Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of EEHV1A and EEHV4 Inoculum
2.2. Cell Lines and Culture Media
2.3. Cell Inoculation
2.4. Viral Serial Passaging
2.5. Quantitative PCR
2.6. Immunoperoxidase Monolayer Assay (IPMA)
2.7. Immunofluorescence
2.8. Immunohistochemistry (IHC)
2.9. Data Analysis
3. Results
3.1. Cytopathic Effects (CPEs) of EEHV-Inoculated Cells
3.2. Quantification of EEHV Genome in U937 Cell Supernatant
3.3. Detection of EEHV Replication in U937 Cells
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
BHK-21 | Baby hamster kidney-21 |
BSA | Bovine serum albumin |
CPEs | Cytopathic effects |
DAB | 3,3′-diaminobenzidine |
DENV | Dengue virus |
DMEM | Dulbecco’s Modified Eagle’s Medium |
DNAPol | DNA polymerase |
EEHV | Elephant endotheliotropic herpesvirus |
FBS | Fetal bovine serum |
FITC | Fluorescein isothiocyanate |
HIV | Human immunodeficiency virus |
HPI | Hours post infection |
HrT-18G | Human rectal tumor |
HSV-1 | Herpes simplex virus type 1 |
IHC | Immunohistochemistry |
IFA | Immunofluorescence assay |
IPMA | Immunoperoxidase monolayer assay |
MARC-145 | Meat Animal Research Center-145 |
MDBK | Mardin–Darby bovine kidney |
MDCK | Mardin–Darby canine kidney |
PBS | Phosphate-buffered saline |
PBST | Triton X-100 in PBS |
PDGFs | Platelet-derived growth factors |
RK-13 | Rabbit kidney-13 (RK-13) |
RPMI | Roswell Park Memorial Institute medium |
RT | Room temperature |
References
- Richman, L.K.; Montali, R.J.; Garber, R.L.; Kennedy, M.A.; Lehnhardt, J.; Hildebrandt, T.; Schmitt, D.; Hardy, D.; Alcendor, D.J.; Hayward, G.S. Novel endotheliotropic herpesviruses fatal for Asian and African elephants. Science 1999, 283, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, G.S.; Davison, A.J.; Kerr, K.; Stidworthy, M.F.; Redrobe, S.; Steinbach, F.; Dastjerdi, A.; Denk, D. First fatality associated with elephant endotheliotropic herpesvirus 5 in an Asian elephant: Pathological findings and complete viral genome sequence. Sci. Rep. 2014, 4, 6299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, P.D.; Long, S.Y.; Fuery, A.; Peng, R.-S.; Heaggans, S.Y.; Qin, X.; Worley, K.C.; Dugan, S.; Hayward, G.S. Complete genome sequence of elephant endotheliotropic herpesvirus 4, the first example of a GC-rich branch proboscivirus. MSphere 2016, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossent, P.; Guscetti, F.; Metzler, A.; Lang, E.; Rübel, A.; Hauser, B. Acute and fatal herpesvirus infection in a young Asian elephant (Elephas maximus). Vet. Pathol. 1990, 27, 131–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, M.; Helmick, K.; Ochsenreiter, J.; Richman, L.K.; Latimer, E.; Wise, A.; Maes, R.; Kiupel, M.; Nordhausen, R.; Zong, J. Clinico-pathologic features of fatal disease attributed to new variants of endotheliotropic herpesviruses in two Asian elephants (Elephas maximus). Vet. Pathol. 2009, 46, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochagul, V.; Srivorakul, S.; Boonsri, K.; Somgird, C.; Sthitmatee, N.; Thitaram, C.; Pringproa, K. Production of antibody against elephant endotheliotropic herpesvirus (EEHV) unveils tissue tropisms and routes of viral transmission in EEHV-infected Asian elephants. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Latimer, E.; Zong, J.-C.; Heaggans, S.Y.; Richman, L.K.; Hayward, G.S. Detection and evaluation of novel herpesviruses in routine and pathological samples from Asian and African elephants: Identification of two new probosciviruses (EEHV5 and EEHV6) and two new gammaherpesviruses (EGHV3B and EGHV5). Vet. Microbiol. 2011, 147, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, A.; Seilern-Moy, K.; Darpel, K.; Steinbach, F.; Molenaar, F. Surviving and fatal elephant endotheliotropic herpesvirus-1A infections in juvenile Asian elephants–lessons learned and recommendations on anti-herpesviral therapy. Bmc Vet. Res. 2016, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, D.L.; Hardy, D.A.; Montali, R.J.; Richman, L.K.; Lindsay, W.A.; Isaza, R.; West, G. Use of famciclovir for the treatment of endotheliotrophic herpesvirus infections in Asian elephants (Elephas maximus). J. Zoo Wildl. Med. 2000, 31, 518–522. [Google Scholar]
- Sripiboon, S.; Angkawanish, T.; Boonprasert, K.; Sombutputorn, P.; Langkaphin, W.; Ditcham, W.; Warren, K. Successful treatment of a clinical elephant endotheliotropic herpesvirus infection: The dynamics of viral load, genotype analysis, and treatment with acyclovir. J. Zoo Wildl. Med. 2017, 48, 1254–1259. [Google Scholar] [CrossRef]
- Bello, M.B.; Yusoff, K.; Ideris, A.; Hair-Bejo, M.; Peeters, B.P.; Omar, A.R. Diagnostic and vaccination approaches for newcastle disease virus in poultry: The current and emerging perspectives. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Kabelo, T.; Fana, E.; Lebani, K. Assessment of the sensitivity of primary cells and cell lines to the Southern African Territories (SAT) serotypes in the diagnosis of foot-and-mouth disease virus. Heliyon 2020, 6, e03905. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Wang, H.; Cheng, Y.; Song, S.; Sun, Y.; Zhang, M.; Guo, L.; Yi, L.; Tong, M.; Cao, Z. Loop-mediated isothermal amplification-single nucleotide polymorphism analysis for detection and differentiation of wild-type and vaccine strains of mink enteritis virus. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peletto, S.; Caruso, C.; Cerutti, F.; Modesto, P.; Biolatti, C.; Pautasso, A.; Grattarola, C.; Giorda, F.; Mazzariol, S.; Mignone, W. Efficient isolation on Vero. DogSLAMtag cells and full genome characterization of Dolphin Morbillivirus (DMV) by next generation sequencing. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Meister, T.L.; Bruening, J.; Todt, D.; Steinmann, E. Cell culture systems for the study of hepatitis E virus. Antivir. Res. 2019, 163, 34–49. [Google Scholar] [CrossRef]
- Taylor, D.R. Evolution of cell culture systems for HCV. Antivir. Ther. 2013, 18, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Pringproa, K.; Rungsiwiwut, R.; Tantilertcharoen, R.; Praphet, R.; Pruksananonda, K.; Baumgärtner, W.; Thanawongnuwech, R. Tropism and induction of cytokines in human embryonic-stem cells-derived neural progenitors upon inoculation with highly-pathogenic avian H5N1 influenza virus. PLoS ONE 2015, 10, e0135850. [Google Scholar] [CrossRef]
- Wu, Y.; Prager, A.; Boos, S.; Resch, M.; Brizic, I.; Mach, M.; Wildner, S.; Scrivano, L.; Adler, B. Human cytomegalovirus glycoprotein complex gH/gL/gO uses PDGFR-α as a key for entry. Plos Pathog. 2017, 13, e1006281. [Google Scholar] [CrossRef]
- Hodinka, R.L.; Kaiser, L. Point-counterpoint: Is the era of viral culture over in the clinical microbiology laboratory? J. Clin. Microbiol. 2013, 51, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Pavulraj, S.; Eschke, K.; Prahl, A.; Flügger, M.; Trimpert, J.; van den Doel, P.B.; Andreotti, S.; Kaessmeyer, S.; Osterrieder, N.; Azab, W. Fatal elephant endotheliotropic herpesvirus infection of two young Asian elephants. Microorganisms 2019, 7, 396. [Google Scholar] [CrossRef] [Green Version]
- Seilern-Moy, K.; Darpel, K.; Steinbach, F.; Dastjerdi, A. Distribution and load of elephant endotheliotropic herpesviruses in tissues from associated fatalities of Asian elephants. Virus Res. 2016, 220, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Srivorakul, S.; Guntawang, T.; Kochagul, V.; Photichai, K.; Sittisak, T.; Janyamethakul, T.; Boonprasert, K.; Khammesri, S.; Langkaphin, W.; Punyapornwithaya, V. Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus). PLoS ONE 2019, 14, e0222158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guntawang, T.; Sittisak, T.; Srivorakul, S.; Kochagul, V.; Photichai, K.; Thitaram, C.; Sthitmatee, N.; Hsu, W.-L.; Pringproa, K. In vivo characterization of target cells for acute elephant endotheliotropic herpesvirus (EEHV) infection in Asian elephants (Elephas maximus). Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Pringproa, K.; Khonghiran, O.; Kunanoppadol, S.; Potha, T.; Chuammitri, P. In vitro virucidal and virustatic properties of the crude extract of Cynodon dactylon against porcine reproductive and respiratory syndrome virus. Vet. Med. Int. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.; Saiz, J.; Laor, O.; Moore, D. Antigenic stability of foot-and-mouth disease virus variants on serial passage in cell culture. J. Virol. 1991, 65, 3949–3953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanton, J.J.; Zong, J.-C.; Latimer, E.; Tan, J.; Herron, A.; Hayward, G.S.; Ling, P.D. Detection of pathogenic elephant endotheliotropic herpesvirus in routine trunk washes from healthy adult Asian elephants (Elephas maximus) by use of a real-time quantitative polymerase chain reaction assay. Am. J. Vet. Res. 2010, 71, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotila-Row, A. Detection of elephant endotheliotropic herpesvirus (EEHV) in Asian (Elephas maximus) and African elephants (Loxodonta africana). 2015. Available online: https://stud.epsilon.slu.se/7893/ (accessed on 27 October 2020).
- Pringproa, K.; Chungpivat, S.; Panyathong, R.; Thanawongnuwech, R. Culex tritaeniorhynchus is unlikely to be a vector for the Porcine Reproductive and Respiratory Syndrome virus (PRRSV). Thai J. Vet. Med. 2006, 36, 21–31. [Google Scholar]
- Vitenshtein, A.; Weisblum, Y.; Hauka, S.; Halenius, A.; Oiknine-Djian, E.; Tsukerman, P.; Bauman, Y.; Bar-On, Y.; Stern-Ginossar, N.; Enk, J. CEACAM1-mediated inhibition of virus production. Cell Rep. 2016, 15, 2331–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stöckbauer, P.; Malaskova, V.; Soucek, J.; Chudomel, V. Differentiation of human myeloid leukemia cell lines induced by tumor-promoting phorbol ester (TPA). I. Changes of the morphology, cytochemistry and the surface differentiation antigens analyzed with monoclonal antibodies. Neoplasma 1983, 30, 257–272. [Google Scholar]
- Chanput, W.; Peters, V.; Wichers, H. THP-1 and U937 Cells. In The Impact of Food Bioactives on Health; Springer: New York, NY, USA, 2015; pp. 147–159. [Google Scholar]
- Kabel, P.J.; De Haan-Meulman, M.; Voorbij, H.A.; Kleingeld, M.; Knol, E.F.; Drexhage, H.A. Accessory cells with a morphology and marker pattern of dendritic cells can be obtained from elutriator-purified blood monocyte fractions. An enhancing effect of metrizamide in this differentiation. Immunobiology 1989, 179, 395–411. [Google Scholar] [CrossRef]
- Moriuchi, H.; Moriuchi, M.; Fauci, A.S. Differentiation of promonocytic U937 subclones into macrophagelike phenotypes regulates a cellular factor (s) which modulates fusion/entry of macrophagetropic human immunodeficiency virus type 1. J. Virol. 1998, 72, 3394–3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puerta-Guardo, H.; Mosso, C.; Medina, F.; Liprandi, F.; Ludert, J.E.; del Angel, R.M. Antibody-dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich membrane microdomains. J. Gen. Virol. 2010, 91, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Tenney, D.J.; Morahan, P.S. Effects of differentiation of human macrophage-like U937 cells on intrinsic resistance to herpes simplex virus type 1. J. Immunol. 1987, 139, 3076–3083. [Google Scholar] [PubMed]
- Kabanova, A.; Marcandalli, J.; Zhou, T.; Bianchi, S.; Baxa, U.; Tsybovsky, Y.; Lilleri, D.; Silacci-Fregni, C.; Foglierini, M.; Fernandez-Rodriguez, B.M. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat. Microbiol. 2016, 1, 1–8. [Google Scholar]
- Sinzger, C.; Jahn, G. Human cytomegalovirus cell tropism and pathogenesis. Intervirology 1996, 39, 302–319. [Google Scholar] [CrossRef] [PubMed]
- Soroceanu, L.; Akhavan, A.; Cobbs, C.S. Platelet-derived growth factor-α receptor activation is required for human cytomegalovirus infection. Nature 2008, 455, 391–395. [Google Scholar] [CrossRef]
- Wang, X.; Huang, D.Y.; Huong, S.-M.; Huang, E.-S. Integrin αvβ3 is a coreceptor for human cytomegalovirus. Nat. Med. 2005, 11, 515–521. [Google Scholar] [CrossRef]
- De Bruin, M.; Peters, G.J.; Oerlemans, R.; Assaraf, Y.G.; Masterson, A.J.; Adema, A.D.; Dijkmans, B.A.; Pinedo, H.M.; Jansen, G. Sulfasalazine down-regulates the expression of the angiogenic factors platelet-derived endothelial cell growth factor/thymidine phosphorylase and interleukin-8 in human monocytic-macrophage THP1 and U937 cells. Mol. Pharmacol. 2004, 66, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Savikko, J.; von Willebrand, E. Coexpression of platelet-derived growth factors AA and BB and their receptors during monocytic differentiation. In Transplantation Proceedings; Elsevier Science: New York, NY, USA, 2001; pp. 2307–2308. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Photichai, K.; Guntawang, T.; Sittisak, T.; Kochagul, V.; Chuammitri, P.; Thitaram, C.; Thananchai, H.; Chewonarin, T.; Sringarm, K.; Pringproa, K. Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System. Animals 2020, 10, 2328. https://doi.org/10.3390/ani10122328
Photichai K, Guntawang T, Sittisak T, Kochagul V, Chuammitri P, Thitaram C, Thananchai H, Chewonarin T, Sringarm K, Pringproa K. Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System. Animals. 2020; 10(12):2328. https://doi.org/10.3390/ani10122328
Chicago/Turabian StylePhotichai, Kornravee, Thunyamas Guntawang, Tidaratt Sittisak, Varankpicha Kochagul, Phongsakorn Chuammitri, Chatchote Thitaram, Hathairat Thananchai, Teera Chewonarin, Korawan Sringarm, and Kidsadagon Pringproa. 2020. "Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System" Animals 10, no. 12: 2328. https://doi.org/10.3390/ani10122328
APA StylePhotichai, K., Guntawang, T., Sittisak, T., Kochagul, V., Chuammitri, P., Thitaram, C., Thananchai, H., Chewonarin, T., Sringarm, K., & Pringproa, K. (2020). Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System. Animals, 10(12), 2328. https://doi.org/10.3390/ani10122328