Effect of Rumen Protected Methionine and α-Tocopherol on Growth Performance, Carcass Characteristics, and Meat Composition of Late Fattening Hanwoo Steer in High-Temperature Seasons
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Management
2.2. Growth Performance
2.3. Carcass Characteristics
2.4. Pretreatment and Storage Test
2.5. Chemical Composition and Quality of the Longissimus Muscle
2.6. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Chemical Composition and Quality of the Longissimus Muscle
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rural Development Administration (RDA). Development of Agricultural Technology to Cope with Climate Change: Second Phase (2014–2023) Long-Term Plan; Report No.: 11-1390000-03600-01; RDA: Jeonju, Korea, 2014.
- National Institue of Animal Science (NIAS). A Study for Improvement of Hanwoo Feeding Management Preparing for Climate Change; Final Report No. PJ007800; Rural Development Administration (RDA): Jeonju, Korea, 2014.
- Kwak, B.O.; Ha, J.K. Effect of heat stress and feeding time on growth performance of finishing Korean native bulls in summer. Korean J. Food Nutr. 1996, 20, 437–442. [Google Scholar]
- Hussein, H.S.; Berger, L.L. Feedlot performance and carcass characteristics of Holstein steers as affected by source of dietary protein and level of ruminally protected lysine and methionine. J. Anim. Sci. 1995, 73, 3503–3509. [Google Scholar] [CrossRef] [Green Version]
- Ko, K.S. Hepatoprotective functions of sulfur containing amino acids: Possibilities of hepatocellular carcinoma prevention. Food Sci. Anim. Resour. 2012, 44, 654–657. [Google Scholar]
- Park, B.K.; Choi, N.J.; Kim, H.C.; Kim, T.I.; Cho, Y.M.; Oh, Y.K.; Jang, H.Y. Effects of amino acid-enriched ruminally protected fatty acids on plasma metabolites, growth performance and carcass characteristics of Hanwoo steers. Asian Australas. J. Anim. Sci. 2010, 23, 1013–1021. [Google Scholar] [CrossRef]
- Bertics, S.J.; Grummer, R.R. Effects of fat and methionine hydroxy analog on prevention or alleviation of fatty liver induced by feed restriction. J. Dairy Sci. 1999, 82, 2731–2736. [Google Scholar]
- Rivera, J.D.; Duff, G.C.; Galyean, M.L.; Walker, D.A.; Nunnery, G.A. Effects of supplemental vitamin E on performance, health, and humoral immune response of beef cattle. J. Anim. Sci. 2002, 80, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.J.; Morrissey, P.A.; Gray, J.I. Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 1995, 73, 3122–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, D.M.; Liu, Q.; Lanari, M.C. Dietary vitamin E delays beef myoglobin and lipid oxidations. In Vitamin E in Animal Nutrition and Management; Coelho, M., Ed.; BASF Corp.: Mount Olive, NJ, USA, 1996; pp. 561–580. [Google Scholar]
- Pehrson, B.; Hakkarainen, J.; Tornquist, M.; Edfors, K.; Fossum, C. Effect of vitamin E supplementation on weight gain, immune competence, and disease incidence in barley fed beef cattle. J. Dairy Sci. 1991, 74, 1054–1059. [Google Scholar] [CrossRef]
- Veira, D.M.; Seone, J.R.; Prolux, J.G. Utilizationof grass silage by growing cattle: Effect of a supplement containing ruminally protected amino acids. J. Anim. Sci. 1991, 69, 4703–4709. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Food and Rural Affairs (MAFRA). Grade Rule for Cattle Carcass in Korea; Korea Ministry of Government Legislation: Seoul, Korea, 2018.
- Hofmann, A.W.; White, W.M. Mantle plumes from ancient oceanic crust. Earth Planet Sci. Lett. 1982, 572, 421–436. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Krzywicki, K. Assessment of relative content of myoglobin, oxymyoglobin and metmyoglobin at the surface of the beef. Meat Sci. 1979, 3, 1–10. [Google Scholar] [CrossRef]
- Demos, B.P.; Gerrard, D.E.; Mandigo, R.W.; Gao, X.; Tan, J. Mechanically recovered neck bone lean and ascorbic acid improve color stability of ground beef patties. J. Food Sci. 1996, 61, 656–659. [Google Scholar] [CrossRef]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle: Seventh Revised Edition; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Wright, M.D.; Loerch, S.C. Effects of rumen-protected amino acids on ruminant nitrogen balance, plasma amino acid concentrations and performance. J. Anim. Sci. 1988, 66, 2014–2027. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, P.A.; Buckley, D.J.; Sheehy, P.J.A.; Monahan, F.J. Vitamin E and meat quality. Proc. Nutr. Soc. 1994, 53, 289–295. [Google Scholar] [CrossRef]
- Mir, P.S.; McAllister, T.A.; Zaman, S.; Morgan Jones, S.D.; He, M.L.; Aalhus, J.L.; Jeremiah, L.E.; Goonewardene, L.A.; Weselake, R.J.; Mir, Z. Effect of dietary sunflower oil and vitamin E on beef cattle performance, carcass characteristics and meat quality. Can. J. Anim. Sci. 2003, 83, 53–66. [Google Scholar] [CrossRef]
- Hill, G.M.; Williams, S.E. Vitamin E in beef nutrition and meat quality. In Minnesota Nutrition Conference Proceedings; Linn, J., Wagner, G., DeSteno, P., Eds.; University of Minnesota Extension Service Minneapolis: Minneapolis, MN, USA, 1993; pp. 197–211. [Google Scholar]
- Lee, J.Y.; Kim, J.B.; Shin, J.S.; Goh, Y.G.; Hong, B.J. Effects of sex carcass weight and live weight on carcass traits of Hanwoo. J. Anim. Sci. Technol. 1997, 39, 164–176. [Google Scholar]
- Korea Institute for Animal Products Quality Evaluation (KIAPQE). Animal Products Grading Statistical Yearbook; Report No.: 11-B552679-000006-10; Korea Institute for Animal Products Quality Evaluation: Sejong, Korea, 2018.
- Kim, H.C.; Lee, C.W.; Park, B.K.; Lee, S.M.; Kwon, E.G.; Im, S.K.; Jeon, G.J.; Park, Y.S.; Hong, S.K. Studies on Growth Performance and Meat Quality Improvement of the Unselected Hanwoo Bulls in the Performance Test. J. Anim. Sci. Technol. 2010, 52, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Park, B.K.; Lee, S.M.; Kim, H.C.; Chang, S.S.; Kim, T.I.; Cho, Y.M.; Choi, C.W.; Hong, S.K.; Kwon, E.G. Effects of ruminally protected amino acid-enriched fatty acids on growth performance and carcass characteristics of fattening Hanwoo cows. J. Anim. Sci. Technol. 2010, 52, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Mayes, P.A. Metabolism of lipids: II. Role of the tissue. In Harper’s Review of Biochemistry, 18th ed.; Martin, D.W., Mayes, P.A., Rodwell, V.W., Eds.; Lange Medical Publications: Los Altos, CA, USA, 1981; pp. 222–244. [Google Scholar]
- Liu, Q.; Lanari, M.C.; Schaefer, D.M. A review of dietary vitamin E supplementation for improvement of beef quality. J. Anim. Sci. 1995, 73, 3131–3140. [Google Scholar] [CrossRef] [PubMed]
- Kim, C. Effects of Fat Sources and Vitamin C and E on Weight Gain and Carcass Characteristics of Hanwoo Steer. Ph.D. Thesis, Konkuk University, Seoul, Korea, 2004. [Google Scholar]
- Hill, G.M.; Stuart, R.L.; Utley, P.R.; Reagan, J.O. Vitamin E effects on finishing steer performance. J. Anim. Sci. 1990, 68, 557. [Google Scholar]
- Kim, B.K.; Oh, D.Y.; Hwang, E.G.; Song, Y.H.; Lee, S.O.; Jung, K.K.; Ha, J.J. The effects of different crude protein levels in the concentrates on carcass and meat quality characteristics of Hanwoo steers. J. Anim. Sci. Technol. 2013, 55, 61–66. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, B.Y.; Cho, S.H.; Kim, J.H.; Yoo, Y.M.; Chae, H.S.; Choi, Y.I. Analysis of carcass quality grade components and chemico-physical and sensory traits of M. longissimus dorsi in Hanwoo. J. Anim. Sci. Technol. 2004, 46, 833–840. [Google Scholar]
- Cameron, P.J.; Zembayashi, D.K.; Lunt, T.; Mitsuhashi, M.; Mitsumoto, S.; Smith, S.B. Relationship between Japanese beef marbling standard and intramuscular lipid in the M. longissimus thoracis of Japanese Black and American Wagyu cattle. Meat Sci. 1994, 38, 361–364. [Google Scholar] [CrossRef]
- Park, B.Y.; Cho, S.H.; Kim, J.H.; Lee, S.H.; Hwang, I.H.; Kim, D.H.; Kim, W.Y.; Lee, J.M. Effects of organic selenium supplementation on meat quality of Hanwoo steers. J. Anim. Sci. Technol. 2005, 47, 277–282. [Google Scholar]
- Lee, Y.J.; Kim, C.K.; Park, B.Y.; Seong, P.N.; Kim, J.H.; Kang, G.H.; Kim, D.H.; Cho, S.H. Chemical composition.; cholesterol, trans-fatty acids contents, pH, meat color, water holding capacity and cooking loss of Hanwoo beef (Korean native cattle) quality grade. Food Sci. Anim. Resour. 2010, 30, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Park, B.Y.; Kim, J.H.; Hwang, I.H.; Kim, J.H.; Lee, J.M. Fatty acid profiles and sensory properties of longissimus dorsi, triceps brachii, and semimembranosus muscles from Korean Hanwoo and Australian Angus beef. Asian-Australas. J. Anim. Sci. 2005, 18, 1786–1793. [Google Scholar]
- Rule, D.C.; Busboom, J.R.; Kercher, C.J. Effect of dietary canola on fatty acid composition of bovine adipose tissue, muscle, kidney, and liver. J. Anim. Sci. 1994, 72, 2735–2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wistuba, T.J.; Kegley, E.B.; Apple, J.K. Influence of fish oil in finishing diets on growth performance, carcass characteristics, and sensory evaluation of cattle. J. Anim. Sci. 2006, 84, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Renerre, M. Factors involved in the discoloration of beef meat. Int. J. Food Sci. Technol. 1990, 25, 613–630. [Google Scholar] [CrossRef]
- Sherbeck, J.A.; Tatum, J.D.; Field, T.G.; Morgan, J.B.; Smith, G.C. Feedlot performance, carcass traits, and palatability traits of Hereford and Hereford × Brahman steers. J. Anim. Sci. 1995, 73, 3613–3620. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Irie, M.; Fujita, K.; Sudou, K. Changes in meat color and alpha-tocopherol concentrations in plasma and tissues from Japanese beef cattle fed by two methods of vitamin E supplementation. Asian Australas. J. Anim. Sci. 1999, 12, 810–814. [Google Scholar] [CrossRef]
- Faustman, C.; Cassens, R.G.; Schaefer, D.M.; Buege, D.R.; Williams, S.N.; Scheller, K.K. Improvement of pigment and lipid stability in Holstein steer beef by dietary supplementation of vitamin E. J. Food Sci. 1989, 54, 858–862. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, Y.S.; Liang, C.Y.; Song, Y.H. Effects of dietary vitamin E supplementation on color stability, lipid oxidation and reducing ability of Hanwoo (Korean cattle) beef during retail display. Asian Australas. J. Anim. Sci. 2003, 16, 1529–1534. [Google Scholar] [CrossRef]
- Guignot, F.; Touraille, C.; Ouali, A.; Renerre, M.; Monin, G. Relationships between post-mortem pH changes and some traits of sensory quality in veal. Meat Sci. 1994, 37, 315–325. [Google Scholar] [CrossRef]
- Wulf, D.M.; Page, J.K. Using measurements of muscle color, pH, and electrical impedance to augment the current USDA beef quality grading standards and improve the accuracy and precision of sorting carcasses into palatability groups. J. Anim. Sci. 2000, 78, 2595–2607. [Google Scholar] [CrossRef] [Green Version]
- Seol, K.H.; Kim, K.H.; Kim, Y.H.; Youm, K.E.; Lee, M.H. Effect of temperature and relative humidity in refrigerator on quality traits and storage characteristics of Pre-packed Hanwoo loin. J. Agric. Sci. 2014, 41, 415–424. [Google Scholar]
- Sinnhuber, R.O.; Yu, T.C. The 2-thiobarbituric acid reactive substances, an objective measure of the oxidative deterioration occurring in fats and oils. J. Jpn. Oil Chem. Soc. 1977, 26, 259–267. [Google Scholar] [CrossRef]
- Igene, J.O.; Pearson, A.M.; Dugan, A.M.; Price, J.F. Role of triglycerides and phospholipids on development of rancidity in model meat systems during frozen storage. Food Chem. 1980, 5, 263–276. [Google Scholar] [CrossRef]
- Descalzo, A.M.; Insani, E.M.; Biolatto, A.; Sancho, A.M.; Garcia, P.T.; Pensel, N.A.; Josifovich, J.A. Influence of pasture or grain-based diets supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef. Meat Sci. 2005, 70, 35–44. [Google Scholar] [CrossRef]
- Gatellier, P.; Hamelin, C.; Durand, Y.; Renerre, M. Effect of a dietary vitamin E supplementation on colour stability and lipid oxidation of air- and modified atmosphere packaged beef. Meat Sci. 2001, 59, 133–140. [Google Scholar] [CrossRef]
- Kim, Y.S.; Liang, C.Y.; Kim, J.Y.; Park, Y.S.; Hwang, H.S.; Lee, S.K. Effects of dietary vitamin E and selenium supplementation on meat color stability of Hanwoo (Korean native cattle) bull beef during retail display. Food Sci. Anim. Resour. 2002, 22, 108–114. [Google Scholar]
Items | Concentrate | Rice Straw |
---|---|---|
Dry matter (%) | 90.52 ± 0.27 | 91.12 ± 0.54 |
Crude protein (%) | 12.59 ± 0.11 | 4.76 ± 0.32 |
Ether extract (%) | 4.02 ± 0.25 | 1.26 ± 0.08 |
Crude ash (%) | 6.85 ± 0.10 | 7.98 ± 0.21 |
Crude fiber (%) | 9.08 ± 0.51 | 33.25 ± 0.69 |
NDF 1 (%) | 31.29 ± 0.36 | 69.80 ± 0.54 |
ADF 2 (%) | 13.12 ± 0.48 | 40.91 ± 0.33 |
Items | Control | Treatment | Pr > |t| |
---|---|---|---|
Body weight (kg) | |||
Initial BW 1 | 714.00 ± 97.89 | 712.57 ± 78.37 | 0.98 |
Final BW | 776.43 ± 104.83 | 795.86 ± 79.74 | 0.70 |
Total gain | 62.43 ± 24.20 | 83.29 ± 15.21 | 0.08 |
Average daily gain | 0.50 ± 0.20 | 0.67 ± 0.12 | 0.08 |
Feed intake (DM 2 kg/day/head) | 9.92 ± 0.04 | 9.81 ± 0.04 | 0.12 |
Concentrate | 8.72 ± 0.08 | 8.58 ± 0.07 | 0.15 |
Rice straw | 1.20 ± 0.03 | 1.23 ± 0.03 | 0.07 |
Feed conversion ratio | 22.55 ± 9.39 a | 15.09 ± 3.17 b | 0.04 |
Items | Control | Treatment | Pr > |t| |
---|---|---|---|
Yield traits 1 | |||
Carcass weight (kg) | 446.29 ± 66.07 | 473.57 ± 62.39 | 0.44 |
Rib eye area (cm2) | 73.86 ± 7.47 | 76.57 ± 11.30 | 0.61 |
Back fat thickness (mm) | 12.14 ± 5.18 | 14.14 ± 4.91 | 0.47 |
Yield index | 62.71 ± 4.64 | 61.16 ± 2.86 | 0.46 |
Yield grade (A:B:C, %) | 14:43:43 | 0:43:57 | - |
Yield grade score 2 | 2.00 ± 0.82 | 1.43 ± 0.53 | 0.15 |
Quality traits 3 | |||
Marbling score | 3.57 ± 1.40 | 4.43 ± 0.79 | 0.19 |
Meat color | 3.00 ± 0.00 | 3.00 ± 0.00 | - |
Fat color | 4.00 ± 0.00 | 4.00 ± 0.00 | - |
Texture | 1.14 ± 0.38 | 1.00 ± 0.00 | 0.36 |
Maturity | 2.86 ± 0.38 | 2.86 ± 0.38 | - |
Quality grade (1+:1:2, %) | 14:43:43 | 14:86:0 | - |
Quality grade score 4 | 2.71 ± 0.76 | 3.14 ± 0.38 | 0.21 |
Auction price (won/kg) | 16,605 ± 2427 | 18,015 ± 780 | 0.19 |
Item | Control | Treatment | Pr > |t| |
---|---|---|---|
Moisture (%) | 67.10 ± 3.63 | 64.60 ± 3.43 | 0.21 |
Crude fat (%) | 12.38 ± 3.00 | 14.77 ± 3.98 | 0.23 |
Crude protein (%) | 19.53 ± 2.63 | 19.65 ± 1.61 | 0.92 |
Crude ash (%) | 0.99 ± 0.00 | 0.97 ± 0.04 | 0.39 |
WHC 1 (%) | 76.39 ± 1.99 | 75.16 ± 2.64 | 0.34 |
Shear force (kgf) | 5.68 ± 1.03 | 4.96 ± 0.67 | 0.15 |
Item | Control | Treatment | Pr >|t| |
---|---|---|---|
C14:0 (Myristic, %) | 3.40 ± 0.37 | 3.51 ± 0.47 | 0.64 |
C16:0 (Palmitic, %) | 28.43 ± 1.32 | 28.34 ± 1.56 | 0.91 |
C16:1n7 (Palmitoleic, %) | 5.31 ± 0.79 | 5.99 ± 0.81 | 0.14 |
C18:0 (Stearic, %) | 9.72 ± 0.83 | 10.04 ± 1.82 | 0.68 |
C18:1n9 (Oleic, %) | 50.48 ± 1.60 | 49.19 ± 3.01 | 0.34 |
C18:2n6 (Linoleic, %) | 2.35 ± 0.32 | 2.56 ± 0.38 | 0.27 |
C18:3n3 (α-linolenic, %) | 0.23 ± 0.07 | 0.28 ± 0.02 | 0.13 |
C20:4n6 (Arachidonic, %) | 0.04 ± 0.01 | 0.07 ± 0.04 | 0.19 |
C20:5n3 (Eicosapentaenoic, %) | 0.03 ± 0.02 | 0.03 ± 0.01 | 0.74 |
SFA 1 | 41.55 ± 1.70 | 41.89 ± 2.90 | 0.79 |
MUFA 2 | 55.79 ± 1.60 | 55.17 ± 3.17 | 0.66 |
PUFA 3 | 2.65 ± 0.34 | 2.93 ± 0.41 | 0.19 |
n-3 | 0.26 ± 0.07 | 0.31 ± 0.03 | 0.17 |
n-6 | 2.39 ± 0.31 | 2.63 ± 0.40 | 0.25 |
n-6/n-3 | 9.47 ± 1.89 | 8.65 ± 1.43 | 0.38 |
Item | Storage Days | Control | Treatment | Pr >|t| |
---|---|---|---|---|
DeoxyMb 1 (%) | 0 | 19.98 ± 3.57 | 18.82 ± 2.28 | 0.48 |
3 | 17.50 ± 3.42 | 17.96 ± 5.34 | 0.85 | |
6 | 27.91 ± 1.29 | 27.82 ± 1.05 | 0.89 | |
9 | 29.56 ± 6.98 | 28.33 ± 8.74 | 0.78 | |
OxyMb 2 (%) | 0 | 56.86 ± 6.07 | 57.37 ± 7.05 | 0.89 |
3 | 47.57 ± 6.72 | 47.21 ± 7.80 | 0.93 | |
6 | 34.77 ± 2.72 | 35.97 ± 1.73 | 0.35 | |
9 | 16.92 ± 9.21 | 21.93 ± 10.13 | 0.35 | |
MetMb 3 (%) | 0 | 23.15 ± 3.30 | 23.81 ± 5.94 | 0.80 |
3 | 34.93 ± 3.90 | 34.83 ± 4.50 | 0.96 | |
6 | 37.32 ± 1.66 | 36.20 ± 1.39 | 0.20 | |
9 | 53.52 ± 3.75 a | 49.74 ± 3.06 b | 0.04 | |
Lightness (L*) | 0 | 39.25 ± 2.85 | 38.11 ± 3.50 | 0.52 |
3 | 38.22 ± 4.20 | 38.02 ± 2.39 | 0.82 | |
6 | 36.33 ± 1.57 | 37.74 ± 3.69 | 0.20 | |
9 | 37.78 ± 1.55 | 37.55 ± 1.75 | 0.83 | |
Redness (a*) | 0 | 24.44 ± 2.33 | 24.23 ± 1.75 | 0.70 |
3 | 23.88 ± 1.50 | 23.54 ± 1.41 | 0.54 | |
6 | 22.99 ± 0.85 | 22.39 ± 2.32 | 0.40 | |
9 | 15.55 ± 2.29 b | 19.33 ± 2.63 a | 0.01 | |
Yellowness (b*) | 0 | 13.36 ± 0.77 | 13.44 ± 1.43 | 0.90 |
3 | 12.52 ± 0.54 | 12.31 ± 1.38 | 0.72 | |
6 | 13.15 ± 1.38 | 12.81 ± 0.98 | 0.60 | |
9 | 10.14 ± 1.01 | 10.48 ± 2.18 | 0.72 |
Items | Storage Days | Control | Treatment | Pr >|t| |
---|---|---|---|---|
pH | 0 | 5.41 ± 0.04 | 5.42 ± 0.06 | 0.82 |
3 | 5.42 ± 0.04 | 5.44 ± 0.05 | 0.36 | |
6 | 5.45 ± 0.04 | 5.46 ± 0.06 | 0.81 | |
9 | 5.66 ± 0.11 | 5.68 ± 0.21 | 0.82 | |
TBARS 1 (mg MDA/kg) | 0 | 0.35 ± 0.04 | 0.38 ± 0.06 | 0.47 |
3 | 0.42 ± 0.12 | 0.38 ± 0.18 | 0.62 | |
6 | 0.50 ± 0.11 | 0.47 ± 0.05 | 0.64 | |
9 | 0.57 ± 0.26 | 0.40 ± 0.14 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-K.; Ahn, J.-S.; Kim, M.-J.; Son, G.-H.; Bong, S.-H.; Gil, D.-Y.; Park, J.-K.; Lee, C.-W.; Kwon, E.-G.; Chang, S.-S.; et al. Effect of Rumen Protected Methionine and α-Tocopherol on Growth Performance, Carcass Characteristics, and Meat Composition of Late Fattening Hanwoo Steer in High-Temperature Seasons. Animals 2020, 10, 2430. https://doi.org/10.3390/ani10122430
Park B-K, Ahn J-S, Kim M-J, Son G-H, Bong S-H, Gil D-Y, Park J-K, Lee C-W, Kwon E-G, Chang S-S, et al. Effect of Rumen Protected Methionine and α-Tocopherol on Growth Performance, Carcass Characteristics, and Meat Composition of Late Fattening Hanwoo Steer in High-Temperature Seasons. Animals. 2020; 10(12):2430. https://doi.org/10.3390/ani10122430
Chicago/Turabian StylePark, Byung-Ki, Jun-Sang Ahn, Min-Ji Kim, Gi-Hwal Son, Sang-Hun Bong, Deok-Yun Gil, Joong-Kook Park, Chang-Woo Lee, Eung-Gi Kwon, Sun-Sik Chang, and et al. 2020. "Effect of Rumen Protected Methionine and α-Tocopherol on Growth Performance, Carcass Characteristics, and Meat Composition of Late Fattening Hanwoo Steer in High-Temperature Seasons" Animals 10, no. 12: 2430. https://doi.org/10.3390/ani10122430
APA StylePark, B. -K., Ahn, J. -S., Kim, M. -J., Son, G. -H., Bong, S. -H., Gil, D. -Y., Park, J. -K., Lee, C. -W., Kwon, E. -G., Chang, S. -S., & Shin, J. -S. (2020). Effect of Rumen Protected Methionine and α-Tocopherol on Growth Performance, Carcass Characteristics, and Meat Composition of Late Fattening Hanwoo Steer in High-Temperature Seasons. Animals, 10(12), 2430. https://doi.org/10.3390/ani10122430