Association of TMEM8B and SPAG8 with Mature Weight in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals and Phenotyping
2.2. DNA Isolation and Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Software and Data Repository Resources
References
- Alberto, F.J.; Boyer, F.; Orozco-Terwengel, P.; Streeter, I.; Servin, B.; De Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 2018, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Ding, X.; Qanbari, S.; Weigend, S.; Zhang, Q.; Simianer, H. Properties of different selection signature statistics and a new strategy for combining them. Heredity 2015, 115, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Simoni Gouveia, J.J.; da Silva, M.V.G.B.; Paiva, S.R.; de Oliveira, S.M.P. Identification of selection signatures in livestock species. Genet. Mol. Biol. 2014, 37, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Wang, H.; Liu, G.; Wu, M.; Cao, J.; Liu, Z.; Liu, R.; Zhao, F.; Zhang, L.; Lu, J.; et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genom. 2015, 16, 194. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Deng, T.; Shi, L.; Wang, W.; Zhang, Q.; Du, L.; Wang, L. Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types. Animals 2020, 10, 773. [Google Scholar] [CrossRef]
- Moradi, M.H.; Nejati-Javaremi, A.; Moradi-Shahrbabak, M.; Dodds, K.G.; McEwan, J.C. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Manzari, Z.; Mehrabani-Yeganeh, H.; Nejati-Javaremi, A.; Moradi, M.H.; Gholizadeh, M. Detecting selection signatures in three Iranian sheep breeds. Anim Genet. 2019, 50, 298–302. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Bahbahani, H.; Moioli, B.; Ahbara, A.; Al Abri, M.; Almathen, F.; Da Silva, A.; Belabdi, I.; Portolano, B.; Mwacharo, J.M.; et al. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 2019, 14, e0209632. [Google Scholar] [CrossRef] [Green Version]
- Ahbara, A.; Bahbahani, H.; Almathen, F.; Al Abri, M.; Agoub, M.O.; Abeba, A.; Kebede, A.; Musa, H.H.; Mastrangelo, S.; Pilla, F.; et al. Genome-wide variation; candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front Genet. 2019, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Fariello, M.I.; Servin, B.; Tosser-Klopp, G.; Rupp, R.; Moreno, C.; Cristobal, M.S.; Boitard, S. Selection signatures in worldwide sheep populations. PLoS ONE 2014, 9, e103813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurchenko, A.A.; Deniskova, T.E.; Yudin, N.S.; Dotsev, A.V.; Khamiruev, T.N.; Selionova, M.I.; Egorov, S.V.; Reyer, H.; Wimmers, K.; Brem, G.; et al. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genom. 2019, 20, 294. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Larrañaga, O.; Langa, J.; Rendo, F.; Manzano, C.; Iriondo, M.; Estonba, A. Genomic selection signatures in sheep from the Western Pyrenees. Genet. Sel. Evol. 2018, 50, 9. [Google Scholar] [CrossRef] [Green Version]
- Moioli, B.; Pilla, F.; Ciani, E. Signatures of selection identify loci associated with fat tail in sheep. J. Anim. Sci. 2015, 93, 4660–4669. [Google Scholar] [CrossRef]
- Cinar, M.U.; Mousel, M.R.; Herndon, M.K.; Taylor, J.B.; White, S.N. Tenascin-XB (TNXB) amino acid substitution E2004G is associated with mature weight and milk score in American Rambouillet, Targhee, Polypay, and Suffolk sheep. Small Rumin. Res. 2018, 166, 129–133. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.P.; Govignon-Gion, A.; Croiseau, P.; Fritz, S.; Hozé, C.; Miranda, G.; Martin, P.; Barbat-Leterrier, A.; Letaïef, R.; Rocha, D.; et al. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet. Sel. Evol. 2017, 49, 68. [Google Scholar] [CrossRef] [Green Version]
- White, S.N.; Knowles, D.P. Expanding possibilities for intervention against small ruminant lentiviruses through genetic marker-assisted selective breeding. Viruses 2013, 5, 1466–1499. [Google Scholar] [CrossRef]
- Hu, Z.L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019, 47, D701–D710. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fan, M.; Zeng, C.; Li, W.; Hu, Q.; Liu, W.; Huang, X.; Li, G.; Yu, F. Expression and purification of a rapidly degraded protein, TMEM8B-A, in mammalian cell line. Protein Expr. Purif. 2018, 151, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, Y.; Wang, X.; Shen, S.; Yu, H.; Yang, J.; Su, Z. Tumor suppressor gene NGX6 induces changes in protein expression profiles in colon cancer HT-29 cells. Acta Biochim. Biophys. Sin. (Shanghai) 2012, 44, 584–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Shen, S.; Liao, M.; Lian, P.; Wang, X. NGX6 inhibits cell invasion and adhesion through suppression of Wnt/β-catenin signal pathway in colon cancer. Acta Biochim. Biophys. Sin. (Shanghai) 2010, 42, 450–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Wu, M.; Lian, P.; Liao, M.; Xiao, Z.; Wang, X.; Shen, S. Synergistic effect of indomethacin and NGX6 on proliferation and invasion by human colorectal cancer cells through modulation of the Wnt/β-catenin signaling pathway. Mol. Cell Biochem. 2009, 330, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Millay, D.P.; O’Rourke, J.R.; Sutherland, L.B.; Bezprozvannaya, S.; Shelton, J.M.; Bassel-Duby, R.; Olson, E.N. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 2013, 499, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, Y.; Miao, S.; Zhang, C.; Zong, S.; Koide, S.S.; Wang, L. Sperm associated antigen 8 (SPAG8); a novel regulator of activator of CREM in testis during spermatogenesis. FEBS Lett. 2010, 584, 2807–2815. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Bickhart, D.M.; Cole, J.B.; Schroeder, S.G.; Song, J.; Van Tassell, C.P.; Sonstegard, T.S.; Liu, G.E. Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol. Biol. Evol. 2015, 32, 711–725. [Google Scholar] [CrossRef] [Green Version]
- Edea, Z.; Jung, K.S.; Shin, S.S.; Yoo, S.W.; Choi, J.W.; Kim, K.S. Signatures of positive selection underlying beef production traits in Korean cattle breeds. J. Anim. Sci. Technol. 2020, 62, 293–305. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Yasoda, A.; Komatsu, Y.; Chusho, H.; Miyazawa, T.; Ozasa, A.; Miura, M.; Kurihara, T.; Rogi, T.; Tanaka, S.; Suda, M.; et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat. Med. 2004, 10, 80–86. [Google Scholar] [CrossRef]
- Olney, R.C.; Bükülmez, H.; Bartels, C.F.; Prickett, T.C.R.; Espiner, E.A.; Potter, L.R.; Warman, M.L. Heterozygous mutations in natriuretic peptide receptor-b (NPR2) are associated with short stature. J. Clin. Endocrinol. Metab. 2006, 91, 1229–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, N.; Doolittle, L.K.; Hammer, R.E.; Shelton, J.M.; Richardson, J.A.; Garbers, D.L. Critical roles of the guanylyl cyclase b receptor in endochondral ossification and development of female reproductive organs. Proc. Natl. Acad. Sci. USA 2004, 101, 17300–17305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzmaurice, S.; Conington, J.; Fetherstone, N.; Pabiou, T.; Mcdermott, K.; Wall, E.; Banos, G.; McHugh, N. Genetic analyses of live weight and carcass composition traits in purebred Texel; Suffolk and Charollais lambs. Animal 2020, 14, 899–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef]
- Ma, L.; Sonstegard, T.S.; Cole, J.B.; Vantassell, C.P.; Wiggans, G.R.; Crooker, B.A.; Tan, C.; Prakapenka, D.; Liu, G.E.; Da, Y. Genome changes due to artificial selection in U.S. Holstein cattle. BMC Genom. 2019, 20, 128. [Google Scholar] [CrossRef]
Traits | CC (n = 182) | CT (n = 313) | TT (n = 185) |
---|---|---|---|
Weight in April/May of 3 years old (kg) | 70.33 ± 0.90 a | 70.77 ± 0.78 a | 72.82 ± 0.90 b |
Weight in September of 3 years old (kg) | 78.03 ± 0.81 a | 79.05 ± 0.71 a,b | 80.63 ± 0.81 b |
Weight in April/May of 4 years old (kg) | 71.67 ± 0.91 a | 73.77 ± 0.80 b | 74.43 ± 0.91 b |
Traits | GG (n = 176) | GT (n = 292) | TT (n = 205) |
---|---|---|---|
Weight in April/May of 3 years old (kg) | 70.15 ± 0.91 a | 70.69 ± 0.81 a | 72.67 ± 0.89 b |
Weight in September of 3 years old (kg) | 77.90 ± 0.81 a | 78.90 ± 0.73 a,b | 80.45 ± 0.80 b |
Weight in April/May of 4 years old (kg) | 71.53 ± 0.93 a | 73.76 ± 0.83 b | 74.43 ± 0.91 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinar, M.U.; Mousel, M.R.; Herndon, M.K.; Taylor, J.B.; White, S.N. Association of TMEM8B and SPAG8 with Mature Weight in Sheep. Animals 2020, 10, 2391. https://doi.org/10.3390/ani10122391
Cinar MU, Mousel MR, Herndon MK, Taylor JB, White SN. Association of TMEM8B and SPAG8 with Mature Weight in Sheep. Animals. 2020; 10(12):2391. https://doi.org/10.3390/ani10122391
Chicago/Turabian StyleCinar, Mehmet Ulas, Michelle R. Mousel, Maria K. Herndon, J. Bret Taylor, and Stephen N. White. 2020. "Association of TMEM8B and SPAG8 with Mature Weight in Sheep" Animals 10, no. 12: 2391. https://doi.org/10.3390/ani10122391
APA StyleCinar, M. U., Mousel, M. R., Herndon, M. K., Taylor, J. B., & White, S. N. (2020). Association of TMEM8B and SPAG8 with Mature Weight in Sheep. Animals, 10(12), 2391. https://doi.org/10.3390/ani10122391