Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Treatment Diets and Experimental Design
2.3. Feeding Management and Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Feed Intake and Apparent Total-Tract Digestibility
3.2. Milk Yield, Components and Milk Components Yield
3.3. Milk N Secretion, and N Excretion in Feces and Urine
3.4. Optimal Dietary CP Level
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fadul-Pacheco, L.; Pellerin, D.; Chouinard, P.; Wattiaux, M.; Duplessis, M.; Charbonneau, É. Nitrogen efficiency of eastern Canadian dairy herds: Effect on production performance and farm profitability. J. Dairy Sci. 2017, 100, 6592–6601. [Google Scholar] [CrossRef]
- Broderick, G.A. Effect of varying dietay protein and energy levels on the production of lactating dairy cows. J. Dairy Sci. 2003, 86, 1370–1381. [Google Scholar] [CrossRef]
- Agle, M.; Hristov, A.; Zaman, S.; Schneider, C.; Ndegwa, P.; Vaddella, V. The effects of ruminally degraded protein on rumen fermentation and ammonia losses from manure in dairy cows. J. Dairy Sci. 2010, 93, 1625–1637. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.; Dell, C.; Feyereisen, G.; Kaye, J.; Beegle, D. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure. J. Dairy Sci. 2012, 95, 1930–1941. [Google Scholar] [CrossRef]
- Hristov, A.; Heyler, K.S.; Schurman, E.W.; Griswold, K.; Topper, P.A.; Hile, M.; Ishler, V.A.; Fabian-Wheeler, E.; Dinh, S. CASE STUDY: Reducing dietary protein decreased the ammonia emitting potential of manure from commercial dairy farms. Prof. Anim. Sci. 2015, 31, 68–79. [Google Scholar] [CrossRef]
- Arriaga, H.; Pinto, M.; Calsamiglia, S.; Merino, P. Nutritional and management strategies on nitrogen and phosphorus use efficiency of lactating dairy cattle on commercial farms: An environmental perspective. J. Dairy Sci. 2009, 92, 204–215. [Google Scholar] [CrossRef]
- Powell, J.; Jackson-Smith, D.B.; McCrory, D.F.; Saam, H.; Mariola, M. Validation of Feed and Manure Data Collected on Wisconsin Dairy Farms. J. Dairy Sci. 2006, 89, 2268–2278. [Google Scholar] [CrossRef] [Green Version]
- Jonker, J.; Kohn, R.; High, J. Dairy Herd Management Practices that Impact Nitrogen Utilization Efficiency. J. Dairy Sci. 2002, 85, 1218–1226. [Google Scholar] [CrossRef]
- Jonker, J.; Kohn, R.; Erdman, R. Using Milk Urea Nitrogen to Predict Nitrogen Excretion and Utilization Efficiency in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.; Gourley, C.; Rotz, C.; Weaver, D. Nitrogen use efficiency: A potential performance indicator and policy tool for dairy farms. Environ. Sci. Policy 2010, 13, 217–228. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows. J. Dairy Sci. 2015, 98, 3182–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, S.B.; Phillip, L.; Lapierre, H.; Jardon, P.; Berthiaume, R. The Relative Merit of Ruminal Undegradable Protein from Soybean Meal or Soluble Fiber from Beet Pulp to Improve Nitrogen Utilization in Dairy Cows. J. Dairy Sci. 2008, 91, 3947–3957. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Hristov, A.; Heyler, K.; Cassidy, T.; Long, M.; Corl, B.; Karnati, S. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows. J. Dairy Sci. 2011, 94, 5544–5557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutsvangwa, T.; Davies, K.; McKinnon, J.; Christensen, D. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows. J. Dairy Sci. 2016, 99, 6298–6310. [Google Scholar] [CrossRef]
- Thomas, C. Feed into Milk: A New Applied Feeding System for Dairy Cows: An Advisory Manual; Nottingham University Press: Nottingham, UK, 2004. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Colmenero, J.J.O.; Broderick, G.A. Effect of Dietary Crude Protein Concentration on Milk Production and Nitrogen Utilization in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Groff, E.; Wu, Z. Milk Production and Nitrogen Excretion of Dairy Cows Fed Different Amounts of Protein and Varying Proportions of Alfalfa and Corn Silage. J. Dairy Sci. 2005, 88, 3619–3632. [Google Scholar] [CrossRef] [Green Version]
- Holter, J.; Byrne, J.; Schwab, C. Crude Protein for High Milk Production. J. Dairy Sci. 1982, 65, 1175–1188. [Google Scholar] [CrossRef]
- Marini, J.C.; Van Amburgh, M. Partition of Nitrogen Excretion in Urine and the Feces of Holstein Replacement Heifers. J. Dairy Sci. 2005, 88, 1778–1784. [Google Scholar] [CrossRef] [Green Version]
- Burgos, S.; Fadel, J.; Depeters, E.J. Prediction of Ammonia Emission from Dairy Cattle Manure Based on Milk Urea Nitrogen: Relation of Milk Urea Nitrogen to Urine Urea Nitrogen Excretion. J. Dairy Sci. 2007, 90, 5499–5508. [Google Scholar] [CrossRef]
- Lapierre, H.; Berthiaume, R.; Raggio, G.; Thivierge, M.C.; Doepel, L.; Pacheco, D.; Dubreuil, P.; Lobley, G.E. The route of absorbed nitrogen into milk protein. Anim. Sci. 2005, 80, 11–22. [Google Scholar] [CrossRef]
- Recktenwald, E.; Ross, D.; Fessenden, S.; Wall, C.; Van Amburgh, M. Urea-N recycling in lactating dairy cows fed diets with 2 different levels of dietary crude protein and starch with or without monensin. J. Dairy Sci. 2014, 97, 1611–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, C.K.; Kristensen, N.B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis1. J. Anim. Sci. 2008, 86, E293–E305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, K.D.; Garnsworthy, P.C.; Mann, G.E.; Sinclair, L.A. Reducing dietary protein in dairy cow diets: Implications for nitrogen utilization, milk production, welfare and fertility. Animals 2014, 8, 262–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Stumpff, F.; Deiner, C.; Rosendahl, J.; Braun, H.; Abdoun, K.; Aschenbach, J.R.; Martens, H. Modulation of sheep ruminal urea transport by ammonia and pH. Am. J. Physiol. Integr. Comp. Physiol. 2014, 307, R558–R570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, R.A.; Young, F.J.; Patterson, D.C.; Kilpatrick, D.J.; Wylie, A.R.G.; Mayne, C.S. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci. 2009, 92, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Nousiainen, J.; Shingfield, K.; Huhtanen, P. Evaluation of Milk Urea Nitrogen as a Diagnostic of Protein Feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Melendez, P.; Donovan, A.; Hernández, J. Milk Urea Nitrogen and Infertility in Florida Holstein Cows. J. Dairy Sci. 2000, 83, 459–463. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [Green Version]
- Valadares, R.; Broderick, G.; Filho, S.V.; Clayton, M. Effect of Replacing Alfalfa Silage with High Moisture Corn on Ruminal Protein Synthesis Estimated from Excretion of Total Purine Derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Niu, M.; Appuhamy, J.A.D.R.N.; Leytem, A.B.; Dungan, R.S.; Kebreab, E. Effect of dietary crude protein and forage contents on enteric methane emissions and nitrogen excretion from dairy cows simultaneously. Anim. Prod. Sci. 2016, 56, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Kebreab, E.; Strathe, A.B.; Dijkstra, J.; Mills, J.A.N.; Reynolds, C.K.; Crompton, L.A.; Yan, T.; France., J. Energy and Protein Interactions and Their Effects on Nitrogen Excretion in Dairy Cows. In Energy and Protein Metabolism and Nutrition, 1st ed.; Crovetto, G.M., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010; Volume 127, pp. 417–425. [Google Scholar]
- Yan, T.; Frost, J.; Agnew, R.; Binnie, R.; Mayne, C. Relationships among Manure Nitrogen Output and Dietary and Animal Factors in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 3981–3991. [Google Scholar] [CrossRef]
- Angelidis, A.; Crompton, L.; Misselbrook, T.; Yan, T.; Reynolds, C.; Stergiadis, S. Evaluation and prediction of nitrogen use efficiency and outputs in faeces and urine in beef cattle. Agric. Ecosyst. Environ. 2019, 280, 1–15. [Google Scholar] [CrossRef]
Concentrate | |||
---|---|---|---|
Ryegrass Silage | Low Protein | High Protein | |
Ingredient, % DM | |||
Wheat | 24.5 | 22.0 | |
Barley | 23.5 | 21.9 | |
Sugar beet pulp | 20.2 | 2.0 | |
Maize gluten | 12.5 | 4.0 | |
Soya bean hulls | 8.1 | 7.6 | |
Calcium salts of palm fatty acid | 2.7 | 1.6 | |
Rapeseed meal | 2.0 | 10.2 | |
Soya bean meal feed dehulled | 2.0 | 26.3 | |
Calcium carbonate | 1.4 | 1.4 | |
Acid Buf 1 | 1.4 | 1.4 | |
Sodium chloride | 0.7 | 0.7 | |
Super dairy 2 | 0.5 | 0.5 | |
Magnesium oxide | 0.3 | 0.3 | |
ActiSaf 3 | 0.1 | 0.1 | |
Chemical composition | |||
DM, g/kg | 336 ± 19.3 | 906 ± 5.2 | 903 ± 2.8 |
CP, g/kg DM | 154 ± 8.9 | 134 ± 2.9 | 252 ± 1.5 |
Rumen-degraded protein (RDP) 4, g/kg CP | 765 | 688 | 693 |
Rumen-undegraded protein (RUP) 4, g/kg CP | 235 | 312 | 307 |
NDF, g/kg DM | 554 ± 16.7 | 283 ± 10.5 | 243 ± 5.7 |
ADF, g/kg DM | 314 ± 12.9 | 134 ± 3.6 | 106 ± 10.6 |
Water-soluble carbohydrates (WSC), g/kg DM | 104 ± 1.1 | 55 ± 5.9 | 79 ± 1.9 |
Ash, g/kg DM | 81 ± 4.6 | 75 ± 4.2 | 81 ± 3.9 |
pH | 4.6 | - | - |
Total ammonia N, % total N | 6.6 | - | - |
Lactic acid, %DM | 12.2 | - | - |
Acetic acid, %DM | 3.8 | - | - |
Butyric acid, %DM | 0.57 | - | - |
Dietary CP Content, g/kg DM | ||||
---|---|---|---|---|
141 | 151 | 177 | 201 | |
Ingredient, % of TMR DM | ||||
Ryegrass silage | 47.3 | 47.9 | 47.7 | 47.5 |
Low protein concentrate | 52.7 | 43.0 | 22.0 | 3.0 |
High protein concentrate | 0.0 | 9.1 | 30.3 | 49.5 |
Chemical composition 1 | ||||
DM, g/kg | 507 | 513 | 510 | 508 |
CP, g/kg DM | 141 | 151 | 177 | 201 |
RDP, g/kg CP | 103 | 109 | 127 | 144 |
RUP, g/kg CP | 39 | 41 | 49 | 56 |
NDF, g/kg DM | 411 | 408 | 399 | 388 |
ADF, g/kg DM | 218 | 218 | 214 | 209 |
WSC, g/kg DM | 81 | 82 | 86 | 90 |
Ash, g/kg DM | 78 | 78 | 80 | 81 |
Dietary CP Content, g/kg DM | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
141 | 151 | 177 | 201 | Diet | Linear | Quadratic | ||
DM intake, kg/day | ||||||||
Silage | 9.1 b | 9.1 b | 10.7 a | 9.4 b | 0.359 | 0.014 | 0.138 | 0.011 |
Concentrate | 10.1 b | 9.9 b | 11.8 a | 10.4 b | 0.383 | 0.012 | 0.147 | 0.017 |
Total | 19.2 b | 18.9 b | 22.5 a | 19.8 b | 0.730 | 0.011 | 0.136 | 0.013 |
OM intake, kg/day | 17.7 b | 17.4 b | 20.7 a | 18.2 b | 0.665 | 0.012 | 0.152 | 0.013 |
CP intake, kg/day | 2.72 b | 2.86 b | 3.98 a | 3.95 a | 0.132 | <0.0001 | <0.0001 | 0.015 |
NDF intake, kg/day | 7.91 b | 7.72 b | 8.98 a | 7.68 b | 0.309 | 0.026 | 0.700 | 0.015 |
ADF intake, kg/day | 4.19 b | 4.12 b | 4.83 a | 4.15 b | 0.183 | 0.039 | 0.516 | 0.021 |
Apparent total-tract digestibility | ||||||||
DM, g/kg | 707 | 719 | 715 | 715 | 13.1 | 0.890 | 0.773 | 0732 |
OM, g/kg | 728 | 737 | 737 | 734 | 12.6 | 0.922 | 0.778 | 0.624 |
CP, g/kg | 571 c | 611 b,c | 641 b | 695 a | 16.8 | 0.0002 | <0.0001 | 0.928 |
NDF, g/kg | 604 | 623 | 607 | 590 | 20.9 | 0.640 | 0.391 | 0.524 |
ADF, g/kg | 613 | 626 | 618 | 591 | 20.6 | 0.556 | 0.289 | 0.414 |
Dietary CP Content, g/kg DM | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
141 | 151 | 177 | 201 | Diet | Linear | Quadratic | ||
Milk yield | ||||||||
Milk, kg/day | 23.7 b | 24.5 b | 28.6 a | 25.3 a,b | 1.29 | 0.048 | 0.153 | 0.044 |
4% FCM, kg/day | 25.6 | 26.6 | 31.1 | 28.1 | 1.56 | 0.094 | 0.114 | 0.079 |
Milk/DIM | 1.27 | 1.29 | 1.28 | 1.28 | 0.072 | 0.997 | 0.969 | 0.868 |
FCM/DIM | 1.37 | 1.40 | 1.40 | 1.41 | 0.082 | 0.987 | 0.754 | 0.920 |
Milk components | ||||||||
Fat, g/kg | 45.6 | 45.9 | 45.5 | 47.5 | 0.779 | 0.254 | 0.121 | 0.252 |
Lactose, g/kg | 47.8 | 47.9 | 47.7 | 48.3 | 0.600 | 0.910 | 0.682 | 0.627 |
Protein, g/kg | 34.1 c | 34.8 b,c | 37.2 a,b | 37.5 a | 0.834 | 0.023 | 0.004 | 0.359 |
Casein, g/kg | 27.1 b | 28.1 a,b | 28.7 a | 29.3 a | 0.475 | 0.029 | 0.005 | 0.445 |
Urea-N, mg/kg | 105 c | 110 c | 189 b | 205 a | 4.04 | <0.0001 | <0.0001 | 0.003 |
Milk components yield | ||||||||
Fat yield, kg/day | 1.09 | 1.16 | 1.22 | 1.21 | 0.059 | 0.383 | 0.151 | 0.323 |
Lactose yield, kg/day | 1.15 | 1.23 | 1.28 | 1.23 | 0.060 | 0.493 | 0.367 | 0.212 |
Protein yield, kg/day | 0.81 | 0.89 | 0.99 | 0.96 | 0.049 | 0.061 | 0.022 | 0.116 |
Casein yield, kg/day | 0.64 | 0.72 | 0.77 | 0.75 | 0.032 | 0.051 | 0.028 | 0.070 |
Urea-N yield, g/day | 2.52 b | 2.99 b | 5.05 a | 5.22 a | 0.233 | <0.0001 | <0.0001 | 0.007 |
Dietary CP Content, g/kg DM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
141 | 151 | 177 | 201 | SEM | Diet | Linear | Quadratic | |
Total N intake, g/day | 436 b | 457 b | 637 a | 633 a | 21.1 | <0.0001 | <0.0001 | 0.015 |
Urinary excretion | ||||||||
Urine output, kg/day | 18.5 b | 18.6 b | 24.7 a | 24.1 a | 0.978 | <0.0001 | <0.0001 | 0.054 |
Urinary N, g/day | 146 c | 156 c | 243 b | 287 a | 13.8 | <0.0001 | <0.0001 | 0.652 |
Urinary N, % N intake | 33.7 b | 35.0 b | 38.7 a,b | 45.6 a | 2.58 | 0.008 | 0.001 | 0.501 |
Fecal excretion | ||||||||
Fecal DM output, kg/day | 5.61 | 5.23 | 6.39 | 5.7 | 0.275 | 0.051 | 0.174 | 0.119 |
Fecal N, g/day | 185 b | 175 b | 234 a | 193 b | 11.8 | 0.016 | 0.110 | 0.023 |
Fecal N, % N intake | 42.2 a | 38.7 a,b | 36.7 b | 30.2 c | 1.55 | <0.0001 | <0.0001 | 0.551 |
Manure N, g/day | 331 b | 332 b | 480 a | 481 a | 22.7 | 0.0002 | <0.0001 | 0.116 |
Manure N, % N intake | 75.7 | 73.7 | 75.5 | 75.8 | 3.19 | 0.948 | 0.806 | 0.836 |
Milk N secretion | ||||||||
Milk N 1, g/day | 127 b | 138 a,b | 161 a | 149 a,b | 7.68 | 0.033 | 0.022 | 0.048 |
Milk N, % N intake | 29.6 a | 29.9 a | 25.5 a,b | 23.3 b | 1.62 | 0.021 | 0.003 | 0.953 |
Equation | Maximum 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|
Intake | ||||||||
DM, kg/day | = | −55.380 | + | 0.876 CP | − | 0.00249CP 2 | 176 | 0.013 |
OM, kg/day | = | −50.385 | + | 0.800CP | − | 0.00228CP 2 | 175 | 0.013 |
CP, kg/day | = | −12.008 | + | 0.160CP | − | 0.00040CP 2 | 200 | 0.015 |
NDF, kg/day | = | −18.823 | + | 0.318CP | − | 0.00092CP 2 | 173 | 0.015 |
ADF, kg/day | = | −8.400 | + | 0.149CP | − | 0.00043CP 2 | 173 | 0.021 |
Milk yield | ||||||||
Milk, kg/day | = | −116.980 | + | 1.652CP | − | 0.00470CP 2 | 176 | 0.044 |
4% FCM, kg/day | = | −133.510 | + | 1.860CP | − | 0.00526CP 2 | 177 | 0.079 |
Milk components | ||||||||
Urea-N, mg/kg | = | −940.340 | + | 11.152 | − | 0.02711CP 2 | 206 | 0.003 |
Milk components yield | ||||||||
Casein yield, kg/day | = | −4.358 | + | 0.058CP | − | 0.00016CP 2 | 182 | 0.070 |
Urea-N yield, g/day | = | −50.378 | + | 0.596CP | − | 0.00159CP 2 | 187 | 0.007 |
N excretion | ||||||||
Urine output, kg/day | = | −97.997 | + | 1.315CP | − | 0.00352CP 2 | 187 | 0.054 |
Fecal N, g/day | = | −1290.370 | + | 17.312CP | − | 0.04927CP 2 | 176 | 0.023 |
Milk N, g/day | = | −475.590 | + | 6.927CP | − | 0.01893CP 2 | 183 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katongole, C.B.; Yan, T. Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows. Animals 2020, 10, 2439. https://doi.org/10.3390/ani10122439
Katongole CB, Yan T. Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows. Animals. 2020; 10(12):2439. https://doi.org/10.3390/ani10122439
Chicago/Turabian StyleKatongole, Constantine Bakyusa, and Tianhai Yan. 2020. "Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows" Animals 10, no. 12: 2439. https://doi.org/10.3390/ani10122439
APA StyleKatongole, C. B., & Yan, T. (2020). Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows. Animals, 10(12), 2439. https://doi.org/10.3390/ani10122439