Effect of Spent Mushroom (Cordyceps militaris) on Growth Performance, Immunity, and Intestinal Microflora in Weaning Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Dietary Treatments, and Management
2.2. Growth Performance
2.3. Diarrhoea Occurrence
2.4. Blood Profiles
2.5. Immunity
2.6. Intestinal Microflora
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Blood Profiles
3.3. Immunity
3.4. Intestinal Microflora
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci.Biotechnol 2013, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Marion, J.; Romé, V.; Savary, G.; Thomas, F.; Dividich, J.L.; Huërou-Luron, I.L. Weaning and feed intake alter pancreatic enzyme activities and corresponding mRNA levels in 7-d-old piglets. J. Nutr. 2003, 133, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Tsiloyiannis, V.K.; Kyriakis, S.C.; Vlemmas, J.; Sarris, K. The effect of organic acids on the control of porcine post-weaning diarrhea. Res. Vet. Sci. 2001, 70, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Rhoma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistim-based control strategies. Acta. Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burow, E.; Rostalski, A.; Harlizius, J.; Gangl, A.; Simoneit, C.; Grobbel, M.; Kollas, C.; Tenhagen, B.; Käsbohrer, A. Antibiotic resistance in Escherichia coli from pigs from birth to slaughter and its association with antibiotic treatment. Prev. Vet. Med. 2019, 165, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.S.; Araújo, J.F.; Gomes, V.T.M.; Costa, A.T.R.; Rodrigues, D.P.; Ferreira, T.S.P.; Filsner, P.H.; Felizardo, M.R.; Andrea, M.M. Colistin resistance in Escherichia coli and Salmonella enterica strains isolated from swine in Brazil. Sci. World J. 2012, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Asai, T.; Kojima, A.; Oda, C.; Ishihara, K.; Takahashi, T. Antimicrobial susceptibility of pathogenic Escherichia coli isolated from sick cattle and pigs in Japan. J. Vet. Met. Sci. 2005, 67, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R0006 (accessed on 21 November 2020).
- Food and Drug Administration. U.S. Bans Antibiotics Use for Enhancing Growth in Livestock. Available online: https://www.accessscience.com/content/u-s-bans-antibiotics-use-for-enhancing-growth-in-livestock/BR0125171 (accessed on 21 November 2020).
- Department of Agricultural Defense. Brazil Bans the Use of Growth-Promoting Antibiotics. Available online: http://www.iccbrazil.com/en/brasil-restringe-uso-de-antibioticos-promotores-de-crescimento (accessed on 21 November 2020).
- Department of Livestock Development. Policy of Antimicrobial use (AMU) in Livestock in Thailand. Available online: http://www.favamember.org/wp-content/uploads/2017/05/Policy-of-AMU-in-livestock-in-Thailand.pdf (accessed on 21 November 2020).
- Organisation for Economic Co-Operation and Development. Antibiotic Use and Antibiotic Resistance in Food Producing Animals in China. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=TAD/CA/APM/WP(2018)19/FINAL&docLanguage=En (accessed on 21 November 2020).
- Tan, B.F.; Lim, T.; Boontiam, W. Effect of dietary supplementation with essential oils and a Bacillus probiotic on growth performance, diarrhea and blood metabolites in weaned pigs. Anim. Prod. Sci. 2020, 61. [Google Scholar] [CrossRef]
- Silva, C.A.; Dias, C.P.; Calegari, M.A.; Bridi, A.M.; Santos, R.K.S.; Luiggi, F.G.; Santos, V.L.; Silva, J.B. Prebiotics and butyric acid can replace colistin as a growth promoter for nursery piglets. Arq. Bras. Med. Vet. Zootec. 2020, 72, 1449–1457. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, Y.; Zhang, Z.; Wang, L.; Mariga, M.; Pang, G.; Geng, C.; Ho, C.; Hu, Q.; Zhao, L. Regulation of human cytokines by Cordyceps militaris. J. Food Drug Anal. 2014, 22, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Doan, H.V.; Hoseinifar, S.H.; Tapingkae, W.; Chitmanat, C.; Mekchay, S. Effects of Cordyceps militaris spent mushroom substrate on mucosal and serum immune parameters, disease resistance and growth performance of Nile Tilapia, (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 67, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Long, L.; Wu, L.; Zhang, F.; Wu, S.; Zhang, W.; Sun, X. Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J. Sci. Food Agric. 2017, 97, 3476–3480. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Guo, S.; Wang, W.; Liu, X. Cordyceps industry in China. Mycology. 2015, 6, 121–219. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.P.; Hwang, T.L.; Chan, Y.; El-Shazly, M.; Wu, T.Y.; Lo, I.; Hsu, Y.M.; Lai, K.H.; Hou, M.F.; Yuan, S.S.; et al. Research and development of Cordyceps in Taiwan. Food Sci. Hum. Well. 2016, 5, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Israilides, C.; Philippoussis, A. Bio-technologies of recycling agro-industrial wastes for the production of commercially important fungal polysaccharides and mushrooms. Biotechnol. Genet. Eng. Rev. 2003, 20, 247–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, F.S.; Martin, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushroom: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Hardeep, S.; Sardul, T.; Sandhu, S.; Sharma, A.K. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 2014, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Boontiam, W.; Wachirapakorn, C.; Wattanachai, S. Growth performance and hematological changes in growing pigs treated with Cordyceps militaris spent mushroom substrate. Vet. World 2020, 13, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Han, J.C.; Qu, H.X.; Wang, J.G.; Yan, Y.F.; Zhang, J.L.; Yang, L.; Zhang, M.; Cheng, Y.H. Effects of fermentation products of Cordyceps militaris on growth performance and bone mineralization of broiler chicks. J. Appl. Anim. Res. 2015, 43, 236–241. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Wen, C.M.; Dybus, A.; Proskura, W.S. Fermentation products of Cordyceps militaris enhance performance and modulate immune response of weaned piglets. S. Afr. J. Anim. Sci. 2016, 46. [Google Scholar] [CrossRef] [Green Version]
- Doan, H.V.; Hoseinifar, S.H.; Dawood, M.A.O.; Chanagun, C.; Tayyamath, K. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 70, 87–94. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012.
- Kotosová, J.; Poráčová, J.; Vaško, L.; Blaščáková, M.M. Haematological status for selected pig breeds. Am. J Anim. Vet. Sci. 2014, 9, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, L.L.; Kozak, R.; Kelly, S.E.; Besikci, A.O.; Russell, J.C.; Lopaschuk, G.D. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am. J. Physiol. Endocrinol. Metab. 2003, 284, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, P.; Kai, Q.; Gao, J.; Lian, Z.; Wu, C.; Wu, C.; Zhu, H. Cordycepin prevent hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J. Pharmacol. Sci. 2010, 113, 395–593. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Lian, Z.Q.; Zhu, P.; Zhu, H.B. Lipid-lowering effect of cordycepin (3’-deoxyadenosine) from Cordyceps militaris on hyperlipidemic hamsters and rats. Acta Pharm. Sin. 2011, 46, 669–676. [Google Scholar]
- Wilson, T.A.; Nicolosi, R.J.; Woolfrey, B.; Kritchevsky, D. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters. J. Nutr. Biochem. 2007, 18, 105–112. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Jang, Y.S.; Park, J.S.; Kwon, B.M.; Paik, Y.K.; Jeong, T.S. Inhibition of acyl-coenzyme A: Cholesterol acyltransferase stimulates cholesterol efflux from macrophages and stimulates farnesoid X receptor in hepatocytes. Exp. Mol. Med. 2008, 40, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Mäkynen, K.; Chitchumroonchokchai, C.; Adisakwattana, S.; Failla, M.; Ariyapitipun, T. Effect of gamma-oryzanol on the bioaccessibility and synthesis of cholesterol. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 49–56. [Google Scholar]
- Seetharamaiah, G.S.; Chandrasekhara, N. Effect of oryzanol on cholesterol absorption & biliary & fecal bile acids in rats. Idian J. Med. Res. 1990, 92, 471–475. [Google Scholar]
- Hara, H.; Haga, S.; Aoyama, Y.; Kiriyama, S. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J. Nutr. 1999, 129, 942–948. [Google Scholar] [CrossRef] [Green Version]
- Jiao, A.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Luo, Y.; Luo, J.; Mao, X.; Chen, D. Short chain fatty acids could prevent fat deposition in pigs via regulating related hormones and genes. Food Funct. 2020, 2, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Xu, Z.; Men, X. Transient effects of weaning on the health of newly weaning piglets. Czech J. Anim. Sci. 2016, 61, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Sauerwein, H.; Schmitz, S.; Hiss, S. The acute phase protein haptoglobin and its relation to oxidative status in piglets undergoing weaning-induced stress. Redox Rep. 2005, 16, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiss-Pesch, S.; Daniel, F.; Dunkelberg-Denk, S.; Mielenz, M.; Sauerwein, H. Transfer of maternal haptoglobin to suckling piglets. Vet. Immunol Immunopathol. 2011, 144, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Nochta, I.; Tuboly, T.; Halas, V.; Babinszky, L. Effect of different levels of mannan-oligosaccharide supplementation on some immunological variables in weaned piglets. J. Anim. Physiol. Anim. Nutr. 2009, 93, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Watzl, B.; Girrbach, S.; Roller, M. Inulin, oligofructose and immunomodulation. Br. J. Nutr. 2005, 93, 49–55. [Google Scholar] [CrossRef]
- Davis, M.E.; Maxwell, C.V.; Erf, G.F.; Wistuba, T.J. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J. Anim. Sci. 2004, 82, 1882–1891. [Google Scholar] [CrossRef]
- Shin, S.; Kwon, J.; Lee, S.; Kong, H.; Lee, S.; Lee, C.K.; Cho, K.; Ha, N.J.; Kim, K. Immunostimulatory effects of Cordyceps militaris on macrophages through the enhanced production of cytokines via the activation of NF-kappaB. Immune Netw. 2010, 10, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wen, K.; Tin, C.; Li, G.; Wang, H.; Kocher, J.; Pelzer, K.; Ryan, E.; Yuan, L. Dietary rice bran protects against rotavirus diarrhea and promotes Th1-type immune responses to human rotavirus vaccine in gnotobiotic pigs. Clin. Vaccine Immunol. 2014, 21, 1396–1403. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Piazuelo, D.; Migura-Garcia, L.; Estellé, J.; Criado-Mesas, L.; Revilla, M.; Castelló, A.; Muñoz, M.; García-Casco, J.M.; Fernández, A.I.; Ballester, M.; et al. Association between the pig genome and its gut microbiota composition. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Yu, R.; Wang, L.; Zhang, H.; Zhou, C.; Zhao, Y. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 2004, 75, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.; Martín-Orúe, S.M.; Taylor-Pickard, J.A.; Pérez, J.F.; Gasa, J. Use of mannanoligosaccharides and zinc chelate as growth promoters and diarrhea preventative in weaning pigs: Effects on microbiota and gut function. J. Anim. Sci. 2008, 86, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Piao, X.S.; Kim, S.W.; Wang, L.; Shen, Y.B.; Lee, H.S.; Li, S.Y. Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J. Anim. Sci. 2008, 86, 2609–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroentero. 2015, 12, 303–310. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Dobson, A.; Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocin production: A probiotic trait? Appl. Environ. Microbiol. 2012, 78, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Hou, C.; Zeng, X.; Qiao, S. The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 2015, 4, 34–45. [Google Scholar] [CrossRef] [Green Version]
Items | Amount (% As-Fed Basis) |
---|---|
Dry matter | 93.62 |
Crude protein | 7.82 |
Crude fiber | 16.34 |
Ether extract | 3.67 |
Ash | 4.48 |
Ingredient | Phase I (0–14 Day) | Phase II (15–35 Day) |
---|---|---|
Broken rice | 35.16 | 28.16 |
Maize (8.4% CP 1) | 20.00 | 34.63 |
Soybean meal (45.6% CP) | 3.61 | 16.60 |
Full-fat soybean | 27.83 | 13.21 |
Fish meal (58% CP) | 5.00 | 5.00 |
Skimmed milk | 6.00 | - |
Dicalcium phosphate | 1.70 | 1.70 |
Sodium chloride | 0.35 | 0.35 |
Vitamin-mineral premix 2 | 0.35 | 0.35 |
Calculated values (%) | ||
Metabolisable energy (kcal/kg) | 3485 | 3330 |
Crude protein | 22.00 | 20.90 |
Calcium | 0.92 | 0.84 |
Available phosphorus | 0.83 | 0.68 |
Lysine | 1.28 | 1.19 |
Methionine + cystine | 0.58 | 0.53 |
Tryptophan | 0.25 | 0.23 |
Fibre | 1.79 | 2.58 |
Analysed composition (%) | ||
Metabolisable energy (kcal/kg) | 3392 | 3338 |
Crude protein | 22.03 | 20.84 |
Ether extract | 7.23 | 6.54 |
Items | PC | NC | SM05 | SM10 | SM15 | SEM 3 | p-Value |
---|---|---|---|---|---|---|---|
BW (kg) | |||||||
Initial | 6.81 | 6.59 | 6.60 | 6.54 | 6.63 | 0.130 | 0.627 |
14day | 10.93 | 9.89 | 10.43 | 10.67 | 10.66 | 0.299 | 0.189 |
35 day | 19.86 a | 17.08 c | 18.39 b | 18.88 a,b | 19.89 a | 0.412 | 0.005 |
ADG (g) | |||||||
0–14 day | 293.81 | 235.95 | 273.57 | 295.36 | 287.98 | 24.774 | 0.434 |
15–35day | 425.24 | 342.22 | 379.21 | 390.95 | 439.53 | 24.755 | 0.082 |
Overall | 372.67 a,b | 299.72 c | 336.95 b | 352.71 a,b | 378.91 a | 11.560 | 0.007 |
ADFI (g) | |||||||
0–14 day | 387 | 363 | 378 | 381 | 377 | 9.372 | 0.483 |
15–35 day | 767 a | 669 c | 728 a,b | 697 b,c | 751 a | 13.706 | 0.004 |
Overall | 615 a | 546 c | 588 a,b | 571 b,c | 602 a | 8.938 | 0.003 |
G:F ratio | |||||||
0–14 day | 0.764 | 0.651 | 0.734 | 0.776 | 0.768 | 0.073 | 0.734 |
15–35 day | 0.554 | 0.513 | 0.521 | 0.561 | 0.589 | 0.036 | 0.577 |
Overall | 0.606 | 0.550 | 0.574 | 0.618 | 0.632 | 0.023 | 0.120 |
Diarrhea rate (%) | 3.82 | 4.54 | 3.71 | 3.17 | 3.70 | 0.458 | 0.402 |
Items | PC | NC | SM05 | SM10 | SM15 | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|
AST (U/L) | 56.16 | 58.69 | 59.97 | 61.76 | 52.55 | 5.500 | 0.789 |
TG (mg/dL) | 52.69 | 47.62 | 53.71 | 46.67 | 54.28 | 6.230 | 0.854 |
TC (mg/dL) | 73.86 a | 70.16 a | 59.11 a,b | 61.71 a,b | 47.68 b | 5.941 | 0.044 |
HDL (mg/dL) | 28.74 b | 24.13 b | 36.16 a,b | 34.12 a,b | 45.44 a | 4.593 | 0.039 |
LDL (mg/dL) | 32.38 | 23.58 | 25.85 | 31.83 | 33.62 | 4.012 | 0.331 |
Items | PC | NC | SM05 | SM10 | SM15 | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|
IgA (mg/mL) | 0.71 b,c | 0.57 c | 0.78 a,b,c | 0.82 a,b | 0.96 a | 0.075 | 0.024 |
IgG (mg/mL) | 0.59 | 0.57 | 0.69 | 0.72 | 0.76 | 0.081 | 0.393 |
IL-1β (pg/mL) | 77.16 b | 95.52 a | 70.87 b,c | 64.78 b,c | 59.24 c | 4.830 | 0.004 |
TNF-α (pg/mL) | 3011.52 a,b | 3227.58 a | 2817.70 b,c | 2751.72 c | 2524.06 d | 74.174 | 0.001 |
Items | PC | NC | SM05 | SM10 | SM15 | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|
Fecal microbial counts, log10 cfu/g | |||||||
Salmonella spp. | 4.93 | 6.63 | 5.16 | 5.05 | 5.32 | 0.425 | 0.064 |
Escherichia coli | 4.17 b | 6.08 a | 4.75 a,b | 3.66 b | 4.37 b | 0.524 | 0.041 |
Lactobacillus spp. | 6.08 b | 6.41 b | 8.97 a | 8.24 a,b | 8.38 a,b | 0.744 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boontiam, W.; Wachirapakorn, C.; Phaengphairee, P.; Wattanachai, S. Effect of Spent Mushroom (Cordyceps militaris) on Growth Performance, Immunity, and Intestinal Microflora in Weaning Pigs. Animals 2020, 10, 2360. https://doi.org/10.3390/ani10122360
Boontiam W, Wachirapakorn C, Phaengphairee P, Wattanachai S. Effect of Spent Mushroom (Cordyceps militaris) on Growth Performance, Immunity, and Intestinal Microflora in Weaning Pigs. Animals. 2020; 10(12):2360. https://doi.org/10.3390/ani10122360
Chicago/Turabian StyleBoontiam, Waewaree, Chalong Wachirapakorn, Pheeraphong Phaengphairee, and Suchat Wattanachai. 2020. "Effect of Spent Mushroom (Cordyceps militaris) on Growth Performance, Immunity, and Intestinal Microflora in Weaning Pigs" Animals 10, no. 12: 2360. https://doi.org/10.3390/ani10122360
APA StyleBoontiam, W., Wachirapakorn, C., Phaengphairee, P., & Wattanachai, S. (2020). Effect of Spent Mushroom (Cordyceps militaris) on Growth Performance, Immunity, and Intestinal Microflora in Weaning Pigs. Animals, 10(12), 2360. https://doi.org/10.3390/ani10122360