Milk Production and Energetic Metabolism of Heat-Stressed Dairy Goats Supplemented with Propylene Glycol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Management Conditions
2.2. Sample Collection, Analyses, and Measurements
2.3. Statistical Analyses
3. Results and Discussion
3.1. Rectal Temperature and Respiratory Rate
3.2. Body Weight Change, Feed Intake, and Energy Balance
3.3. Milk Yield and Milk Composition
3.4. Blood Metabolites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamzaoui, S.; Salama, A.A.K.; Albanell, E.; Such, X.; Caja, G. Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. J. Dairy Sci. 2013, 96, 6355–6365. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.A.K.; Caja, G.; Hamzaoui, S.; Badaoui, B.; Castro-Costa, A.; Façanha, D.E.; Guilhermino, M.M.; Bozzi, R. Different levels of response to heat stress in dairy goats. Small Rumin. Res. 2014, 121, 73–79. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, A.A.K.; Caja, G.; Hamzaoui, S.; Such, X.; Albanell, E.; Badaoui, B.; Loor, J.J. Thermal stress in ruminants: Responses and strategies for alleviation. In Animal Welfare in Extensive Production Systems, 1st ed.; Villalba, J.J., Manteca, X., Eds.; 5M Publishing: Sheffield, UK, 2016; pp. 11–36. [Google Scholar]
- Salama, A.A.K.; Duque, M.; Wang, L.; Shahzad, K.; Olivera, M.; Loor, J.J. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J. Dairy Sci. 2019, 102, 2469–2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehaba, N.; Salama, A.A.K.; Such, X.; Albanell, E.; Caja, G. Lactational responses of heat-stressed dairy goats to dietary L-carnitine supplementation. Animals 2019, 9, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cant, J.P.; Trout, D.R.; Qiao, F.; Purdie, N.F. Milk synthetic response of the bovine mammary gland to an increase in the local concentration of arterial glucose. J. Dairy Sci. 2002, 85, 494–503. [Google Scholar] [CrossRef]
- Lemosquet, S.; Delamaire, E.; Lapierre, H.; Blum, J.W.; Peyraud, J.L. Effects of glucose, propionic acid, and nonessential amino acids on glucose metabolism and milk yield in Holstein dairy cows. J. Dairy Sci. 2009, 92, 3244–3257. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Jodar, A.; Nayan, N.; Hamzaoui, S.; Caja, G.; Salama, A.A.K. Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. PLoS ONE 2019, 14, e0202457. [Google Scholar] [CrossRef] [Green Version]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Sanz Fernandez, M.V.; Baumgard, L.H. Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2360–2374. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.I.; Ingvartsen, K.L. Propylene glycol for dairy cows. A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Anim. Feed Sci. Technol. 2004, 115, 191–213. [Google Scholar] [CrossRef]
- Osman, M.A.; Allen, P.S.; Mehyar, N.A.; Bobe, G.; Coetzee, J.F.; Koehler, K.J.; Beitz, D.C. Acute metabolic responses of postpartal dairy cows to subcutaneous glucagon injections, oral glycerol or both. J. Dairy Sci. 2008, 91, 3311–3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiofalo, V.; D’Aquino, S.; Scinardo Tenghi, E.; Sanzarello, L.; Chiofalo, B.; Piccitto, F.; Cavallaro, M.; Liotta, L. Effect of peripartal propylene glycol supplementation on some biochemical parameters in dairy goats. Trop. Subtrop. Agroecosystems 2009, 11, 215–217. [Google Scholar]
- Hadjipanayiotou, M. Effect of Feeding Propylene Glycol and Niacin in Late Pregnancy and Early Lactation on the Performance of Damascus Goats; Technical Bulletin 215; Agricultural Research Institute, Ministry of Agriculture, Natural Resources and the Environment: Nicosia, Cyprus, 2003. Available online: http://publications.ari.gov.cy/tb/2003/TB215-%20Miltos.pdf (accessed on 6 December 2020).
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; DiGiacomo, K.; Chauhan, S.S. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 2020, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971.
- Silanikove, N.; Koluman, N.D. Impact of climate change on the dairy industry intemperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Res. 2015, 123, 27–34. [Google Scholar] [CrossRef]
- Institut National de la Recherche Agronomique (INRA). INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Science: Washington, DC, USA, 2001.
- Miyoshi, S.; Pate, J.L.; Palmqquist, D.L. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. Anim. Reprod. Sci. 2001, 68, 29–43. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2003; Volume I. [Google Scholar]
- Bulent, E. Using and side-effects of propylene glycol in animals. J. Contracept. Stud. 2018, 3, 13. [Google Scholar]
- Kadzere, C.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Chiofalo, V.; Todaro, M.; Liotta, L.; Margiotta, S.; Manzo, T.; Leto, G. Effect of propylene glycol on pre- and postpartum performance by dairy ewes. Small Rumin. Res. 2005, 58, 107–114. [Google Scholar] [CrossRef]
- Dhiman, T.R.; Cadorniga, C.; Satter, L.D. Protein and energy supplementation of high alfalfa silage diets during early lactation. J. Dairy Sci. 1993, 76, 1945–1959. [Google Scholar] [CrossRef]
- Emery, R.S.; Burg, N.; Brown, L.D.; Blank, S.N. Detection, occurrence and prophylactic treatment of borderline ketosis with propylene glycol feeding. J. Dairy Sci. 1964, 47, 1074–1079. [Google Scholar] [CrossRef]
- Larsen, M.; Relling, A.E.; Reynolds, C.K.; Kristensen, N.B. Effect of abomasal glucose infusion on plasma concentrations of gut peptides in periparturient dairy cows. J. Dairy Sci. 2010, 93, 5729–5736. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, R.; van Kaam, J.B.C.H.M.; Portolano, B.; Miszta, I. Effect of heat stress on production of Mediterranean dairy sheep. J. Dairy Sci. 2005, 88, 1855–1864. [Google Scholar] [CrossRef] [Green Version]
- Mehaba, N.; Coloma-Garcia, W.; Such, X.; Caja, G.; Salama, A.A.K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 2021, 104, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Hoedemaker, M.; Prange, D.; Zerbe, H.; Frank, J.; Daxenberger, A.; Meyer, H.H.D. Peripartal propylene glycol supplementation and metabolism, animal health, fertility, and production in dairy cows. J. Dairy Sci. 2004, 87, 2136–2145. [Google Scholar] [CrossRef]
- Lomander, H.; Frössling, J.; Ingvartsen, K.L.; Gustafsson, H.; Svensson, C. Supplemental feeding with glycerol or propylene glycol of dairy cows in early lactation—Effects on metabolic status, body condition, and milk yield. J. Dairy Sci. 2012, 95, 2397–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Nan, X.; Wang, H.; Zhao, Y.; Guo, Y.; Xiong, B. Effects of propylene glycol on negative energy balance of postpartum dairy cows. Animals 2020, 10, 1526. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, N.B.; Raun, B.M.L. Ruminal and intermediary metabolism of propylene glycol in lactating Holstein cows. J. Dairy Sci. 2007, 90, 4707–4717. [Google Scholar] [CrossRef] [Green Version]
- Wojtas, K.; Cwynar, P.; Kolacz, R.; Kupczynski, R. Effect of heat stress on acid-base balance in Polish Merino sheep. Archiv. Tierzucht. 2013, 92, 917–923. [Google Scholar] [CrossRef]
- Calamari, L.; Abeni, F.; Calegari, F.; Stefanini, L. Metabolic conditions of lactating Friesian dairy cows during the hot season in the Po valley. 2. Blood minerals and acid-base chemistry. Int. J. Biometeorol. 2007, 52, 97–107. [Google Scholar] [CrossRef]
- Russell, K.E.; Roussel, A.J. Evaluation of the ruminant serum chemistry profile. Vet. Clin. Food Anim. 2007, 23, 403–426. [Google Scholar] [CrossRef]
- Mann, S.; Leal Yepes, F.A.; Behling-Kelly, E.; McArt, J.A.A. The effect of different treatments for early-lactation hyperketonemia on blood β-hydroxybutyrate, plasma nonesterified fatty acids, glucose, insulin, and glucagon in dairy cattle. J. Dairy Sci. 2017, 100, 6470–6482. [Google Scholar] [CrossRef] [PubMed]
- Potter, B.J. Haemoglobinuria caused by propylene glycol in sheep. Br. J. Pharmacol. Chemother. 1958, 13, 385–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, M.T.; Obara, Y.; Itoh, F.; Hashimoto, H.; Takahashi, Y. Non-insulin- and insulin-mediated glucose uptake in dairy cows. J. Dairy Res. 1997, 64, 341–353. [Google Scholar] [CrossRef] [PubMed]
Item | Total Mixed Ration |
---|---|
Component, % | |
Dry matter | 89.5 |
Organic matter | 87.6 |
Crude protein | 16.4 |
Neutral detergent fiber | 35.8 |
Acid detergent fiber | 24.6 |
Nutritive value 1 | |
UFL,2 /kg | 0.82 |
NEL, Mcal/kg | 1.43 |
PDI,3 g/kg | 100 |
PDIA,4 g/kg | 50.0 |
Calcium, g/kg | 10.6 |
Phosphorous, g/kg | 2.86 |
Variable | TN | HS | SEM | Effect 2 (p =) | ||||
---|---|---|---|---|---|---|---|---|
CO (n = 8) | PG (n = 8) | CO (n = 8) | PG (n = 8) | T | S | T × S | ||
Rectal temperature, °C | 38.93 | 38.97 | 39.76 | 39.66 | 0.05 | 0.001 | 0.315 | 0.209 |
Respiratory rate, breaths/min | 31 | 32 | 109 | 107 | 2 | 0.001 | 0.432 | 0.211 |
Body weight change, kg | 2.14 | 4.13 | –2.93 | –1.66 | 0.79 | 0.001 | 0.049 | 0.649 |
Dry matter intake, kg/d | 2.34 | 2.19 | 1.59 | 1.38 | 0.07 | 0.001 | 0.060 | 0.776 |
Energy balance, Mcal/d | 0.79 | 1.32 | –0.50 | –0.17 | 0.11 | 0.001 | 0.001 | 0.376 |
Water consumption, L/d | 5.99 | 5.84 | 11.16 | 10.74 | 1.07 | 0.001 | 0.797 | 0.900 |
Milk yield, kg/d | 1.86 | 1.80 | 1.79 | 1.66 | 0.18 | 0.210 | 0.258 | 0.614 |
Fat-corrected milk, L/d 3 | 2.12 | 1.78 | 1.85 | 1.48 | 0.16 | 0.002 | 0.001 | 0.856 |
Milk composition, % | ||||||||
Fat | 4.43 | 3.46 | 3.78 | 2.89 | 0.15 | 0.009 | 0.002 | 0.856 |
Protein | 3.55 | 3.54 | 3.14 | 3.15 | 0.15 | 0.074 | 0.994 | 0.963 |
Lactose | 4.47 | 4.46 | 4.31 | 4.29 | 0.06 | 0.064 | 0.886 | 0.980 |
Fat: Protein ratio | 1.26 | 1.00 | 1.21 | 0.93 | 0.06 | 0.365 | 0.001 | 0.876 |
Fat yield, g/d | 79.9 | 62.8 | 67.2 | 48.2 | 5.7 | 0.025 | 0.004 | 0.870 |
Protein yield, g/d | 63.7 | 61.8 | 55.8 | 52.0 | 4.4 | 0.054 | 0.521 | 0.832 |
Lactose yield, g/d | 81.8 | 82.5 | 78.0 | 72.9 | 8.6 | 0.443 | 0.794 | 0.738 |
Somatic cell count, Log10 | 5.66 | 5.67 | 5.97 | 5.82 | 0.18 | 0.231 | 0.708 | 0.652 |
Variable | TN | HS | SEM | Effect 2 (p =) | ||||
---|---|---|---|---|---|---|---|---|
CO (n = 8) | PG (n = 8) | CO (n = 8) | PG (n = 8) | T | S | T × S | ||
pH | 7.42 | 7.44 | 7.43 | 7.45 | 0.01 | 0.206 | 0.093 | 0.965 |
Na, mmol/L | 150 | 151 | 148 | 149 | 1 | 0.019 | 0.223 | 0.786 |
K, mmol/L | 3.77 | 3.73 | 3.96 | 3.73 | 0.12 | 0.463 | 0.282 | 0.466 |
Cl, mmol/L | 111 | 112 | 114 | 113 | 1 | 0.033 | 0.999 | 0.496 |
Ionized Ca, mmol/L | 0.91 | 0.92 | 0.94 | 0.88 | 0.05 | 0.919 | 0.703 | 0.581 |
Total CO2, mmol/L | 25.4 | 26.4 | 21.0 | 20.9 | 0.8 | 0.001 | 0.591 | 0.497 |
CO2 partial pressure, mmHg | 39.6 | 39.4 | 28.4 | 29.5 | 1.3 | 0.001 | 0.715 | 0.578 |
O2 partial pressure, mmHg | 24.1 | 25.3 | 26.2 | 27.1 | 1.4 | 0.214 | 0.436 | 0.882 |
HCO3, mmol/L | 25.5 | 26.5 | 19.0 | 20.4 | 0.8 | 0.001 | 0.243 | 0.758 |
Anion gap | 19.8 | 18.9 | 19.4 | 21.4 | 1.2 | 0.209 | 0.467 | 0.078 |
Hematocrit, %PCV | 18.4 | 19.0 | 18.1 | 17.6 | 1.2 | 0.484 | 0.991 | 0.640 |
Hemoglobin, g/dL | 6.27 | 6.43 | 6.17 | 5.99 | 0.41 | 0.513 | 0.972 | 0.678 |
Insulin, µg/L | 1.14 | 1.54 | 1.03 | 1.43 | 0.16 | 0.674 | 0.098 | 0.985 |
Glucose, mg/dL | 56.2 | 61.5 | 55.8 | 58.2 | 1.5 | 0.219 | 0.033 | 0.096 |
Blood urea N, mg/dL | 25.7 | 23.9 | 18.4 | 18.1 | 2.8 | 0.007 | 0.628 | 0.722 |
Creatinine, mg/dL | 0.49 | 0.53 | 0.49 | 0.57 | 0.04 | 0.490 | 0.049 | 0.281 |
Non-esterified fatty acids, mmol/L | 0.10 | 0.07 | 0.08 | 0.04 | 0.01 | 0.351 | 0.032 | 0.898 |
β-hydroxybutyrate, mmol/L | 0.65 | 0.48 | 0.77 | 0.48 | 0.05 | 0.368 | 0.002 | 0.397 |
Lactate, mmol/L | 0.51 | 0.52 | 0.46 | 0.51 | 0.03 | 0.490 | 0.446 | 0.602 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzaoui, S.; Caja, G.; Such, X.; Albanell, E.; Salama, A.A.K. Milk Production and Energetic Metabolism of Heat-Stressed Dairy Goats Supplemented with Propylene Glycol. Animals 2020, 10, 2449. https://doi.org/10.3390/ani10122449
Hamzaoui S, Caja G, Such X, Albanell E, Salama AAK. Milk Production and Energetic Metabolism of Heat-Stressed Dairy Goats Supplemented with Propylene Glycol. Animals. 2020; 10(12):2449. https://doi.org/10.3390/ani10122449
Chicago/Turabian StyleHamzaoui, Soufiane, Gerardo Caja, Xavier Such, Elena Albanell, and Ahmed A. K. Salama. 2020. "Milk Production and Energetic Metabolism of Heat-Stressed Dairy Goats Supplemented with Propylene Glycol" Animals 10, no. 12: 2449. https://doi.org/10.3390/ani10122449
APA StyleHamzaoui, S., Caja, G., Such, X., Albanell, E., & Salama, A. A. K. (2020). Milk Production and Energetic Metabolism of Heat-Stressed Dairy Goats Supplemented with Propylene Glycol. Animals, 10(12), 2449. https://doi.org/10.3390/ani10122449