mL) | 108 | 101 | 99.8 | 97.2 | 1.02 | 0.010 | 0.018 | 0.122 | 91.0 |
c (per h) | 4.76 | 6.29 | 4.68 | 6.43 | 0.110 | 0.788 | <0.001 | 0.384 | 7.21 |
lag (h) | 0 | 0 | 0 | 0 | - | - | - | - | 0.00 |
AGPR (mL/h) | 3.71 | 4.58 | 3.37 | 4.51 | 0.101 | 0.131 | 0.002 | 0.279 | 4.73 |
DMED (g/kg DM) 4 | 443 | 483 | 450 | 474 | 8.2 | 0.952 | 0.030 | 0.413 | 486 |
TDMD (g/kg DM) 5 | 723 | 713 | 739 | 696 | 8.8 | 0.942 | 0.058 | 0.154 | 688 |
Fermentation parameters | |||||||||
pH | 6.76 | 6.80 | 6.82 | 6.85 | 0.024 | 0.096 | 0.215 | 0.775 | 6.79 |
Total volatile fatty acids (VFA; mmol/400 mg DM) | 1.83 | 1.90 | 1.70 | 1.84 | 0.030 | 0.054 | 0.042 | 0.301 | 1.88 |
Individual VFA (mol/100 mol) | |||||||||
Acetate (Ac) | 60.4 | 65.0 | 62.2 | 66.3 | 0.31 | 0.015 | 0.001 | 0.451 | 68.9 |
Propionate (Pr) | 27.7 | 24.2 | 25.5 | 22.9 | 0.47 | 0.032 | 0.008 | 0.386 | 22.2 |
Butyrate | 10.0 | 7.96 | 10.2 | 7.87 | 0.344 | 0.904 | 0.008 | 0.721 | 5.37 |
Minor VFA 6 | 1.73 | 2.82 | 2.12 | 2.93 | 0.090 | 0.069 | 0.002 | 0.218 | 3.53 |
Acetate/Propionate (mol/mol) | 2.18 | 2.68 | 2.45 | 2.89 | 0.055 | 0.022 | 0.003 | 0.623 | 3.11 |
NH3-N (mg/100 mL) | 14.9 | 15.3 | 17.7 | 17.3 | 1.05 | 0.104 | 0.998 | 0.729 | 18.8 |
CH4 (ml/g dry matter incubated) | 50.7 | 52.0 | 47.8 | 49.1 | 2.64 | 0.356 | 0.656 | 0.995 | 47.5 |
CH4/VFA (mL/mmol) | 11.1 | 11.0 | 11.3 | 10.7 | 0.62 | 0.911 | 0.616 | 0.757 | 10.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos, C.N.; Carro, M.D.; Fernández-Yepes, J.E.; Arbesu, L.; Molina-Alcaide, E. Utilization of Avocado and Mango Fruit Wastes in Multi-Nutrient Blocks for Goats Feeding: In Vitro Evaluation. Animals 2020, 10, 2279. https://doi.org/10.3390/ani10122279
Marcos CN, Carro MD, Fernández-Yepes JE, Arbesu L, Molina-Alcaide E. Utilization of Avocado and Mango Fruit Wastes in Multi-Nutrient Blocks for Goats Feeding: In Vitro Evaluation. Animals. 2020; 10(12):2279. https://doi.org/10.3390/ani10122279
Chicago/Turabian StyleMarcos, Carlos Navarro, María Dolores Carro, Julia E. Fernández-Yepes, Lesly Arbesu, and Eduarda Molina-Alcaide. 2020. "Utilization of Avocado and Mango Fruit Wastes in Multi-Nutrient Blocks for Goats Feeding: In Vitro Evaluation" Animals 10, no. 12: 2279. https://doi.org/10.3390/ani10122279
APA StyleMarcos, C. N., Carro, M. D., Fernández-Yepes, J. E., Arbesu, L., & Molina-Alcaide, E. (2020). Utilization of Avocado and Mango Fruit Wastes in Multi-Nutrient Blocks for Goats Feeding: In Vitro Evaluation. Animals, 10(12), 2279. https://doi.org/10.3390/ani10122279