Quillaja saponaria (Molina) Extracts Inhibits In Vitro Piscirickettsia salmonis Infections
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Quillaja Saponaria Products and Preparation
2.2. In Vitro Safety/Cytotoxicity Assay of Quillaja Saponins Products in Salmon Cell Lines.
2.3. Quantification of P. Salmonis Using Quantitative Polymerase Chain Reaction (qPCR)
2.4. In Vitro Efficacy of Quillaja Saponin Products Against P. Salmonis Infection on CHSE-214
2.5. Minimal Inhibitory Concentration (MIC) on P. Salmonis
2.6. Statistical Analysis.
3. Results
4. Discussion
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture, Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar]
- SERNAPESCA. Anuario Estadistico; Servicio Nacional de Pesca y Acuicultura: Valparaiso, Chile, 2019. [Google Scholar]
- Clark, B.; Panzone, L.A.; Stewart, G.B.; Kyriazakis, I.; Niemi, J.K.; Latvala, T.; Tranter, R.; Jones, P.; Frewer, L.J. Consumer attitudes towards production diseases in intensive production systems. PLoS ONE 2019, 14, e0210432. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.D.; Robinson, T.P.; Grace, D.C. Review: Animal health and sustainable global livestock systems. Animal 2018, 12, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckmans, D. Review: Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, S.; Schellberg, J.; Bailey, J.S. Improving productivity and increasing the efficiency of soil nutrient management on grassland farms in the UK and Ireland using precision agriculture technology. Eur. J. Agron. 2019, 106, 67–74. [Google Scholar] [CrossRef]
- North, B.P.; Turnbull, J.F.; Ellis, T.; Porter, M.; Migaud, H.; Bron, J.; Bromage, N.R. The impact of stocking density on the welfare of rainbow trout (Onchorynchus mykiss). Aquaculture 2006, 255, 466–479. [Google Scholar] [CrossRef]
- Millanao, A.; Barrientos, M.; Gómez, C.; Tomova, A.; Buschmannh, A.; Dölz, H.; Cabello, F. Uso inadecuado y excesivo de antibióticos: Salud pública y salmonicultura en Chile. Rev. Med. Chile 2011, 139, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Burridge, L.; Weis, J.; Cabello, J.; Pizarro, J.; Bostick, K. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture 2010, 306, 7–23. [Google Scholar] [CrossRef]
- Thorstad, E.B. Incidence and Impacts of Escaped Farmed Atlantic salmon Salmo salar in Nature [Report from the Technical Working Group on Escapes of the Salmon Aquaculture Dialogue]; NINA: Trondheim, Norway, 2008; ISBN 9788242619662. [Google Scholar]
- Knight-Jones, T.J.D.; Rushton, J. The economic impacts of foot and mouth disease—What are they, how big are they and where do they occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Bodewes, R. Novel viruses in birds: Flying through the roof or is a cage needed? Vet. J. 2018, 233, 55–62. [Google Scholar] [CrossRef]
- Mardones, F.O.; Martinez-Lopez, B.; Valdes-Donoso, P.; Carpenter, T.E.; Perez, A.M. The role of fish movements and the spread of infectious salmon anemia virus (ISAV) in Chile, 2007–2009. Prev. Vet. Med. 2014, 114, 37–46. [Google Scholar] [CrossRef]
- Austin, B. Infectious disease in aquaculture: Prevention and Control. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-85709-016-4. [Google Scholar]
- SERNAPESCA. Informe Sanitario de Salmonicultura en Centros Marinos, año 2018; Servicio NAcional de Pesca y Acuicultura: Valparaiso, Chile, 2019. [Google Scholar]
- SERNAPESCA. Informe sobre uso de Antimicrobianos en la Salmonicultura Nacional, año 2018; Servicio Nacional de Pesca y Acuicultura: Valparaiso, Chile, 2019. [Google Scholar]
- Rozas, M.; Enríquez, R. Piscirickettsiosis and Piscirickettsia salmonis in fish: A review. J. Fish Dis. 2014, 37, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Fryer, J.L.; Hedrick, R.P. Piscirickettsia salmonis: A Gram-negative intracellular bacterial pathogen of fish. J. Fish Dis. 2003, 26, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Stuardo, D.; Morales-Reyes, J.; Tapia, S.; Ahumada, D.E.; Espinoza, A.; Soto-Herrera, V.; Brianson, B.; Ibaceta, V.; Sandino, A.M.; Spencer, E.; et al. Non-lysosomal activation in macrophages of atlantic salmon (Salmo salar) after infection with piscirickettsia salmonis. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Rojas, M.E.; Galleguillos, M.; Maturana, C.; Smith, P.I.; Cifuentes, F.; Contreras, I.; Smith, P.A. Apoptosis inhibition of Atlantic salmon (Salmo salar) peritoneal macrophages by Piscirickettsia salmonis. J. Fish Dis. 2017, 40, 1895–1902. [Google Scholar] [CrossRef]
- Rojas, V.; Galanti, N.; Bols, N.C.; Marshall, S.H. Productive infection of Piscirickettsia salmonis in macrophages and monocyte-like cells from rainbow trout, a possible survival strategy. J. Cell. Biochem. 2009, 108, 631–637. [Google Scholar] [CrossRef]
- Mauel, M.J.; Miller, D.L. Piscirickettsiosis and piscirickettsiosis-like infections in fish: A review. Vet. Microbiol. 2002, 87, 279–289. [Google Scholar] [CrossRef]
- Maisey, K.; Montero, R.; Christodoulides, M. Vaccines for piscirickettsiosis (Salmonid Rickettsial Septicaemia, SRS): The Chile perspective. Expert Rev. Vaccines 2017, 16, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Happold, J.; Sadler, R.; Meyer, A.; Hillman, A.; Cowled, B.; Mackenzie, C.; Gallardo Lagno, A.L.; Cameron, A. Effectiveness of vaccination for the control of salmonid rickettsial septicaemia in commercial salmon and trout farms in Chile. Aquaculture 2020, 520. [Google Scholar] [CrossRef]
- Isla, A.; Saldarriaga-Córdoba, M.; Fuentes, D.E.; Albornoz, R.; Haussmann, D.; Mancilla-Schulz, J.; Martínez, A.; Figueroa, J.; Avendaño-Herrera, R.; Yáñez, A. Multilocus sequence typing detects new Piscirickettsia salmonis hybrid genogroup in Chilean fish farms: Evidence for genetic diversity and population structure. J. Fish Dis. 2019, 42, 721–737. [Google Scholar] [CrossRef]
- Yáñez, J.M.; Yoshida, G.M.; Parra, Á.; Correa, K.; Barría, A.; Bassini, L.N.; Christensen, K.A.; López, M.E.; Carvalheiro, R.; Lhorente, J.P.; et al. Comparative Genomic Analysis of Three Salmonid Species Identifies Functional Candidate Genes Involved in Resistance to the Intracellular Bacterium Piscirickettsia salmonis. Front. Genet. 2019, 10, 665. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Salud de Chile. Ley Sobre Proteccion Animal; Ministerio de Salud de Chile: Santiago, Chile, 2018.
- Ministerio de Economía de Chile. Ley General de Pesca y Acuicultura; Minsiterio de Economía: Santiago, Chile, 1991.
- Happold, J.; Meyer, A.; Sadler, R.; Cowled, B.; Mackenzie, C.; Stevenson, M.; Ward, M.P.; Gallardo Lagno, A.L.; Cameron, A. Effectiveness of antimicrobial treatment of salmonid rickettsial septicaemia in commercial salmon and trout farms in Chile. Aquaculture 2020, 735323. [Google Scholar] [CrossRef]
- Oceana Chile Uso de Antibióticos en la Salmonicultura Chilena: Causas, Efectos y riesgos Asociados; Oceana: Santiago, Chile, 2018.
- Millanao, A.R.; Barrientos-Schaffeld, C.; Siegel-Tike, C.D.; Tomova, A.; Ivanova, L.; Godfrey, H.P.; Dölz, H.J.; Buschmann, A.H.; Cabello, F.C. Antimicrobial resistance in Chile and the one health paradigm: Dealing with threats to human and veterinary health resulting from antimicrobial use in Salmon aquaculture and the clinic. Rev. Chil. Infectol. 2018, 35, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.; Godfrey, H.P. Salmon aquaculture, Piscirickettsia salmonis virulence, and One Health: Dealing with harmful synergies between heavy antimicrobial use and piscine and human health. Aquaculture 2019, 507, 451–456. [Google Scholar] [CrossRef]
- The Guardian Climate Crisis and Antibiotic Use Could “sink” Fish Farming Industry—Report | Environment | The Guardian. Available online: http://www.theguardian.com/environment/2019/jun/05/climate-crisis-and-antibiotic-use-could-sink-fish-farming-industry-report (accessed on 25 April 2020).
- Forbes It’s Time for Aquaculture to Start Kicking Its Drug Habit. Available online: http://www.forbes.com/sites/maisieganzler/2019/05/06/its-time-for-aquaculture-to-start-kicking-its-drug-habit/#612a1ce651e4 (accessed on 25 April 2020).
- SERNAPESCA. Establece Programa Sanitario Especifico de Vigilancia y Control de Piscirickettsiosis (PSEVC-Pisciricketsiosis). In Resolución Exenta N° 3174; Servicio Nacional de Pesca: Valparaiso, Chile, 2012. [Google Scholar]
- SERNAPESCA. Manual de Buenas Practicas en el Uso de Antimicrobianos y Antiparasitarios en Salmonicultura Chilena, 3rd ed.; Servicio Nacional de Pesca: Valparaiso, Chile, 2015. [Google Scholar]
- Servicio Agrícola y Ganadero Sistema de Registro de Medicamentos Veterinarios. Available online: https://medicamentos.sag.gob.cl/ConsultaUsrPublico/BusquedaMedicamentos_1.asp (accessed on 5 July 2020).
- Avendaño-Herrera, R. Proper antibiotics use in the Chilean salmon industry: Policy and technology bottlenecks. Aquaculture 2018, 495, 803–805. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Austin, B. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. J. Fish Dis. 2014, 38, 937–955. [Google Scholar] [CrossRef] [PubMed]
- Arabski, M.; Wegierek-Ciuk, A.; Czerwonka, G.; Lankoff, A.; Kaca, W. Effects of saponins against clinical E. coli strains and eukaryotic cell line. J. Biomed. Biotechnol. 2012, 2012, 286216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkash, J.; Patel, K.R. Evaluation of antibacterial activity of different concentrations of Chenopodium album leaves extracts. J. Drug Deliv. Ther. 2014, 4, 123–126. [Google Scholar] [CrossRef]
- Tam, K.I.; Roner, M.R. Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria Molina. Antivir. Res. 2011, 90, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Chapagain, B.P.; Wiesman, Z.; Tsror, L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind. Crops. Prod. 2007, 26, 109–115. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [Green Version]
- Gilabert-Oriol, R.; Mergel, K.; Thakur, M.; Von Mallinckrodt, B.; Melzig, M.F.; Fuchs, H.; Weng, A. Real-time analysis of membrane permeabilizing effects of oleanane saponins. Bioorganic. Med. Chem. 2013, 21, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Roner, M.R.; Tam, K.I.; Kiesling-Barrager, M. Prevention of rotavirus infections in vitro with aqueous extracts of Quillaja saponaria Molina. Futur. Med. Chem. 2010, 2, 1083–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, C.; Müller-Goymann, C.C. Saponin Interactions with Model Membrane Systems—Langmuir Monolayer Studies, Hemolysis and Formation of ISCOMs. Planta Med. 2016, 82, 1496–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, Y.; Zhang, W.; Chataway, T.; Franco, C. Structural elucidation of novel saponins in the sea cucumber Holothuria lessoni. Mar. Drugs 2014, 12, 4439–4473. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, S.N.; Dyshlovoy, S.A.; Kuzmich, A.S.; Shubina, L.K.; Avilov, S.A.; Silchenko, A.S.; Bode, A.M.; Dong, Z.; Stonik, V.A. In vitro anticancer activities of some triterpene glycosides from holothurians of cucumariidae, stichopodidae, psolidae, holothuriidae and synaptidae families. Nat. Prod. Commun. 2016, 11, 1239–1242. [Google Scholar] [CrossRef] [Green Version]
- Lacaille-Dubois, M.A.; Wagner, H. Bioactive saponins from plants: An update. Stud. Nat. Prod. Chem. 2000, 21, 633–687. [Google Scholar] [CrossRef]
- Luo, Z.L.; Zhang, K.L.; Ma, X.J.; Guo, Y.H. Research progress in synthetic biology of triterpen saponins. Chinese Tradit. Herb. Drugs 2016, 47, 1806–1814. [Google Scholar] [CrossRef]
- Biswas, T.; Dwivedi, U.N. Plant triterpenoid saponins: Biosynthesis, in vitro production, and pharmacological relevance. Protoplasma 2019, 256, 1463–1486. [Google Scholar] [CrossRef]
- San Martín, R.; Briones, R. Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ. Bot. 1999, 53, 302–311. [Google Scholar] [CrossRef]
- Maier, C.; Conrad, J.; Carle, R.; Weiss, J.; Schweiggert, R.M. Phenolic Constituents in Commercial Aqueous Quillaja (Quillaja saponaria Molina). Wood Extr. 2015, 63, 1756–1762. [Google Scholar] [CrossRef]
- Li, M.H.; Robinson, E.H. Complete feeds—Intensive systems. In Feed and Feeding Practices in Aquaculture; Davis, A., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 111–126. [Google Scholar]
- Bai, S.C.; Katya, K.; Yun, H. Additives in aquafeed: An overview. In Feed and Feeding Practices in Aquaculture; Davis, A., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 171–202. [Google Scholar]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. In Current Protocols in Immunology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; Volume 21, pp. A.3B.1–A.3B.2. [Google Scholar]
- Henríquez, P.; Kaiser, M.; Bohle, H.; Bustos, P.; Mancilla, M. Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. J. Fish Dis. 2016, 39, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.; Schulze, K.; Cassini, A.; Plachouras, D.; Mossialos, E. A governance framework for development and assessment of national action plans on antimicrobial resistance. Lancet Infect. Dis. 2019, 19, e371–e384. [Google Scholar] [CrossRef] [Green Version]
- Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Preena, P.G.; Swaminathan, T.R.; Kumar, V.J.R.; Singh, I.S.B. Antimicrobial resistance in aquaculture: A crisis for concern. Biologia 2020. [Google Scholar] [CrossRef]
- Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautiyal, A.R. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review. Plants 2017, 6, 16. [Google Scholar] [CrossRef]
- Hassan, S.M.; Byrd, J.A.; Cartwright, A.L.; Bailey, C.A. Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean. Appl. Biochem. Biotechnol. 2010, 162, 1008–1017. [Google Scholar] [CrossRef]
- De Geyter, E.; Swevers, L.; Soin, T.; Geelen, D.; Smagghe, G. Saponins do not affect the ecdysteroid receptor complex but cause membrane permeation in insect culture cell lines. J. Insect Physiol. 2012, 58, 18–23. [Google Scholar] [CrossRef]
- Leung, Y.M.; Ou, Y.J.; Kwan, C.Y.; Loh, T.T. Specific interaction between tetrandrine and Quillaja saponins in promoting permeabilization of plasma membrane in human leukemic HL-60 cells. Biochim. Biophys. Acta 1997, 1325, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Roner, M.R.; Sprayberry, J.; Spinks, M.; Dhanji, S. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina). J. Gen. Virol. 2007, 88, 275–285. [Google Scholar] [CrossRef]
- Johnson, A.M. Saponins as Agents Preventing Infection Caused by Waterborne Pathogens. PhD Thesis, University of Texas, Arlington, TX, USA, 2013. [Google Scholar]
- Arabski, M.; Wasik, S.; Dworecki, K.; Kaca, W. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of Proteus mirabilis lipopolysaccharides and cells. J. Microbiol. Methods 2009, 77, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, L.; Villalón, K.; Marchant, M.J.; Tarnok, M.E.; Cárdenas, P.; Aquea, G.; Acevedo, W.; Padilla, L.; Bernal, G.; Molinari, A.; et al. In vitro evaluation and molecular docking of QS-21 and quillaic acid from Quillaja saponaria Molina as gastric cancer agents. Sci. Rep. 2020, 10, 10534. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, N.; Komatsu, M.; Ohashi, R.; Horii, A.; Hoshi, K.; Takato, T.; Abe, T.; Hamakubo, T. Saponin Facilitates Anti-Robo1 Immunotoxin Cytotoxic Effects on Maxillary Sinus Squamous Cell Carcinoma. J. Oncol. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Bernardes, N.; Fialho, A.M. Perturbing the Dynamics and Organization of Cell Membrane Components: A New Paradigm for Cancer-Targeted Therapies. Int. J. Mol. Sci. 2018, 19, 3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Quillaja Extract | CC50 (µg/mL) | CC90 (µg/mL) | ||
---|---|---|---|---|
Product | Saponin | Product | Saponin | |
QD 100 | 83.4 | 20.8 | 92.6 | 23.2 |
UD100-Q | 22.1 | 14.4 | 29.2 | 19.0 |
VaxSap | 20.4 | 18.4 | 25.3 | 22.8 |
Treatment | Product Concentration (mg/mL) | Saponin Concentration (μg/mL) | Ct (dRn) | DNA (Copies/mL) | Inhibition (%) |
---|---|---|---|---|---|
Control | 0.00 | 0.00 | 14.72 | 9.4 × 107 | 0.00 |
QD100 | 2.00 | 0.50 | 14.87 | 2.2 × 107 | 76.94 |
QD100 | 0.25 | 0.06 | 14.73 | 5.9 × 107 | 37.13 |
UD100-Q | 2.00 | 1.30 | 24.37 | 3.4 × 104 | 99.96 |
UD100-Q | 0.25 | 0.16 | 20.07 | 1.6 × 106 | 98.29 |
VaxSap | 2.00 | 1.80 | 27.98 | 2.4 × 103 | 99.99 |
VaxSap | 0.25 | 0.23 | 20.98 | 4.9 × 105 | 99.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañon-Jones, H.; Cortes, H.; Castillo-Ruiz, M.; Schlotterbeck, T.; San Martín, R. Quillaja saponaria (Molina) Extracts Inhibits In Vitro Piscirickettsia salmonis Infections. Animals 2020, 10, 2286. https://doi.org/10.3390/ani10122286
Cañon-Jones H, Cortes H, Castillo-Ruiz M, Schlotterbeck T, San Martín R. Quillaja saponaria (Molina) Extracts Inhibits In Vitro Piscirickettsia salmonis Infections. Animals. 2020; 10(12):2286. https://doi.org/10.3390/ani10122286
Chicago/Turabian StyleCañon-Jones, Hernán, Hernán Cortes, Mario Castillo-Ruiz, Trinidad Schlotterbeck, and Ricardo San Martín. 2020. "Quillaja saponaria (Molina) Extracts Inhibits In Vitro Piscirickettsia salmonis Infections" Animals 10, no. 12: 2286. https://doi.org/10.3390/ani10122286
APA StyleCañon-Jones, H., Cortes, H., Castillo-Ruiz, M., Schlotterbeck, T., & San Martín, R. (2020). Quillaja saponaria (Molina) Extracts Inhibits In Vitro Piscirickettsia salmonis Infections. Animals, 10(12), 2286. https://doi.org/10.3390/ani10122286