Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Factors that Affect Calf Performance with Forage Inclusion
2.1. Forage Factors
2.1.1. Forage Level and Source
2.1.2. Forage Physical Forms and Processing
2.1.3. Time and Method of Offering Forage
2.2. Concentrate and Milk Factors
2.2.1. The Physical Form of Concentrate Feed
2.2.2. The Amount and Method of Milk Feeding
3. Rumen Environment
3.1. Rumen Fluid pH and Fermentation
3.2. Rumen Microbes
4. Feeding Behavior
4.1. Ruminating and Eating Behavior
4.2. Sorting Behavior
4.3. Other Behaviors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davenport, E. On the importance of the physiological requirements of the animal body; results of an attempt to grow cattle without coarse feed. III Agric. Exp. Sta. Bul. 1897, 46, 362. [Google Scholar]
- Kertz, A.F.; Hill, T.M.; Heinrichs, A.J.; Linn, J.G.; Drackley, J.K. A 100-Year Review: Calf nutrition and management. J. Dairy Sci. 2017, 100, 10151. [Google Scholar] [CrossRef] [PubMed]
- Mccandlish, A.C. Studies in the Growth and Nutrition of Dairy Calves: VI. The Addition of Hay and Grain to a Milk Ration for Calves. J. Dairy Sci. 1923, 6, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Pounden, W.D.; Hibbs, J.W.; Cole, C.R. Observations on the relation of diet to diarrhea in young dairy calves. J. Am. Vet. Med. Assoc. 1951, 118, 400. [Google Scholar]
- Hibbs, J.W.; Conrad, H.R.; Pounden, W.D.; Frank, N. A High Roughage System for Raising Calves Based on Early Development of Rumen Function. VI. Influence of Hay to Grain Ratio on Calf Performance, Rumen Development, and Certain Blood Changes. J. Dairy Sci. 1956, 39, 171–179. [Google Scholar] [CrossRef]
- Hibbs, J.W.; Pounden, W.D.; Conrad, H.R. A high roughage system for raising calves based on the early development of rumen function. 1. Effect of variations in the ration on growth, feed consumption, and utilization. J. Dairy Sci. 1953, 36, 717–727. [Google Scholar] [CrossRef]
- Warner, R.G.; Flatt, W.P.; Loosli, J.K. Dietary factors influencing the development of the ruminant stomach. J. Agric. Food Chem. 1956, 4, 788–792. [Google Scholar] [CrossRef]
- Suarez-Mena, F.X.; Hill, T.M.; Jones, C.M.; Heinrichs, A.J. Review: Effect of forage provision on feed intake in dairy calves. Prof. Anim. Sci. 2016, 32, 383–388. [Google Scholar] [CrossRef]
- Davis, C.L.; Drackley, J.K. The Development, Nutrition, and Management of the Young Calf; Iowa State University Press: Ames, IA, USA, 1998. [Google Scholar]
- Sander, E.G.; Warner, R.G.; Harrison, H.N.; Loosli, J.K. The Stimulatory Effect of Sodium Butyrate and Sodium Propionate on the Development of Rumen Mucosa in the Young Calf. J. Dairy Sci. 1959, 42, 1600–1605. [Google Scholar] [CrossRef]
- Tamate, H.; Mcgilliard, A.D.; Jacobson, N.L.; Getty, R. Effect of Various Dietaries on the Anatomical Development of the Stomach in the Calf 1. J. Dairy Sci. 1962, 45, 408–420. [Google Scholar] [CrossRef]
- Carroll, E.; Hungate, R. The magnitude of the microbial fermentation in the bovine rumen. Appl. Microbiol. 1954, 2, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stobo, I.J.F.; Roy, J.H.B.; Gaston, H.J. Rumen development in the calf: 2.* The effect of diets containing different proportions of concentrates to hay on digestive efficiency. Br. J. Nutr. 1966, 20, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibholz, J. Ground roughage in the diet of the early-weaned calf. Anim. Prod. 1975, 20, 93–100. [Google Scholar] [CrossRef]
- Hill, T.M.; Ii, H.G.B.; Aldrich, J.M.; Schlotterbeck, R.L. Effects of the Amount of Chopped Hay or Cottonseed Hulls in a Textured Calf Starter on Young Calf Performance. J. Dairy Sci. 2008, 91, 2684–2693. [Google Scholar] [CrossRef] [Green Version]
- National Academies Press. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, WA, USA, 2001. [Google Scholar]
- Hill, T.M.; Ii, H.G.B.; Pas, J.M.A.; Schlotterbeck, R.L. Roughage for Diets Fed to Weaned Dairy Calves. Prof. Anim. Sci. 2009, 25, 283–288. [Google Scholar] [CrossRef]
- Castells, L.; Bach, A.; Terré, M. Short- and long-term effects of forage supplementation of calves during the preweaning period on performance, reproduction, and milk yield at first lactation. J. Dairy Sci. 2015, 98, 4748–4753. [Google Scholar] [CrossRef]
- Coverdale, J.A.; Tyler, H.D.; Brumm, J.A. Effect of various levels of forage and form of diet on rumen development and growth in calves. J. Dairy Sci. 2004, 87, 2554–2562. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Weary, D.M.; Keyserlingk, M.A.G.V. Hay intake improves performance and rumen development of calves fed higher quantities of milk. J. Dairy Sci. 2011, 94, 3547–3553. [Google Scholar] [CrossRef] [Green Version]
- Castells, L.; Bach, A.; Araujo, G.; Montoro, C.; Terré, M. Effect of different forage sources on performance and feeding behavior of Holstein calves. J. Dairy Sci. 2012, 95, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Beiranvand, H.; Ghorbani, G.R.; Khorvash, M.; Nabipour, A.; Dehghanbanadaky, M.; Homayouni, A.; Kargar, S. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development. J. Dairy Sci. 2014, 97, 2270–2280. [Google Scholar] [CrossRef]
- Daneshvar, D.; Khorvash, M.; Ghasemi, E.; Mahdavi, A.H.; Moshiri, B.; Mirzaei, M.; Pezeshki, A.; Ghaffari, M.H. The effect of restricted milk feeding through conventional or step-down methods with or without forage provision in starter feed on performance of Holstein bull calves. J. Anim. Sci. 2015, 93, 3979–3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Azarfar, A.; Simayi, A.; Li, S.; Jonker, A.; Cao, Z. Effects of forage type and age at which forage provision is started on growth performance, rumen fermentation, blood metabolites and intestinal enzymes in Holstein calves. Anim. Prod. Sci. 2018, 58, 2288–2299. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, L.; Alugongo, G.; Wang, Y.; Cao, Z.; Li, S. Effects of different feed type exposure in early life on performance, rumen fermentation, and feed preference of dairy calves. J. Dairy Sci. 2018, 101, 8169–8181. [Google Scholar] [CrossRef] [PubMed]
- Jahanimoghadam, M.; Mahjoubi, E.; Yazdi, M.H.; Cardoso, F.C.; Drackley, J.K. Effects of alfalfa hay and its physical form (chopped versus pelleted) on performance of Holstein calves. J. Dairy Sci. 2015, 98, 4055–4061. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.; Khorvash, M.; Ghorbani, G.R.; Kazemi-Bonchenari, M.; Riasi, A.; Nabipour, A.; Borne, J.J.G.C. Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves. J. Anim. Physiol. Anim. Nutr. 2015, 99, 553–564. [Google Scholar] [CrossRef]
- Gelsinger, S.L.; Heinrichs, A.J.; Jones, C.M. A meta-analysis of the effects of preweaned calf nutrition and growth on first-lactation performance1. J. Dairy Sci. 2016, 99, 6206–6214. [Google Scholar] [CrossRef]
- Kilgour, R.J. In pursuit of “normal”: A review of the behaviour of cattle at pasture. Appl. Anim. Behav. Sci. 2012, 138, 1–11. [Google Scholar] [CrossRef]
- Nicol, A.M.; Sharafeldin, M.A. Observations on the behaviour of single-suckled calves from birth to 120 days. Proc NZ Soc. Anim. Prod. 1975. [Google Scholar]
- Tedeschi, L.O.; Fox, D.G. Predicting milk and forage intake of nursing calves. J. Anim. Sci. 2009, 87, 3380–3391. [Google Scholar] [CrossRef]
- Miller-Cushon, E. Expression and Development of Feeding Behaviour in Dairy Calves. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 6 May 2014. [Google Scholar]
- Drackley, J.K. Calf Nutrition from Birth to Breeding. Vet. Clin. North Am. Food Anim. Pract. 2008, 24, 55–86. [Google Scholar] [CrossRef]
- Imani, M.; Mirzaei, M.; Baghbanzadehnobari, B.; Ghaffari, M.H. Effects of forage provision to dairy calves on growth performance and rumen fermentation: A meta-analysis and meta-regression. J. Dairy Sci. 2017, 100, 1136–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, H.R.; Hibbs, J.W. A High Roughage System for Raising Calves Based on the Early Development of Rumen Function. VII. Utilization of Grass Silage, Pasture, and Pelleted Alfalfa Meal. J. Dairy Sci. 1956, 39, 1170–1179. [Google Scholar] [CrossRef]
- Stobo, I.J.F.; Roy, J.H.B.; Gaston, H.J. Rumen development in the calf. 1. The effect of diets containing different proportions of concentrates to hay on rumen development. Br. J. Nutr. 1966, 20, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.C.; Warner, R.G.; Pas, A.F.K. Effect of Fiber Level and Physical Form of Starter on Growth and Development of Dairy Calves Fed No Forage. Prof. Anim. Sci. 2007, 23, 395–400. [Google Scholar] [CrossRef]
- Nemati, M.; Amanlou, H.; Khorvash, M.; Mirzaei, M.; Moshiri, B.; Ghaffari, M.H. Effect of different alfalfa hay levels on growth performance, rumen fermentation, and structural growth of Holstein dairy calves. J. Anim. Sci. 2016, 94, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maktabi, H.; Ghasemi, E.; Khorvash, M. Effects of substituting grain with forage or nonforage fiber source on growth performance, rumen fermentation, and chewing activity of dairy calves. Anim. Feed Sci. Technol. 2016, 221, 70–78. [Google Scholar] [CrossRef]
- Hosseini, S.; Mirzaei-Alamouti, H.; Vazirigohar, M.; Mahjoubi, E.; Rezamand, P. Effects of whole milk feeding rate and straw level of starter feed on performance, rumen fermentation, blood metabolites, structural growth, and feeding behavior of Holstein calves. Anim. Feed Sci. Technol. 2019, 255, 114238. [Google Scholar] [CrossRef]
- Jahn, E.; Chandler, P.T.; Polan, C.E. Effects of fiber and ratio of starch to sugar on performance of ruminating calves. J. Dairy Sci. 1970, 53, 466–474. [Google Scholar] [CrossRef]
- Zitnan, R.; Voigt, J.; Schönhusen, U.; Wegner, J.; Kokardová, M.; Hagemeister, H.; Levkut, M.; Kuhla, S.; Sommer, A. Influence of dietary concentrate to forage ratio on the development of rumen mucosa in calves. Arch. Anim. Nutr. 1998, 51, 279–291. [Google Scholar]
- Suárez, B.; Van Reenen, C.; Stockhofe, N.; Dijkstra, J.; Gerrits, W. Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. J. Dairy Sci. 2007, 90, 2390–2403. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, S.I.; Dill-McFarland, K.A.; Breaker, J.D.; Suen, G. Effects of corn silage inclusion in preweaning calf diets. J. Dairy Sci. 2019, 102, 4131–4137. [Google Scholar] [CrossRef] [PubMed]
- ASAE. Method of Determining and Expressing Particle Size of Chopped Forage Material by Screening; ASAE: St. Joseph, MI, USA, 1998. [Google Scholar]
- Booth, J.A. Effect of Forage Addition to the Diet on Rumen Development in Calves; Retrospective Theses and Dissertations; Iowa State University: Ames, IA, USA, 2003; p. 564. [Google Scholar]
- ÜLGER, İ.; Kaliber, M.; BEYZİ, S.B.; Konca, Y. Effects of Different Quality Roughage Supply on Performance of Holstein Calves during Preweaning Period. Tarim Bilimleri Dergisi J. Agric. Sci. 2017, 23, 386–394. [Google Scholar]
- Hill, T.; Dennis, T.; Suárez-Mena, F.; Quigley, J.; Aragona, K.; Schlotterbeck, R. Effects of free-choice hay and straw bedding on digestion of nutrients in 7-week-old Holstein calves. Appl. Anim. Sci. 2019, 35, 312–317. [Google Scholar] [CrossRef]
- Hill, T.; Suárez-Mena, F.; Dennis, T.; Quigley, J.; Schlotterbeck, R. Effects of free-choice hay on intake and growth of Holstein calves fed a textured starter to 2 months of age. Appl. Anim. Sci. 2019, 35, 161–168. [Google Scholar] [CrossRef]
- Anderson, M.J.; Khoyloo, M.; Walters, J.L. Effect of Feeding Whole Cottonseed on Intake, Body Weight, and Reticulorumen Development of Young Holstein Calves. J. Dairy Sci. 1982, 65, 764–772. [Google Scholar] [CrossRef]
- Suárez, B.J.; Van Reenen, C.G.; Beldman, G.; Van, D.J.; Dijkstra, J.; Gerrits, W.J. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: I. Animal performance and rumen fermentation characteristics. J. Dairy Sci. 2006, 89, 4365–4375. [Google Scholar] [CrossRef] [Green Version]
- Castells, L.; Bach, A.; Aris, A.; Terré, M. Effects of forage provision to young calves on rumen fermentation and development of the gastrointestinal tract. J. Dairy Sci. 2013, 96, 5226–5236. [Google Scholar] [CrossRef] [Green Version]
- Terré, M.; Pedrals, E.; Dalmau, A.; Bach, A. What do preweaned and weaned calves need in the diet: A high fiber content or a forage source? J. Dairy Sci. 2013, 96, 5217–5225. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H.; Nagata, R.; Ohtani, N.; Ichijo, T.; Ikuta, K.; Sato, S. Effects of dietary forage and calf starter diet on ruminal pH and bacteria in Holstein calves during weaning transition. Front. Microbiol. 2016, 7, 1575. [Google Scholar] [CrossRef]
- Mirzaei, M.; Khorvash, M.; Ghorbani, G.R.; Kazemi-Bonchenari, M.; Ghaffari, M.H. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision. J. Dairy Sci. 2017, 100, 1086–1094. [Google Scholar] [CrossRef]
- Phillips, C.J. The effects of forage provision and group size on the behavior of calves. J. Dairy Sci. 2004, 87, 1380–1388. [Google Scholar] [CrossRef] [Green Version]
- Horvath, K.; Miller-Cushon, E. Evaluating effects of providing hay on behavioral development and performance of group-housed dairy calves. J. Dairy Sci. 2019, 102, 10411–10422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kargar, S.; Kanani, M.; Albenzio, M.; Caroprese, M. Substituting corn silage with reconstituted forage or nonforage fiber sources in the starter diets of Holstein calves: Effects on performance, ruminal fermentation, and blood metabolites. J. Anim. Sci. 2019, 97, 3046–3055. [Google Scholar] [CrossRef]
- Kargar, S.; Kanani, M. Substituting corn silage with reconstituted forage or nonforage fiber sources in the starter feed diets of Holstein calves: Effects on intake, meal pattern, sorting, and health. J. Dairy Sci. 2019, 102, 7168–7178. [Google Scholar] [CrossRef]
- Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. Acidosis in cattle: A review. J. Anim. Sci. 1998, 76, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Kononoff, P.; Heinrichs, A.J. The effect of reducing alfalfa haylage particle size on cows in early lactation. J. Dairy Sci. 2003, 86, 1445–1457. [Google Scholar] [CrossRef] [Green Version]
- Montoro, C.; Miller-Cushon, E.; DeVries, T.; Bach, A. Effect of physical form of forage on performance, feeding behavior, and digestibility of Holstein calves. J. Dairy Sci. 2013, 96, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Laarman, A.; Oba, M. Effect of calf starter on rumen pH of Holstein dairy calves at weaning. J. Dairy Sci. 2011, 94, 5661–5664. [Google Scholar] [CrossRef]
- Omidi-Mirzaei, H.; Azarfar, A.; Mirzaei, M.; Kiani, A.; Ghaffari, M. Effects of forage source and forage particle size as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters. J. Dairy Sci. 2018, 101, 4143–4157. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Mena, F.X.; Heinrichs, A.J.; Jones, C.M.; Hill, T.M.; Quigley, J.D. Straw particle size in calf starters: Effects on digestive system development and rumen fermentation. J. Dairy Sci. 2015, 99, 341–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaei, M.; Khorvash, M.; Ghorbani, G.R.; Kazemi-Bonchenari, M.; Riasi, A.; Soltani, A.; Moshiri, B.; Ghaffari, M.H. Interactions between the physical form of starter (mashed versus textured) and corn silage provision on performance, rumen fermentation, and structural growth of Holstein calves. J. Anim. Sci. 2016, 94, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, H.; Khani, M.; Omidian, S.; Ariana, M.; Rezvani, R.; Ghaffari, M. Does adding water to dry calf starter improve performance during summer? J. Dairy Sci. 2016, 99, 1903–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beiranvand, H.; Khani, M.; Ahmadi, F.; Omidi-Mirzaei, H.; Ariana, M.; Bayat, A. Does adding water to a dry starter diet improve calf performance during winter? Animal 2019, 13, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Kargar, S.; Kanani, M. Reconstituted versus dry alfalfa hay in starter feed diets of Holstein dairy calves: Effects on feed intake, feeding and chewing behavior, feed preference, and health criteria. J. Dairy Sci. 2019, 102, 4061–4071. [Google Scholar] [CrossRef]
- Kargar, S.; Kanani, M. Reconstituted versus dry alfalfa hay in starter feed diets of Holstein dairy calves: Effects on growth performance, nutrient digestibility, and metabolic indications of rumen development. J. Dairy Sci. 2019, 102, 4051–4060. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell university press: Ithaca, NY, USA, 1994; Volume 44, pp. 2552–2561. [Google Scholar]
- Pasha, T.N.; Prigge, E.C.; Russell, R.W.; Bryan, W.B. Influence of moisture content of forage diets on intake and digestion by sheep. J. Anim. Sci. 1994, 72, 2455–2463. [Google Scholar] [CrossRef] [Green Version]
- Dill-McFarland, K.A.; Weimer, P.J.; Breaker, J.D.; Suen, G. Diet influences early microbiota development in dairy calves without long-term impacts on milk production. Appl. Environ. Microbiol. 2019, 85, e02141-18. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.; Ghorbani, G.R.; Khorvash, P.R.M. Determining optimum age of Holstein dairy calves when adding chopped alfalfa hay to meal starter diets based on measures of growth and performance. Anim. Int. J. Anim. Biosci. 2015, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wang, Y.; Wang, J.; Hou, Q.; Hu, Z.; Shi, K.; Yan, Z.; Wang, Z. Effect of initial time of forage supply on growth and rumen development in preweaning calves. Anim. Prod. Sci. 2018, 58, 2224–2232. [Google Scholar] [CrossRef]
- Overvest, M.A.; Bergeron, R.; Haley, D.B.; Devries, T.J. Effect of feed type and method of presentation on feeding behavior, intake, and growth of dairy calves fed a high level of milk. J. Dairy Sci. 2015, 99, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebnali, A.; Khorvash, M.; Ghorbani, G.R.; Mahdavi, A.H.; Malekkhahi, M.; Mirzaei, M.; Pezeshki, A.; Ghaffari, M.H. Effects of forage offering method on performance, rumen fermentation, nutrient digestibility and nutritional behaviour in Holstein dairy calves. J. Anim. Physiol. A Anim. Nutr. 2016, 100, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Miller-Cushon, E.K.; DeVries, T.J. Feed sorting in dairy cattle: Causes, consequences, and management. J. Dairy Sci. 2017, 100, 4172–4183. [Google Scholar] [CrossRef] [PubMed]
- Terrã, M.; Castells, L.; Khan, M.A.; Bach, A. Interaction between the physical form of the starter feed and straw provision on growth performance of Holstein calves. J. Dairy Sci. 2015, 98, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Lesmeister, K.; Heinrichs, A.J. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. J. Dairy Sci. 2004, 87, 3439–3450. [Google Scholar] [CrossRef] [Green Version]
- Mojahedi, S.; Khorvash, M.; Ghorbani, G.R.; Ghasemi, E.; Mirzaei, M.; Hashemzadeh-Cigari, F. Performance, nutritional behavior, and metabolic responses of calves supplemented with forage depend on starch fermentability. J. Dairy Sci. 2018, 101, 7061–7072. [Google Scholar] [CrossRef] [Green Version]
- Bateman Ii, H.; Hill, T.; Aldrich, J.; Schlotterbeck, R. Effects of corn processing, particle size, and diet form on performance of calves in bedded pens. J. Dairy Sci. 2009, 92, 782–789. [Google Scholar] [CrossRef]
- Kosiorowska, A.; Puggaard, L.; Hedemann, M.S.; Sehested, J.; Jensen, S.K.; Kristensen, N.B.; Kuropka, P.; Marycz, K.; Vestergaard, M. Gastrointestinal development of dairy calves fed low- or high-starch concentrate at two milk allowances. Animal 2011, 5, 211–219. [Google Scholar] [CrossRef]
- Horvath, K.; Miller-Cushon, E. The effect of milk-feeding method and hay provision on the development of feeding behavior and non-nutritive oral behavior of dairy calves. J. Dairy Sci. 2017, 100, 3949–3957. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.B.; Hinks, C.E. The effect of changing the physical form of roughage on the performance of the early-weaned calf. Anim. Sci. 1982, 35, 375–384. [Google Scholar] [CrossRef]
- Millercushon, E.K.; Bergeron, R.; Leslie, K.E.; Mason, G.J.; Devries, T.J. Effect of early exposure to different feed presentations on feed sorting of dairy calves. J. Dairy Sci. 2013, 96, 4624–4633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Lee, H.J.; Lee, W.S. Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. J. Dairy Sci. 2007, 90, 3376–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beharka, A.A.; Nagaraja, T.G.; Morrill, J.L.; Kennedy, G.A.; Klemm, R.D. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. J. Dairy Sci. 1998, 81, 1946. [Google Scholar] [CrossRef]
- Schwartzkopf-Genswein, K.S.; Beauchemin, K.A.; Gibb, D.J.; Crews, D.H.; Mcallister, T.A. Effect of bunk management on feeding behavior, ruminal acidosis and performance of feedlot cattle: A review. J. Anim. Sci. 2003, 81, E149–E158. [Google Scholar]
- Garrett, E.F.; Pereira, M.N.; Nordlund, K.V. Diagnostic Methods for the Detection of Subacute Ruminal Acidosis in Dairy Cows. J. Dairy Sci. 1999, 82, 1170–1178. [Google Scholar] [CrossRef]
- Quigley, J.D.; Steen, T.M.; Boehms, S.I. Postprandial Changes of Selected Blood and Ruminal Metabolites in Ruminating Calves Fed Diets with or Without Hay. J. Dairy Sci. 1992, 75, 228–235. [Google Scholar] [CrossRef]
- Kay, R.N.B. The rate of flow and composition of various salivary secretions in sheep and calves. J. Physiol. 1960, 150, 515–537. [Google Scholar] [CrossRef] [Green Version]
- Laarman, A.H.; Ruiz-Sanchez, A.L.; Sugino, T.; Guan, L.L.; Oba, M. Effects of feeding a calf starter on molecular adaptations in the ruminal epithelium and liver of Holstein dairy calves. J. Dairy Sci. 2012, 95, 2585–2594. [Google Scholar] [CrossRef]
- Hodgson, J. The development of solid food intake in calves. 1. The effect of previous experience of solid food, and the physical form of the diet, on the development of food intake after weaning. Anim. Sci. 1971, 13, 15–24. [Google Scholar] [CrossRef]
- Baldwin, R.L.V.; Mcleod, K.R.; Klotz, J.L.; Heitmann, R.N. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J. Dairy Sci. 2004, 87, E55–E65. [Google Scholar] [CrossRef] [Green Version]
- Kirat, D.; Masuoka, J.; Hayashi, H.; Iwano, H.; Yokota, H.; Taniyama, H.; Kato, S. Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. J. Physiol. 2006, 576, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.; Gatherar, I.; Haslam, I.; Glanville, M.; Simmons, N.L. Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium. AJP Regul. Integr. Comp. Physiol. 2007, 292, R997–R1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flatt, W.P.; Warner, R.G.; Loosli, J.K. Influence of Purified Materials on the Development of the Ruminant Stomach. J. Dairy Sci. 1958, 41, 1593–1600. [Google Scholar] [CrossRef]
- Cline, J.H.; Hershberger, T.V.; Bentley, O.G. Utilization and/or Synthesis of Valeric Acid during the Digestion of Glucose, Starch and Cellulose by Rumen Micro-Organisms. J. Anim. Sci. 1958, 17, 284–292. [Google Scholar] [CrossRef]
- Briggs, P.; Hogan, J.; Reid, R. Effect of volatile fatty acids, lactic acid and ammonia on rumen pH in sheep. Aust. J. Agric. Res. 1957, 8, 674. [Google Scholar] [CrossRef]
- Oetzel, G.R.; Nordlund, K.V.; Garrett, E.F. Effect of ruminal pH and stage of lactation on ruminal lactate concentration in dairy cows. J. Dairy Sci. 1999, 82, 38. [Google Scholar]
- Kennelly, J.J.; Robinson, B.; Khorasani, G.R. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in early-lactation Holstein cows. J. Dairy Sci. 1999, 82, 2486–2496. [Google Scholar] [CrossRef]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Bach, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 2016, 99, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Guzman, C.E.; Bereza-Malcolm, L.T.; De Groef, B.; Franks, A.E. Presence of Selected Methanogens, Fibrolytic Bacteria, and Proteobacteria in the Gastrointestinal Tract of Neonatal Dairy Calves from Birth to 72 Hours. PLoS ONE 2015, 10, e0133048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, M.; Enjalbert, F.; Combes, S.; Cauquil, L.; Bouchez, O.; Monteils, V. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J. Appl. Microbiol. 2014, 116, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, j.; Hou, Q.; Wang, Y.; Hu, Z.; Shi, K.; Yan, Z.; Wang, Z. Effect of hay supplementation timing on rumen microbiota in suckling calves. MicrobiologyOpen 2018, 7, e00430. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Hehemann, J.H.; Rebuffet, E.; Czjzek, M.; Michel, G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2011, 2, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Anim. Sci. J. 2016, 87, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Ogata, K.; Tajima, K.; Nakamura, M.; Nagamine, T.; Aminov, R.I.; Benno, Y. Phenotypic Characterization of Polysaccharidases Produced by FourPrevotellaType Strains. Curr. Microbiol. 2000, 41, 45–49. [Google Scholar] [CrossRef]
- Hobson, P.N.; Stewart, C.S. The Rumen Microbial Ecosystem; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Morisse, J.P.; Huonnic, D.; Cotte, J.P.; Martrenchar, A. The effect of four fibrous feed supplementations on different welfare traits in veal calves. Anim. Feed Sci. Technol. 2000, 84, 129–136. [Google Scholar] [CrossRef]
- Costa, J.H.C.; Daros, R.R.; von Keyserlingk, M.A.G.; Weary, D.M. Complex social housing reduces food neophobia in dairy calves. J. Dairy Sci. 2014, 97, 7804–7810. [Google Scholar] [CrossRef]
- Khan, M.A.; Weary, D.M.; Veira, D.M.; Von Keyserlingk, M.A.G. Postweaning performance of heifers provided hay during the milk feeding period. J. Dairy Sci. 2012, 95, 3970–3976. [Google Scholar] [CrossRef]
- Van Ackeren, C.; Steingaß, H.; Hartung, K.; Funk, R.; Drochner, W. Effect of roughage level in a total mixed ration on feed intake, ruminal fermentation patterns and chewing activity of early-weaned calves with ad libitum access to grass hay. Anim. Feed Sci. Technol. 2009, 153, 48–59. [Google Scholar] [CrossRef]
- Allen, M.S. Relationship Between Fermentation Acid Production in the Rumen and the Requirement for Physically Effective Fiber. J. Dairy Sci. 1997, 80, 1447–1451. [Google Scholar] [CrossRef]
- Ginane, C.; Baumont, R.; Favreaupeigné, A. Perception and hedonic value of basic tastes in domestic ruminants. Physiol. Behav. 2011, 104, 666–674. [Google Scholar] [CrossRef]
- Leonardi, C.; Armentano, L.E. Effect of quantity, quality, and length of alfalfa hay on selective consumption by dairy cows. J. Dairy Sci. 2003, 86, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Oba, M. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. J. Dairy Sci. 2014, 97, 3006–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maulfair, D.D.; McIntyre, K.K.; Heinrichs, A.J. Subacute ruminal acidosis and total mixed ration preference in lactating dairy cows. J. Dairy Sci. 2013, 96, 6610–6620. [Google Scholar] [CrossRef] [PubMed]
- Burritt, E.A.; Provenza, F.D. Lambs form preferences for nonnutritive flavors paired with glucose. J. Anim. Sci. 1992, 70, 1133. [Google Scholar] [CrossRef] [PubMed]
- Miller-Cushon, E.K.; Devries, T.J. Effect of early feed type exposure on diet-selection behavior of dairy calves. J. Dairy Sci. 2011, 94, 342. [Google Scholar] [CrossRef] [Green Version]
Objectives | Trt 1 | Calf/Trt | Weaning Age (d) | Forage Feeding Age (d) | Forage Source | Cutting Length/Processing 2 | Solid Feed Offering Method | Concentrate Physical Form | Amount of Milk Fed 3 | Outcomes 4 | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forage (%) | DMI | ADG | ||||||||||
0, 40, 60, 80% | 3 | 7 | 49 | 4 | Alfalfa and Timothy hay | - | TMR | - | - | N ** | N ** | Hibbs et al., 1956 [5] |
50, 67% | 4 | 10 | 49 | 3 | Grass legume silage | - | TMR | Coarse | - | - | - | Conard et al., 1956 [35] |
5 to 60% | 10 | 4 | - | 56 | Barley, Rye, Wheat straw | - | - | - | - | - | - | Jahn et al., 1970 [41] |
20–70% | 2 | 6 | - | 7 | Alfalfa hay | - | TMR | — | - | - | - | Žitnan et al., 1998 [42] |
0, 7.5, 15% | 4 | 16 | 31 | - | Bromegrass hay | Chopped 8 to 19 mm | TMR | Coarse, Ground | - | p * | p * | Coverdale et al., 2004 [19] |
0, 30, 60% | 8 | 8 | 70 | 10 | Corn silage, Straw, Grass, Corn silage | - | TMR | Pellet starter | - | N ** | NS | Suárez et al., 2007 [43] |
0, 16% | 4 | 16 | 28 | 3 | Beet pulp | - | TMR | Pellet | 80 L (Around 7%) | NS | NS | Porter et al., 2007 [37] |
0, 5% | 2 | 24 | 31–32 | 3–4 | Cottonseed hull | GMPL: around 2 mm | TMR | Texture | 100 L (Around 10%) | p * | NS | Hill et al., 2008 (Trail 1) [15] |
0, 5, 10% | 4 | 12 | 28 | 3–4 | Cottonseed hull, Timothy hay | GMPL: around 2.2 mm | TMR | Texture | 120 L (Around 10%) | N ** | N ** | Hill et al., 2008 (Trail 2) [15] |
0, 2.5, 5% | 3 | 16 | 28 | 3–4 | Timothy hay | GMPL: around 2.2 mm | Free Choice | Texture | 120 L (Around 10%) | N ** | N ** | Hill et al., 2008 (Trail 3) [15] |
0, 5, 10% | 6 | 7 | 53 | 3 | Alfalfa hay | GMPL: 2.6 mm | TMR | Finely ground | Around 10% | p ** | p ** | Beiranvand et al., 2014 [22] |
8, 16% | 5 | 10 | 51 | 16 | Alfalfa hay | GMPL: 2.92 vs. 5.04 mm | TMR | Ground | 190 L (Around 10%) | - | - | Mirzaei et al., 2015 [27] |
0, 12.5, 25% | 4 | 15 | 51 | 3 | Alfalfa hay | GMPL: 3 mm | TMR | Finely ground | 204 L (Around 10%) | p ** | p ** | Nemati et al., 2016 [38] |
0, 75%, 100% | 3 | 15 | 56 | 1 | Corn silage | - | TMR | Texture | 416 L (Around 18%) | NS | NS | Kehoe et al., 2019 [44] |
Objectives | Trt 1 | Calf/Trt | Weaning Age (d) | Forage Feeding Age (d) | Forage (%) | Cutting Length/Processing 2 | Solid Feed Offering Method | Concentrate Physical Form | Amount of Milk Fed 3 | Outcomes 4 | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forage Source | DMI | ADG | ||||||||||
Alfalfa hay, Cottonseed | 3 | 24 | - | 7 | 25% of Cottonseed, Ad libitum of alfalfa hay | Chopped to 10 cm | Free choice | - | Around 7% | NS | NS | Anderson et al., 1982 [50] |
Beet pulp, Soybean hulls, Corn grits | 5 | 32 | 84 | - | 0, 30.3, 46.4, 91.3% | - | TMR | Pellet | 608 L (around 18%) | p ** | p ** | Suárez et al., 2006 [51] |
Straw; Corn silage, Dried grass | 8 | 8 | 70 | 10 | - | Chopped | TMR | Pellet starter; | - | N ** | NS | Suárez et al., 2007 [43] |
Beet pulp | 4 | 16 | 28 | 3 | 0, 16% | - | TMR | Pellet | 80 L (Around 7%) | NS | NS | Porter et al., 2007 [37] |
Cottonseed hull | 2 | 24 | 31–32 | 3–4 | 0, 5% | GMPL: around 2 mm | TMR | Texture | 100 L (Around 10%) | p * | NS | Hill et al., 2008 (Trail 1) [15] |
Cottonseed hull, Timothy hay | 4 | 12 | 28 | 3–4 | 0, 5, 10% | GMPL: around 2.2 mm | TMR | Texture | 120 L (Around 10%) | N ** | N ** | Hill et al., 2008 (Trail 2) [15] |
Timothy hay | 3 | 16 | 28 | 3–4 | 0, 2.5, 5% | GMPL: around 2.2 mm | Free Choice | Texture | 120 L (Around 10%) | N ** | N ** | Hill et al., 2008 (Trail 3) [15] |
Alfalfa hay | 6 | 7 | 53 | 3 | 0, 5, 10% | GMPL: 2.6 mm | TMR | Finely ground | Around 10% | p ** | p ** | Beiranvand et al., 2014 [22] |
Alfalfa hay | 4 | 15 | 51 | 3 | 0, 12.5, 25% | GMPL: 3 mm | TMR | Finely ground | 204 L (Around 10%) | p ** | p ** | Nemati et al., 2016 [38] |
Alfalfa hay, Ryegrass hay | 3 | 20 | 57 | 14.1 ± 4.2 | Ad libitum | Chopped | Free choice | Pellet | 214 L (Around 9.6%) | NS | NS | Castells et al., 2012 (Trail 1) [21] |
Oat hay, Barley straw, | 3 | 20 | 57 | 14.1 ± 4.2 | Ad libitum | Chopped | Free choice | Pellet | 214 L (Around 9.6%) | p ** | p ** | Castells et al., 2012 (Trail 2) [21] |
Triticale silage, Corn silage | 3 | 20 | 57 | 14.1 ± 4.2 | Ad libitum | Chopped | Free choice | Pellet | 214 L (Around 9.6%) | p ** | p ** | Castells et al., 2012 (Trail 3) [21] |
Alfalfa hay; Oat hay | 3 | 5 | 56 | 3 | Ad libitum | Chopped | Free choice | Pellet | 214 L (Around 10%) | NS | NS | Castells et al., 2013 [52] |
Oat Hay | 4 | 16 | 51 | 9 ± 4.4 | Ad libitum (4, 5%) | Chopped | Free choice | Pellet | 152 L (Around 10%) | p ** | p ** | Terré et al., 2013 [53] |
Orchard hay, Timothy hay | 2 | 8 | 56 | 42 | 0, 20% | - | - | - | 88 L (Around 4%) | NS | - | Kim et al., 2016 [54] |
Wheat straw, Alfalfa hay | 2 | 15 | 56 | 14 | 20% | Chopped to 1–2 cm | TMR | Pellet | 212 L (Around 10%) | - | - | Ülger et al., 2017 [47] |
Alfalfa hay, Beet pulp | 2 | 13 | 50 | 4 | 0, 10, 20% | - | TMR | Texture | 228 L (Around 11%) | p * | p ** | Maktabi et al., 2016 [39] |
Alfalfa hay, Corn silage | 6 | 10 | 49 | 3 | 0, 15% | GMPL: 2.9 and 12.07 mm | TMR | Fine ground | 196 L (Around 10%) | p ** | p ** | Mirzaei et al., 2017 [55] |
Fresh Ryegrass | 4 | 6 | 49 | 7–10 | Ad libitum | Chopped to approximately 4 cm | Free choice | Pellet | - | NS | NS | Phillips et al., 2004 [56] |
Coastal Bermuda grass hay | 2 | 16 | 56 | 17 ± 3 | Ad libitum (15%) | Chopped to 5 cm | Free choice | Pellet | 426 L (Around 19%) | NS | NS | Horvath et al., 2019 [57] |
Grass hay | 4 | 4 | 42 | 3 | Ad libitum | Long (without details) | Free choice | Texture | 182 L (Around 10%) | NS | NS | Hill et al., 2019a [48] |
Corn silage, Reconstituted alfalfa, Reconstituted beet pulp | 3 | 18 | 49 | 3 | 10% | GMPL: alfalfa, 5 mm and corn silage, 12–15 mm | TMR | Ground | 283 L (Around 14.5%) | - | - | Kagar et al., 2019 [58,59] |
Objectives | Trt 2 | Calf/Trt | Weaning Age (d) | Forage Feeding Age (d) | Forage Source | Forage (%) | Solid Feed Offering Method | Concentrate Physical Form | Amount of Milk Fed 3 | Outcomes 4 | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cutting Length/Processing 1 | DMI | ADG | ||||||||||
Chopped (GMPL, 5.4 mm) vs. Pelleted (GMPL, 5.8 mm) | 3 | 11 | 76 | 3 | Alfalfa hay | 0, 10% | TMR | Semi-texture | 500 L (17%) | NS | NS | Jahani-Moghadam et al., 2015 [26] |
GMPL: 2.92 vs. 5.04 mm | 5 | 10 | 51 | 16 | Alfalfa hay | 8, 16% | TMR | Ground | 190 L (Around 10%) | - | - | Mirzaei et al., 2015 [27] |
GMPL: 0.82, 3.04, 7.0, 12.7 mm | 4 | 10 | 56 | 1 | Straw | 5% | TMR | Pellet | Around 12% | - | - | Suárez -Mena et al., 2015 [66] |
GMPL: Alfalfa (1.96 and 3.93 mm) vs. Wheat straw (2.03 and 4.10 mm) | 4 | 12 | 49 | 1 | Alfalfa; Wheat straw | Ad libitum | Free choice | Texture | 279 L (Around 14%) | - | - | Omidi-Mirzaei et al., 2018 [65] |
Chopped to 20 to 40 cm | 2 | 24 | 42 | 2–3 | Timothy hay (Phleum pratense) | Ad libitum | Free choice | Texture | 178 L (Around 10%) | NS | NS | Hill et al., 2019b [49] |
Chopped 3 to 4 cm vs. ground to 2 mm | 2 | 10 | 49 | 5 | Ryegrass hay | 10% | TMR | Crumb | 200 L (Around 9%) | - | - | Montoro et al., 2013 [62] |
Non-forage fiber | 4 | 16 | 28 | 3 | Beet pulp | 0, 16% | TMR | Pellet, Mash | 80 L (Around 7%) | NS | NS | Porter et al., 2007 [37] |
Non-forage fiber | 2 | 13 | 50 | 4 | Alfalfa hay, Beet pulp | 0, 10, 20% | TMR | Texture | 228 L (Around 11%) | p * | p ** | Maktabi et al., 2016 [39] |
Silage based feed | 6 | 10 | 49 | 3 | Alfalfa hay, Corn silage; | 0, 15% | TMR | Fine ground | 196 L (Around 10%) | p ** | p ** | Mirzaei et al., 2017 [55] |
Silage based feed | 4 | 12 | 56 | 3 | Corn silage | 0, 15% | TMR | Mash, Texture | 291 L (Around 13%) | p ** | p ** | Mirzaei et al., 2016 [67] |
Silage based feed | 3 | 15 | 56 | 1 | Corn silage | 0, 75%, 100% | TMR | Texture | 416 L (Around 18%) | NS | NS | Dill-McFarland et al., 2019 [74] |
Silage based feed | 3 | 15 | 56 | 1 | Corn silage | 0, 75%, 100% | TMR | Texture | 416 L (Around 18%) | NS | NS | Kehoe et al., 2019 [44] |
Reconstituted hay | 3 | 18 | 49 | 3 | Corn silage, Reconstituted alfalfa, Reconstituted beet pulp | 10% | TMR | Ground | 283 L (Around 14.5%) | - | - | Kagar et al., 2019 [58,59] |
Objectives | Trt 1 | Calf/Trt | Weaning Age (d) | Forage Feeding Age (d) | Forage Source | Forage (%) | Cutting Length/Processing 2 | Concentrate Physical Form | Amount of Milk Fed 3 | Outcomes 4 | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forage Feeding Method/Time | DMI | ADG | ||||||||||
Sole vs. TMR Free choice- | 4 | 12 | 50 | 1 | Grass hay | TMR (0, 15%), Free choice | Chopped <2.5 cm | Texture | 534 L (Around 26%) | NS | NS | Overvest et al., 2015 [77] |
Sole vs. TMR, Free choice | 3 | 15 | 57 | 3 | Alfalfa hay | TMR (0, 10%), Free choice | GMPL: 3 mm | Finely ground | 262 L (Around 11%) | p ** | NS | EbnAli et al., 2016 [78] |
Sole vs. Free choice | 3 | 60 | 56 | 4 | Alfalfa hay, Oats hay | Free choice | Chopped to approximately 2.5 cm | Pellet | 376 L (Around 17%) | NS | NS | Xiao et al., 2018 [25] |
Day 14, 28, 42 | 4 | 10 | 57 | - | Alfalfa hay | TMR (0, 15%) | GMPL: 3 mm | Ground | Around 10% | p ** | p ** | Hosseini et al., 2015 [75] |
Day 3, 15 | 5 | 8 | 56 | - | Alfalfa hay, Oats hay | Free choice | Chopped | Pellet | 358 L (Around 16%) | NS | NS | Wu et al., 2018 [24] |
Day 14, 42 | 3 | 6 | 63 | - | Oat hay | Free choice | - | - | 252 L (Around 10%) | p ** | p ** | Lin et al., 2018 [60,76] |
Objectives | Trt 1 | Calf/Trt | Weaning Age (d) | Forage Feeding Age (d) | Forage Source | Forage (%) | Forage Cutting Length/Processing 2 | Solid Feed Offering Method | Amount of Milk Fed 3 | Outcomes 4 | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical Form of Concentrate | DMI | ADG | ||||||||||
Pellet, Mash | 4 | 16 | 28 | 3 | Beet pulp | 0, 16% | - | TMR | 80 L (Around 7%) | NS | NS | Porter et al., 2007 [37] |
Pellet, Texture | 3 | 11 | 49 | 7 | Ryegrass hay | Ad libitum (0, 6.8, 11.6%) | - | Free choice | 274 L (Around 16%) | NS | NS | Terré et al., 2015 (Trail 1) [80] |
Pellet, Texture | 3 | 20 | 52 | 8 | Ryegrass hay | Ad libitum (0, 4.3%) | - | Free choice | 233 L (Around 13%) | NS | NS | Terré et al., 2015 (Trail 2) [80] |
Mash, Texture | 4 | 12 | 56 | 3 | Corn silage | 0, 15% | GMPL: 0.5, 1.1, 3.0, and 4.0 mm | TMR | 291 L (Around 13%) | p ** | p ** | Mirzaei et al., 2016 [67] |
Objectives | Trt 2 | Calf/Trt | Weaning Age (d) | Forage Feeding Age (d) | Forage Source | Forage (%) | Cutting Length/Processing 3 | Solid Feed Offering Method | Concentrate Physical Form | Outcomes 4 | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Milk Feeding Amount/Method 1 | DMI | ADG | ||||||||||
359 L (Around 16%), 221 L (Around 10%) | 4 | 8 | 56 | 1 | Beet pulp | Beet pulp (0%, 18%) | Chopped | Free choice | Pellet | NS | N * | Kosiorowska et al., 2010 [84] |
350 L (Around 20%) | 2 | 15 | 56 | 3 | Orchard grass hay | Ad libitum | Chopped | - | - | NS | NS | Khan et al., 2011 [20] |
534 L (Around 26%) | 4 | 12 | 50 | 1 | Grass hay | TMR (0, 15%), Free choice-ad libitum | Chopped < 2.5 cm | Free choice; TMR | Texture | NS | NS | Overvest et al., 2015 [77] |
212 L (Around 9%), 338 L (Around 15%) | 6 | 10 | 56 | 4 | Wheat straw | 0, 7.5, 15% | - | TMR | Ground | p * | p * | Hosseini et al., 2019 [40] |
Step Down vs. Conventional; 313 L (Around 13%,) | 4 | 20 | 60 | 3 | Alfalfa hay | 0, 15% | - | TMR | Finely ground | p ** | p ** | Daneshvar et al., 2015 [23] |
Teat vs. Bucket; 241 L (Around 13%) | 3 | 10 | 45 ± 2 | 1–3 | Timothy hay | Ad libitum | Chopped around 5 cm | - | Pellet | NS | NS | Horvath et al., 2017 [85] |
Parameters 2 | Studies with Positive Impact | Studies with Negative Impact | Studies with No Effect |
---|---|---|---|
Total solid DMI | [15,18,19,20,21,22,23,38,39,40,43,50,51,55,67,75,76,78,80] | [5,15,17,39,43] | [21,24,25,26,37,44,48,49,50,52,54,56,57,77,80,84,86] |
ADG | [18,19,20,21,22,23,38,39,40,50,51,53,55,67,75,76,80] | [5,15,17,39,84] | [15,21,24,25,26,37,43,44,48,49,50,52,56,57,77,78,80,85] |
DM digestibility | / | [23,37,41,48] | [21,39,52,75,78] |
Feed to Gain ratio | [19,39] | [5,15,22,51] | [21,23,24,26,27,37,38,39,40,44,49,52,53,55,56,67,75,78,80,85] |
Structural growth | [55] | [15] | [20,23,25,27,38,39,40,44,49,57,67,76,80] |
Fecal score | / | [27,37] | [19,26,39,44,49,75] |
Rumen fluid pH | [20,22,23,25,27,37,38,39,40,41,42,52,53,54,55,67,75,76,78,80] | / | [5,24,39,43] |
Total VFA | [22] | [19,23,25,35,40,52,53,54,67] | [24,27,38,39,42,43,76,78] |
Acetate | [22,23,40,43,52,53,67] | / | [19,24,27,38,39,76,78] |
Propionate | [53] | [25,35,40,43,54,67] | [19,22,23,24,27,38,39,52,76,78] |
Butyrate | / | [23,25,27,39,40,53] | [19,22,24,38,39,43,52,54,67,76,78] |
Valerate | / | [23,25,52,53,67] | [40,76] |
Acetate to Propionate ratio | [27,37,38,40,42,54,67] | [53] | [19,22,23,24,39,52] |
Lactate | / | [51] | [43] |
NH3 | [42] | [43] | [24] |
Rumen papillae length | / | [42,44,52] | [20,22,27,37,43,76,84] |
Rumen plaque formation | / | [22,43] | [42] |
Rumen weight | [11,20,50] | [27,43] | [24,52,76,84] |
Rumen volume | [11,42,52] | / | [24,76] |
Ruminating | [21,39,40,53,55,56,75,76,77,78] | / | [39] |
Total eating behavior | [39,40,57,76,77] | / | [39,55,78,85] |
Concentrate eating behavior | [57] | [56,85] | [21,53,75] |
Drinking behavior | [76] | [56] | / |
Non-nutritive oral behavior/Abnormal behavior | / | [21,40,53,55,56,57,76,85] | [75,78] |
Lying behavior | / | [21,53,75,76] | [39,40,55,56,77,78] |
Standing behavior | [76] | / | [21,39,40,53,55,56,75,78] |
Satisfaction behavior | [56] | / | [57] |
Urination and Defecation behavior | / | / | [56] |
Sorting behavior | / | [25,87] | [77] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Alugongo, G.M.; Li, J.; Wang, Y.; Li, S.; Cao, Z. Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves. Animals 2020, 10, 188. https://doi.org/10.3390/ani10020188
Xiao J, Alugongo GM, Li J, Wang Y, Li S, Cao Z. Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves. Animals. 2020; 10(2):188. https://doi.org/10.3390/ani10020188
Chicago/Turabian StyleXiao, Jianxin, Gibson Maswayi Alugongo, Jinghui Li, Yajing Wang, Shengli Li, and Zhijun Cao. 2020. "Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves" Animals 10, no. 2: 188. https://doi.org/10.3390/ani10020188
APA StyleXiao, J., Alugongo, G. M., Li, J., Wang, Y., Li, S., & Cao, Z. (2020). Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves. Animals, 10(2), 188. https://doi.org/10.3390/ani10020188