Effects of Cold Exposure on Some Physiological, Productive, and Metabolic Variables in Lactating Dairy Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design and Treatments
2.3. Management Conditions
2.4. Sampling and Data Collection
2.4.1. Rectal Temperature and Respiratory Rate
2.4.2. Feed Intake and Water Consumption
2.4.3. Body Weight and Energy Balance Calculation
2.4.4. Milk Yield and Milk Composition
2.4.5. Blood Insulin and Metabolites
2.5. Statistical Analyses
3. Results and Discussion
3.1. Rectal Temperature and Respiratory Rate
3.2. Feed Intake, Water Consumption, and Body Weight Change
3.3. Milk Yield and Milk Composition
3.4. Blood Indicators
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baumgard, L.H.; Rhoads, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Ann. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, A.A.K.; Caja, G.; Hamzaoui, S.; Such, X.; Albanell, E.; Badaoui, B.; Loor, J.J. Thermal stress in ruminants: Responses and strategies for alleviation. In Animal Welfare in Extensive Production Systems, 1st ed.; Villalba, J.J., Manteca, X., Eds.; 5m Publishing: Sheffield, UK, 2016. [Google Scholar]
- Verbeek, E.; Oliver, M.H.; Waas, J.R.; Mcleay, L.M.; Blache, D.; Matthews, L.R. Reduced cortisol and metabolic responses of thin ewes to an acute cold challenge in mid-pregnancy: Implications for animal physiology and welfare. PLoS ONE 2012, 7, e37315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Young, B.A. Ruminant cold stress: Effect on production. J. Anim. Sci. 1983, 57, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.D.; Christopherson, R.J.; Thompson, J.R. Endocrine and metabolic changes in sheep associated with acclimatation to constant intermittent cold exposure. Can. J. Anim. Sci. 1981, 61, 81–90. [Google Scholar] [CrossRef]
- Brouček, J.; Letkovicová, M.; Kovalcuj, K. Estimation of cold stress effect on dairy cows. Int. J. Biometeorol. 1991, 35, 29–32. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, I.K.; Piao, M.Y.; Gu, M.J.; Yun, C.H.; Kim, H.J.; Baik, M. Effects of ambient temperature on growth performance, blood metabolites and immune cell populations in Korean cattle steers. Asian-Australas. J. Anim. Sci. 2016, 29, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Battini, M.; Vieira, A.; Barbieri, S.; Ajuda, I.; Stilwell, G.; Mattiello, S. Animal-based indicators for on-farm welfare assessment for dairy goats. J. Dairy Sci. 2014, 97, 6625–6648. [Google Scholar] [CrossRef] [Green Version]
- Ramon, M.; Diaz, C.; Perez-Guzman, M.D.; Carabaño, M.J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 2016, 99, 5764–5779. [Google Scholar] [CrossRef]
- Peana, I.; Dimauro, C.; Carta, M.; Gaspa, M.; Fois, G.; Cannas, A. Cold markedly influences milk yield of Sardinian dairy sheep farms. Ital. J. Anim. Sci. 2007, 6 (Suppl. 1), 580. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Caja, G.; Hamzaoui, S.; Badaoui, B.; Castro-Costa, A.; Façanha, D.E.; Guilhermino, M.M.; Bozzi, R. Different levels of response to heat stress in dairy goats. Small Rumin. Res. 2014, 121, 73–79. [Google Scholar] [CrossRef]
- Bøe, K.E.; Ehrlenbruch, R. Thermoregulatory behavior of dairy goats at low temperatures and the use of outdoor yards. Can. J. Anim. Sci. 2013, 93, 35–41. [Google Scholar] [CrossRef]
- Thompson, G.E.; Thompson, E.M. Effect of cold exposure on mammary circulation, oxygen consumption and milk secretion in the goat. J. Physiol. 1972, 272, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, A.; Thomson, E.M.; Bassett, J.M.; Thomson, G.E. Cold exposure and mammary glucose metabolism in the lactating goat. Br. J. Nutr. 1980, 43, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Wentzel, D.; Viljoen, K.S.; Botha, L.J.J. Physiological and endocrinological reactions to cold stress in the Angora goat. Agroanimalia 1979, 11, 19–22. [Google Scholar]
- Magee, H.E. Studies on the metabolism of the ruminant by indirect calorimetry. I. The influence of variations in the external temperature on the energy exchange of the goat. J. Agric. Sci. Camb. 1924, 14, 506–515. [Google Scholar] [CrossRef]
- Holmes, C.W.; Moore, Y.F. Metabolisable energy required by feral goats for maintenance and the effects of cold climatic conditions on their heat production. Proc. Nz Soc. Anim. Prod. 1981, 41, 163–166. [Google Scholar]
- Constantinou, A. Goat housing for different environments and production systems. In Proceedings of the 4th International Conference on Goats, Brasilia, Brazil, 8–13 March 1987; pp. 241–268. [Google Scholar]
- Devendra, C.; Haenlein, G.F.W. Animals that produce dairy foods. Goat breeds. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 310–324. [Google Scholar]
- Contreras-Jodar, A.; Salama, A.A.K.; Hamzaoui, S.; Vailati-Riboni, M.; Caja, G.; Loor, J.J. Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. J. Dairy Res. 2018, 85, 423–430. [Google Scholar] [CrossRef]
- Mehaba, N.; Salama, A.A.K.; Such, X.; Albanell, E.; Caja, G. Lactational responses of heat-stressed dairy goats to dietary L-carnitine supplementation. Animals 2019, 9, 567. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (NRC). A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971. [Google Scholar]
- Institut National de la Recherche Agronomique (INRA). INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2003; Volume I. [Google Scholar]
- Sano, H.; Takebayashi, A.; Kodama, Y.; Nakamura, K.; Itoh, H.; Arino, Y.; Fujita, T.; Takahashi, H.; Ambo, K. Effects of feed restriction and cold exposure on glucose metabolism in response to feeding and insulin in sheep. J. Anim. Sci. 1999, 77, 2564–2573. [Google Scholar] [CrossRef]
- Barnett, M.C.; Mcfarlane, J.R.; Hegarty, R.S. Low ambient temperature elevates plasma triiodothyronine concentrations while reducing digesta mean retention time and methane yield in sheep. J. Anim. Physiol. Anim. Nutr. 2015, 99, 483–491. [Google Scholar] [CrossRef]
- Hamzaoui, S.; Salama, A.A.K.; Albanell, E.; Such, X.; Caja, G. Physiological responses and lactational performances of late lactating dairy goats under heat stress conditions. J. Dairy Sci. 2013, 96, 6355–6365. [Google Scholar] [CrossRef]
- Chase, L.E. Cold Stress: Effects on nutritional requirements, health and performance. In Reference Module Food Sci. Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Scibilia, L.S.; Muller, L.D.; Kensinger, R.S.; Sweeney, T.F.; Shellenberger, P.R. Effect of environmental temperature and dietary fat on growth and physiological responses of newborn calves. J. Dairy Sci. 1987, 70, 1426–1433. [Google Scholar] [CrossRef]
- McBride, G.; Christopherson, R. Effect of cold exposure on milk production and energy balance in the lactating ewe. Can. J. Anim. Sci. 1984, 64, 379–389. [Google Scholar] [CrossRef]
- Tucker, H.A.; Wettemann, R.P. Effects of ambient temperature and relative humidity on serum prolactin and growth hormone in heifers. Proc. Soc. Exp. Biol. Med. 1976, 151, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Hart, I.C. Effect of 2-bromo-α-ergocryptine on milk yield and the level of prolactin and growth hormone in the blood of the goat at milking. J. Endocrinol. 1973, 57, 179–180. [Google Scholar] [CrossRef]
- Johnson, H.D. Progress in Animal Biometerology, 1st ed.; Johnson, H.D., Ed.; Swets & Zeitling: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Thompson, E.M.; Snoswell, A.M.; Clarke, P.L.; Thompson, G.E. Effect of cold exposure on mammary gland uptake of fat precursors and secretion of milk fat and carnitine in the goat. Q. J. Exp. Physiol. Cogn. Med. Sci. 1979, 64, 7–15. [Google Scholar]
- Sano, H.; Sawada, H.; Takenami, A.; Oda, S.; Al-Mamun, M. Effects of dietary energy intake and cold exposure on kinetics of plasma glucose metabolism in sheep. J. Anim. Physiol. Anim. Nutr. 2007, 91, 1–5. [Google Scholar] [CrossRef]
- Thompson, G.E.; Manson, W.; Clarke, P.L.; Bell, A.W. Acute cold exposure and the metabolism of glucose and some of its precursors in the liver of the fed and fasted sheep. Q. J. Exp. Physiol. Cogn. Med. Sci. 1978, 63, 189–199. [Google Scholar] [CrossRef]
- Sano, H.; Fujita, T.; Murakami, M.; Shiga, A. Stimulative effect of epinephrine on glucose production and utilization rates in sheep using a stable isotope. Domest. Anim. Endocrinol. 1996, 13, 445–451. [Google Scholar] [CrossRef]
- Sasaki, Y.; Weekes, T.E.C. Metabolic Response to Cold; Milligan, L.P., Grovum, W.L., Dobson, A., Eds.; Reston Publishers Co.: Reston, VA, USA, 1986. [Google Scholar]
- Itoh, F.; Obara, Y.; Fuse, H.; Rose, M.T.; Osaka, I.; Takahashi, H. Effects of cold exposure on responses of plasma insulin, glucagon, and metabolites in heifers. J. Anim. Physiol. A Anim. Nutr. 1997, 78, 31–41. [Google Scholar] [CrossRef]
- Collier, R.J.; Gebremedhin, K.G. Thermal biology of domestic cows. Annu. Rev. Anim. Biosci. 2015, 3, 10.1–10.20. [Google Scholar] [CrossRef] [PubMed]
- Holtenius, P.; Holtenius, K. New aspects of ketone bodies in energy metabolism of dairy cows: A review. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 1996, 43, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A.A.; Gruysi, E.; van Eerdenburg, F.J.C.M. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, K.E.; Roussel, A.J. Evaluation of the ruminant serum chemistry profile. Vet. Clin. Food Anim. 2007, 23, 403–426. [Google Scholar] [CrossRef] [PubMed]
- Appleman, R.D.; Delouche, J.C. Behavioral, physiological and biochemical responses of goats to temperature, 0° to 40 °C. J. Anim. Sci. 1958, 17, 326–335. [Google Scholar] [CrossRef]
- Krastev, K. Influence of the environmental temperature and humidity regime during winter over some adaptive reactions of calves. Biotechnol. Anim. Husb. 2002, 18, 11–16. [Google Scholar] [CrossRef] [Green Version]
Item | Total Mixed Ration |
---|---|
Component, % | |
Dry matter | 81.8 |
Organic matter | 81.7 |
Crude protein | 16.6 |
Neutral detergent fiber | 33.5 |
Acid detergent fiber | 23.2 |
Nutritive value 1 | |
UFL, 2/kg | 0.85 |
NEL, 3 Mcal/kg | 1.50 |
PDI, 4 g/kg | 88.3 |
PDIA, 5 g/kg | 40.2 |
RPB, 6 g/kg | 31.2 |
Ca, g/kg | 9.09 |
P, g/kg | 2.91 |
Item | Treatment | Effect 3 (p<) | ||||
---|---|---|---|---|---|---|
TN (n = 8) | CT (n = 8) | SED 2 | Trt | Per | Trt × Per | |
Rectal temperature, °C | ||||||
08:00 h | 38.78 a,b | 37.70 b | 0.27 | 0.001 | - | - |
12:00 h | 38.64 b | 37.85 b | 0.27 | 0.006 | - | - |
17:00 h | 38.82 a | 38.58 a | 0.26 | 0.368 | - | - |
Average | 38.75 | 38.04 | 0.26 | 0.011 | 0.040 | 0.806 |
Respiratory rate, breaths/min | ||||||
08:00 h | 30 | 25 | 0.9 | 0.001 | - | - |
12:00 h | 33 | 27 | 1.0 | 0.001 | - | - |
17:00 h | 33 | 27 | 1.0 | 0.001 | - | - |
Average | 32 | 27 | 0.8 | 0.001 | 0.107 | 0.293 |
Item | Treatment | SED 2 | Effect 3 (p<) | |||
---|---|---|---|---|---|---|
TN (n = 8) | CT (n = 8) | Trt | Per | Trt × Per | ||
Body weight change, kg | 2.54 | −0.64 | 0.83 | 0.005 | 0.019 | 0.133 |
DM intake, kg/d | 2.21 | 2.09 | 0.08 | 0.112 | 0.804 | 0.280 |
Water consumption, L/d | 5.17 | 4.01 | 0.15 | 0.001 | 0.001 | 0.816 |
Water: DM intake ratio | 2.37 | 1.99 | 0.15 | 0.012 | 0.001 | 0.753 |
Milk yield, kg/d | 1.83 | 1.59 | 0.05 | 0.001 | 0.001 | 0.449 |
Energy-corrected milk, 4 kg/d | 2.15 | 2.06 | 0.15 | 0.562 | 0.036 | 0.234 |
Energy balance, Mcal/d | 0.34 | 0.16 | 0.05 | 0.004 | 0.030 | 0.989 |
Milk composition, % | ||||||
Fat | 4.70 | 5.33 | 0.19 | 0.004 | 0.040 | 0.366 |
Protein | 3.42 | 3.91 | 0.20 | 0.032 | 0.856 | 0.106 |
Lactose | 4.57 | 4.75 | 0.08 | 0.034 | 0.080 | 0.071 |
Fat yield, g/d | 85.6 | 84.9 | 6.6 | 0.923 | 0.018 | 0.565 |
Protein yield, g/d | 61.9 | 61.8 | 3.5 | 0.983 | 0.072 | 0.004 |
Lactose yield g/d | 83.7 | 75.5 | 7.1 | 0.278 | 0.312 | 0.605 |
Log somatic cell count | 6.30 | 6.40 | 0.13 | 0.458 | 0.822 | 0.082 |
Item | Treatment | SED 2 | Effect 3 (p<) | |||
---|---|---|---|---|---|---|
TN (n = 8) | CT (n = 8) | Trt | Per | Trt × Per | ||
Insulin, mg/L | 0.330 | 0.320 | 0.087 | 0.912 | 0.458 | 0.842 |
Glucose, mg/dL | 62.1 | 66.2 | 1.36 | 0.012 | 0.242 | 0.088 |
Non-esterified fatty acids, mmol/L | 0.103 | 0.186 | 0.045 | 0.085 | 0.805 | 0.806 |
ß-hydroxybutyrate, mmol/L | 0.582 | 0.386 | 0.068 | 0.014 | 0.889 | 0.958 |
Triglycerides, mg/dL | 23.3 | 16.9 | 1.67 | 0.002 | 0.024 | 0.736 |
Cholesterol, mg/dL | 88.7 | 79.3 | 8.12 | 0.270 | 0.029 | 0.534 |
Item | Treatment | SED 2 | Effect 3 (p<) | |||
---|---|---|---|---|---|---|
TN (n = 8) | CT (n = 8) | Trt | Per | Trt × Per | ||
pH | 7.428 | 7.401 | 0.017 | 0.135 | 0.470 | 0.960 |
Urea, mg/dL | 24.9 | 23.3 | 1.9 | 0.426 | 0.302 | 0.309 |
Na, mmol/L | 144.9 | 143.4 | 0.7 | 0.049 | 0.093 | 0.999 |
K, mmol/L | 3.74 | 3.79 | 0.26 | 0.848 | 0.843 | 0.634 |
Cl, mmol/L | 105.4 | 104.0 | 0.74 | 0.088 | 0.869 | 0.415 |
Hematocrit, % | 19.8 | 21.5 | 0.9 | 0.078 | 0.989 | 0.980 |
Hemoglobin, g/dL | 6.74 | 7.31 | 0.31 | 0.086 | 0.874 | 0.937 |
Total CO2, mmol/L | 28.4 | 28.5 | 1.0 | 0.906 | 0.416 | 0.461 |
HCO3, mmol/L | 27.1 | 27.4 | 1.0 | 0.806 | 0.339 | 0.451 |
pCO2, mm of Hg | 40.6 | 44.0 | 1.7 | 0.083 | 0.726 | 0.454 |
Anion gap, mmol/L | 16.3 | 16.0 | 0.51 | 0.633 | 0.347 | 1.000 |
Base excess | 2.50 | 2.64 | 1.14 | 0.915 | 0.252 | 0.595 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coloma-García, W.; Mehaba, N.; Such, X.; Caja, G.; Salama, A.A.K. Effects of Cold Exposure on Some Physiological, Productive, and Metabolic Variables in Lactating Dairy Goats. Animals 2020, 10, 2383. https://doi.org/10.3390/ani10122383
Coloma-García W, Mehaba N, Such X, Caja G, Salama AAK. Effects of Cold Exposure on Some Physiological, Productive, and Metabolic Variables in Lactating Dairy Goats. Animals. 2020; 10(12):2383. https://doi.org/10.3390/ani10122383
Chicago/Turabian StyleColoma-García, Wellington, Nabil Mehaba, Xavier Such, Gerardo Caja, and Ahmed A. K. Salama. 2020. "Effects of Cold Exposure on Some Physiological, Productive, and Metabolic Variables in Lactating Dairy Goats" Animals 10, no. 12: 2383. https://doi.org/10.3390/ani10122383
APA StyleColoma-García, W., Mehaba, N., Such, X., Caja, G., & Salama, A. A. K. (2020). Effects of Cold Exposure on Some Physiological, Productive, and Metabolic Variables in Lactating Dairy Goats. Animals, 10(12), 2383. https://doi.org/10.3390/ani10122383