Effects of Oat Hay Content in Diets on Nutrient Metabolism and the Rumen Microflora in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Animal Feeding and Management
2.3. Collection and Processing of Experimental Samples
2.3.1. Collection and Processing of Feed Samples
2.3.2. Collection and Treatment of Fecal and Urine Samples
2.3.3. Rumen pH Measurement and Microbial Sample Collection
2.4. Experimental Methods
2.4.1. Determination of Feed Nutrient Content
2.4.2. DNA Extraction and HiSeq Sequencing
2.5. Bioinformatic Analysis
2.6. Statistical Analyses
3. Results
3.1. Effects of Oat Hay Content in the Diet on the Apparent Digestibility of DM and OM in Sheep
3.2. Effects of Oat Hay Content in the Diet on the Apparent Digestibility of NDF and ADF in Sheep
3.3. Effect of Oat Hay Content in Feed on the Apparent Digestibility of Nitrogen in Sheep
3.4. The Effect of Oat Hay Content in the Diet on the Rumen pH of Sheep
3.5. Microbial Alpha Diversity Analysis
3.6. Microbial Abundance and Composition
3.7. Microbial Communities
3.8. Association of Microbial Diversity and Abundance with Environmental Variables
4. Discussion
4.1. Effect of Oat Hay Content in the Diet on Apparent Digestibility in Sheep
4.2. Effect of Oat Hay Content in the Diet on Rumen pH
4.3. Effects of Oat Hay Content in the Diet on the Rumen Microflora of Sheep
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrzejewska, J.; Contreras, F.E.; Pastuszka, A.; Kotwica, K.; Albrecht, K.A. Performance of oat (Avena sativa L.) sown in late summer for autumn forage production in Central Europe. Grass Forage Sci. 2018, 74, 97–103. [Google Scholar]
- Chen, L.; Guo, G.; Yu, C.Q.; Zhang, J.; Masataka, S.; Shao, T. The effects of replacement of whole-plant corn with oat and common vetch on the fermentation quality, chemical composition and aerobic stability of total mixed ration silage in Tibet. Anim. Sci. J. 2015, 86, 69–76. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Whish, J.P.M.; Bell, L.W.; Nan, Z.B. Forage production, quality and wateruse- efficiency of four warm-season annual crops at three sowing times in the Loess Plateau region of China. Eur. J. Agron. 2017, 84–94. [Google Scholar] [CrossRef]
- Yang, F.Y.; Li, G.Z.; Zhang, D.E.; Christie, P.; Gai, J.P. Geographical and plant genotype effects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biol. Fertil. Soils 2010, 46, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Nan, Z.B. The grassland farming system and sustainable agricultural development in China. Grassl. Sci. 2010, 51, 15–19. [Google Scholar] [CrossRef]
- George, S.K.; Dipu, M.T.; Mehra, U.R.; Singh, P.; Verma, A.K. Growth of crossbred bulls affected by level of feed intake. Indian J. Anim. Nutr. 2005, 22, 81–84. [Google Scholar]
- Long, R.J.; Dong, S.K.; Hu, Z.Z.; Shi, J.J.; Dong, Q.M.; Han, X.T. Digestibility, nutrient balance and urinary purine derivative excretion in dry yak cows fed oat hay at different levels of intake. Livest. Prod. Sci. 2004, 88, 27–32. [Google Scholar] [CrossRef]
- Singh, P.; Verma, A.K.; Sahu, D.S.; Mehra, U.R. Utilization of nutrients as influenced by different restriction levels of feed intake under sub-tropical conditions in crossbred calves. Livest. Sci. 2008, 117, 308–314. [Google Scholar] [CrossRef]
- Sontakke, U.B.; Prusty, S.; Kundu, S.S.; Sharma, V.K. Comparative evaluation of oat hay and silage based rations on nutrient utilization and methane emissions in murrah buffaloes. Indian J. Anim. Nutr. 2019, 36, 347–352. [Google Scholar] [CrossRef]
- Sandra, K.; Janssen, P.H. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol. Ecol. 2011, 75, 468–481. [Google Scholar]
- Zou, Y.; Zou, X.P.; Li, X.Z.; Guo, G.; Ji, P.; Wang, Y.; Li, S.L.; Wang, Y.J.; Gao, Z.J. Substituting oat hay or maize silage for portion of alfalfa hay affects growth performance, ruminal fermentation, and nutrient digestibility of weaned calves. Asian-Australas. J. Anim. Sci. 2018, 31, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackie, R.I. Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integr. Comp. Biol. 2002, 42, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Ruth, E.L.; Micah, H.; Catherine, L.; Peter, J.T.; Rob, R.R.; Stephen, B.; Michael, L.S.; Tammy, A.T.; Mark, D.S.; Rob, K.; et al. Evolution of mammals and their gut microbes. Science 2008, 5883, 1647–1651. [Google Scholar]
- Ilana, Z.R.; Eugene, R. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar]
- Yang, S.; Ma, S.; Chen, J.; Mao, H.M.; He, Y.D.; Xi, D.M.; Yang, L.Y.; He, T.B.; Deng, W.D. Bacterial diversity in the rumen of Gayals (Bos frontalis), Swamp buffaloes (Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences. Mol. Biol. Rep. 2010, 37, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Sadet-bourgeteau, S.; Martin, C.; Morgavi, D.P. Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets. Vet. Microbiol. 2010, 146, 98–104. [Google Scholar] [CrossRef]
- Gasiorek, M.; Stefanska, B.; Pruszynska-oszmalek, E.; Taciak, M.; Komisarek, J.; Nowak, W. Effect of oat hay provision method on growth performance, rumen fermentation and blood metabolites of dairy calves during preweaning and postweaning periods. Animal 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Lin, X.Y.; Wang, J.; Hou, Q.L.; Wang, Y.; Hu, Z.Y.; Shi, K.R.; Yan, Z.Q.; Wang, Z.H. Effect of hay supplementation timing on rumen microbiota in suckling calves. Microbiologyopen 2017, 7, e00430. [Google Scholar] [CrossRef]
- Yang, S. Feed Analysis and Feed Quality Inspection Technology; Beijing Agricultural University Press: Beijing, China, 1993. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Tanja, M.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar]
- Kong, Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 2011, 98, 152–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Nave bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcdonald, D.; Price, M.; Goodrich, J.; Nawrocki, P.E.; DeSantis, Z.T.; Probst, A.; Andersen, L.G.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Colucci, P.E.; Macleod, G.K.; Grovum, W.L.; McMillan, I.; Barney, D.J. Digesta kinetics in sheep and cattle fed diets with different forage to concentrate ratios at high and low intakes. J. Dairy Sci. 1990, 73, 2143–2156. [Google Scholar] [CrossRef]
- Hun, T.T. Method from for measuring diam inopinelic acid in total rumen contents and its application to the estimations of bacterial growth. App. Microbiol. 1996, 14, 27–30. [Google Scholar]
- Teixeira, I.A.M.A.; Filho, J.M.P.; Murray, P.J.; Resende, K.T.; Ferreira, A.C.D.; Fregadolli, F.L. Water balance in goats subjected to feed restriction. Small Rumin. Res. 2006, 63, 20–27. [Google Scholar] [CrossRef]
- Wei, Q.Y.; Wu, J.L.; Ding, Y.Z.; Sun, C.L. Study on the fattening effect of premix and different concentrates on small-tailed Han sheep fed in shed. Feed Res. 2003, 1, 5–7. [Google Scholar]
- Nie, H.T.; Zhang, H.; You, J.H.; Wang, F. Determination of energy and protein requirement for maintenance and growth and evaluation for the effects of gender upon nutrient requirement in Dorper × Hu Crossbred Lambs. Trop. Anim. Health Prod. 2015, 47, 841–853. [Google Scholar] [CrossRef]
- Galvani, D.B.; Pires, C.C.; Wommer, T.P.; Oliveira, F.; Santos, M.F. Chewing patterns and digestion in sheep submitted to feed restriction. J. Anim. Physiol. Anim. Nutr. 2010, 94, 366–373. [Google Scholar] [CrossRef]
- Aguilera, J.F.; Prieto, C. Methane production in goats given diets based on lucerne hay and barley. Arch. Anim. Nutr. 1991, 41, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dagar, S.S.; Sirohi, S.K.; Upadhyay, R.C.; Puniya, A.K. Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Ann. Microbiol. 2013, 63, 541–545. [Google Scholar] [CrossRef]
- Mould, F.L.; Rskov, E.R. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Anim. Feed Sci. Technol. 1983, 10, 1–14. [Google Scholar] [CrossRef]
- Grant, R.H.; Mertens, D.R. Influence of buffer pH and raw corn starch addition on in vitro fiber digestion kinetics. J. Dairy Sci. 1992, 75, 2762–2768. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.W.; Liu, H.; Mi, J.D.; Long, R.J. Response of Tibetan sheep rumen fermentation parameters to oat hay as dietary restriction and estimation of nitrogen maintenance requirements. J. Anim. Nutr. 2014, 26, 371–379. [Google Scholar]
- Bargo, F.; Muller, L.D.; Delahoy, J.E.; Cassidy, T.W. Milk Response to Concentrate Supplementation of High Producing Dairy Cows Grazing at Two Pasture Allowances. J. Dairy Sci. 2002, 85, 1777–1792. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.; Lee, S.M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 1992, 87, 210–217. [Google Scholar] [CrossRef]
- Elizabeth, A.G.; Heidi, H.K.; Sean, C.; Clayton, B.D.; Joie, D.; Alice, C.Y.; Gerard, G.B.; Robert, W.B.; Patrick, R.M.; Eric, D.M.; et al. Topographical and temporal diversity of the human skin microbiome. Science 2009, 324, 1190–1192. [Google Scholar]
- Zhang, R.Y.; Ye, H.M.; Liu, J.J.; Mao, S.Y. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Appl. Microbiol. Biotechnol. 2017, 101, 6981–6992. [Google Scholar] [CrossRef]
- Pitta, D.W.; Indugu, N.; Kumar, S.; Vecchiarelli, B.; Ferguson, J.D. Metagenomic assessment of thefunctional potential of the rumen microbiome in Holstein dairy cow. Anaerobe 2016, 38, 50–60. [Google Scholar] [CrossRef]
- Abderzak, L.; Chaouki, B.; Mark, I.A. Diet-induced alterations in total and metabolically active microbes within the rumen of dairy cows. PLoS ONE 2013, 8, e60978. [Google Scholar]
- Dehority, B.A.; Tirabasso, P.A. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J. Anim. Sci. 1998, 76, 2905–2911. [Google Scholar] [CrossRef]
- Franoise, R.; Gérard, F.; Jol, D. Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen. FEMS Microbiol. Lett. 2010, 125, 77–82. [Google Scholar]
- Emerson, E.L.; Weimer, P.J. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl. Microbiol. Biotechnol. 2017, 101, 4269–4278. [Google Scholar] [CrossRef] [PubMed]
- Stanton, T.B.; Canale-parola, E. Treponema bryantii sp. nov. a rumen spirochete that interacts with cellulolytic bacteria. Arch. Microbiol. 1980, 127, 145–156. [Google Scholar] [CrossRef]
- Cunha, I.S.; Barreto, C.C.; Costa, O.Y.A.; Bomfim, M.A.; Castro, A.P.; Kruger, R.H.; Quirino, B.F. Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe 2011, 17, 118–124. [Google Scholar] [CrossRef]
Treatments | Fistulated Ram | ||||||||
---|---|---|---|---|---|---|---|---|---|
Square 1 | Square 2 | Square 3 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Period 1 | CS | M | OH | OH | M | CS | M | OH | CS |
Period 2 | M | OH | CS | CS | OH | M | OH | CS | M |
Period 3 | OH | CS | M | M | CS | OH | CS | M | OH |
Items | Whole Corn Silage Group (CSG) | Mixed Group (MG) | Dried Oat Hay Group (OHG) |
---|---|---|---|
Ingredients | |||
Dried oat hay | 0 | 32.75 | 65.50 |
Whole corn silage | 65.50 | 32.75 | 0 |
Corn | 25.74 | 28.67 | 30.42 |
Soybean meal | 2.34 | 1.75 | 1.18 |
Rapeseed meal | 2.34 | 1.17 | 0.58 |
Cottonseed meal | 2.24 | 1.17 | 0.58 |
Limestone | 0.58 | 0.58 | 0.58 |
NaCl | 0.58 | 0.58 | 0.58 |
Premix 1 | 0.58 | 0.58 | 0.58 |
Total | 100.00 | 100.00 | 100.00 |
Nutrient levels | |||
Digestive energy DE (MJ/kg) | 18.39 | 18.29 | 18.01 |
Crude protein CP | 18.13 | 17.84 | 17.73 |
Calcium Ca | 0.41 | 0.46 | 0.39 |
Total phosphorus TP | 0.27 | 0.28 | 0.26 |
Neutral detergent fiber NDF | 58.12 | 63.79 | 69.45 |
Acid detergent fiber ADF | 38.23 | 38.52 | 38.79 |
Items | CSG | MG | OHG |
---|---|---|---|
Dry matter | |||
Intake/(kg/d) | 1.62 ± 0.02 | 1.64 ± 0.01 | 1.66 ± 0.02 |
Fecal output/(kg/d) | 0.58 ± 0.06 | 0.51 ± 0.05 | 0.48 ± 0.02 |
Digestion/(kg/d) | 1.04 ± 0.07 | 1.13 ± 0.06 | 1.18 ± 0.03 |
Apparent digestibility/% | 63.99 ± 3.83 | 68.64 ± 3.16 | 71.00 ± 1.15 |
Organic matter | |||
Intake/(kg/d) | 1.46 ± 0.02 b | 1.50 ± 0.01 ab | 1.52 ± 0.02 a |
Fecal output/(kg/d) | 0.52 ± 0.05 a | 0.44 ± 0.04 ab | 0.38 ± 0.01 b |
Digestion/(kg/d) | 0.94 ± 0.06 | 1.05 ± 0.05 | 1.13 ± 0.03 |
Apparent digestibility/% | 64.12 ± 3.81 | 70.31 ± 2.99 | 74.56 ± 1.01 |
Items | CSG | MG | OHG |
---|---|---|---|
NDF | |||
Intake/(kg/d) | 0.53 ± 0.01 B | 0.55 ± 0.01 AB | 0.56 ± 0.01 A |
Fecal output/(kg/d) | 0.32 ± 0.03 a | 0.27 ± 0.02 ab | 0.23 ± 0.01 b |
Digestion/(kg/d) | 0.21 ± 0.04 b | 0.28 ± 0.03 ab | 0.33 ± 0.01 a |
Apparent digestibility/% | 40.10 ± 6.37 b | 51.69 ± 4.87 ab | 58.36 ± 1.65 a |
ADF | |||
Intake/(kg/d) | 0.29 ± 0.01 Bb | 0.30 ± 0.01 a | 0.31 ± 0.01 A |
Fecal output/(kg/d) | 0.18 ± 0.02 a | 0.16 ± 0.01 ab | 0.14 ± 0.01 b |
Digestion/(kg/d) | 0.11 ± 0.02 b | 0.14 ± 0.02 ab | 0.17 ± 0.01 a |
Apparent digestibility/% | 36.65 ± 6.74 b | 47.61 ± 5.28 ab | 55.71 ± 1.75 a |
Items | CSG | MG | OHG |
---|---|---|---|
N Intake/(g/d) | 35.79 ± 0.37 b | 36.45 ± 0.28 ab | 37.56 ± 0.39 a |
Fecal N/(g/d) | 12.56 ± 1.23 | 11.57 ± 1.08 | 10.35 ± 0.33 |
Urinary N | 16.02 ± 0.16 | 16.21 ± 0.12 | 15.86 ± 0.16 |
N Digestion/(g/d) | 23.23 ± 1.57 | 24.88 ± 1.36 | 27.21 ± 0.66 |
Apparent digestibility/% | 64.82 ± 3.74 | 68.21 ± 3.20 | 72.42 ± 1.09 |
Retained N/(g/d) | 7.21 ± 0.52 b | 8.67 ± 0.38 ab | 11.35 ± 0.64 a |
Retained N/N Intake/% | 20.15 ± 1.26 b | 23.78 ± 1.34 ab | 30.22 ± 1.56 a |
Sample ID | Time (h) | PE Reads | OUTs | Ace | Chao | Shannon | Simpson |
---|---|---|---|---|---|---|---|
CSG | 0 h | 23,716 ± 203 | 473 ± 31 | 715.17 ± 58.90 | 617.70 ± 38.04 | 4.94 ± 0.15 | 0.029 ± 0.008 |
1 h | 24,005 ± 340 | 440 ± 17 | 678.22 ± 71.18 | 604.81 ± 40.52 | 5.16 ± 0.09 | 0.016 ± 0.003 | |
3 h | 26,888 ± 390 | 480 ± 29 | 635.60 ± 48.86 | 563.61 ± 39.61 | 4.99 ± 0.06 | 0.021 ± 0.003 | |
5 h | 26,331 ± 176 | 497 ± 16 | 683.50 ± 48.10 | 585.481 ± 59.14 | 4.91 ± 0.03 | 0.032 ± 0.002 | |
7 h | 29,825 ± 593 | 502 ± 37 | 648.18 ± 23.83 | 594.20 ± 37.06 | 5.03 ± 0.15 | 0.022 ± 0.006 | |
MG | 0 h | 17,083 ± 437 | 424 ± 12 | 800.25 ± 67.12 | 678.10 ± 41.31 | 5.33 ± 0.03 | 0.011 ± 0.001 |
1 h | 16,287 ± 995 | 373 ± 26 | 651.59 ± 46.56 | 547.76 ± 28.15 | 5.20 ± 0.06 | 0.011 ± 0.001 | |
3 h | 1614 ± 788 | 390 ± 28 | 735.45 ± 77.52 | 604.00 ± 47.41 | 5.15 ± 0.08 | 0.013 ± 0.001 | |
5 h | 17,750 ± 227 | 383 ± 14 | 733.02 ± 79.63 | 626.36 ± 19.31 | 5.07 ± 0.06 | 0.016 ± 0.001 | |
7 h | 25,173 ± 338 | 450 ± 20 | 706.09 ± 44.27 | 665.51 ± 20.70 | 5.15 ± 0.07 | 0.016 ± 0.002 | |
OHG | 0 h | 21,085 ± 911 | 398 ± 30 | 717.71 ± 39.35 | 691.84 ± 30.90 | 5.40 ± 0.09 | 0.011 ± 0.002 |
1 h | 22,931 ± 647 | 411 ± 36 | 836.26 ± 68.34 | 672.92 ± 70.67 | 5.30 ± 0.10 | 0.013 ± 0.002 | |
3 h | 20,791 ± 473 | 357 ± 31 | 780.04 ± 53.45 | 721.84 ± 28.92 | 5.29 ± 0.06 | 0.014 ± 0.001 | |
5 h | 21,177 ± 94 | 386 ± 16 | 755.74 ± 26.29 | 744.72 ± 29.51 | 5.34 ± 0.06 | 0.014 ± 0.001 | |
7 h | 17,408 ± 603 | 370 ± 34 | 782.50 ± 45.68 | 738.80 ± 45.82 | 5.25 ± 0.05 | 0.016 ± 0.001 |
Sample ID | PE Reads | OUTs | Ace | Chao | Shannon | Simpson |
---|---|---|---|---|---|---|
CSG | 26,153 ± 1109 | 478 ± 11 | 672.13 ± 22.01 | 593.21 ± 18.21 | 5.00 ± 0.06 | 0.024 ± 0.003 |
MG | 18,487 ± 369 | 405 ± 14 | 724.96 ± 27.80 | 624.26 ± 17.15 | 5.18 ± 0.03 | 0.014 ± 0.001 |
OHG | 20,678 ± 899 | 384 ± 10 | 771.87 ± 20.55 | 715.74 ± 17.67 | 5.31 ± 0.03 | 0.014 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, X.; Zhang, L.; Luo, J.; Zhao, S.; Jiao, T. Effects of Oat Hay Content in Diets on Nutrient Metabolism and the Rumen Microflora in Sheep. Animals 2020, 10, 2341. https://doi.org/10.3390/ani10122341
An X, Zhang L, Luo J, Zhao S, Jiao T. Effects of Oat Hay Content in Diets on Nutrient Metabolism and the Rumen Microflora in Sheep. Animals. 2020; 10(12):2341. https://doi.org/10.3390/ani10122341
Chicago/Turabian StyleAn, Xuejiao, Lingyun Zhang, Jing Luo, Shengguo Zhao, and Ting Jiao. 2020. "Effects of Oat Hay Content in Diets on Nutrient Metabolism and the Rumen Microflora in Sheep" Animals 10, no. 12: 2341. https://doi.org/10.3390/ani10122341