Effect of Feed Supplemented with Selenium-Enriched Olive Leaves on Plasma Oxidative Status, Mineral Profile, and Leukocyte DNA Damage in Growing Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Slaughtering and Blood Sampling
2.2.1. Isolation of Peripheral Blood Mononuclear Cells
2.2.2. Mineral Evaluation of Diets and Rabbit Plasma
2.2.3. Selenium Speciation in Diets and Rabbit Plasma
2.2.4. Blood Oxidative Parameters
2.2.5. Antioxidant Plasma Power Quantification
2.2.6. DNA Damage Assessment
2.2.7. Comet Detection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jablonska, E.; Raimondi, S.; Gromadzinska, J.; Reszka, E.; Wieczorek, E.; Krol, M.B.; Smok-Pieniazek, A.; Nocun, M.; Stepnik, M.; Socha, K.; et al. DNA damage and oxidative stress response to selenium yeast in the non-smoking individuals: A short-term supplementation trial with respect to GPX1 and SEPP1 polymorphism. Eur. J. Nutr. 2016, 55, 2469–2484. [Google Scholar] [CrossRef] [PubMed]
- Jukes, T.H. Selenium, an “Essential Poison”. J. Appl. Biochem. 1983, 5, 233–234. [Google Scholar] [PubMed]
- Allan, C.B.; Lacourciere, G.M.; Stadtman, T.C. Responsiveness of selenoproteins to dietary selenium. Annu. Rev. Nutr. 1999, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nève, J. Selenium as a Risk Factor for Cardiovascular Diseases. Eur. J. Cardiovasc. Prev. Rehabil. 1996, 3, 42–47. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenoproteins and human health: Insights from epidemiological data. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1533–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, A.P.; Gandin, V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta-Gen. Subj. 2015, 1850, 1642–1660. [Google Scholar] [CrossRef]
- Combs, G.F.; Jackson, M.I.; Watts, J.C.; Johnson, L.A.K.; Zeng, H.; Idso, J.; Schomburg, L.; Hoeg, A.; Hoefig, C.S.; Chiang, E.C.; et al. Differential responses to selenomethionine supplementation by sex and genotype in healthy adults. Br. J. Nutr. 2012, 107, 1514–1525. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Dietary Reference Values for selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- Ip, C. Lessons from Basic Research in Selenium and Cancer Prevention. J. Nutr. 1998, 128, 1845–1854. [Google Scholar] [CrossRef]
- Combs, G.F.; Combs, S.B. Selenium deficiency diseases of animals. In The Role of Selenium in Nutrition; Combs, G.F., Combs, S.B., Eds.; Academic Press, Inc.: New York, NY, USA, 1986; Volume 1, p. 532. [Google Scholar]
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The selenium and vitamin E cancer prevention trial (SELECT). JAMA-J. Am. Med. Assoc. 2009, 301, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Gammazza, A.M.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiani, R. Anti-cancer properties of olive oil secoiridoid phenols: A systematic review of: In vivo studies. Food Funct. 2016, 7, 4145–4159. [Google Scholar] [CrossRef] [PubMed]
- Thielmann, J.; Kohnen, S.; Hauser, C. Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents. Int. J. Food Microbiol. 2017, 251, 48–66. [Google Scholar] [CrossRef] [PubMed]
- Abunab, H.; Dator, W.L.; Hawamdeh, S. Effect of olive leaf extract on glucose levels in diabetes-induced rats: A systematic review and meta-analysis. J. Diabetes 2017, 9, 947–957. [Google Scholar] [CrossRef]
- Mattioli, S.; Ruggeri, S.; Sebastiani, B.; Brecchia, G.; Dal Bosco, A.; Mancinelli, A.C.; Castellini, C. Performance and egg quality of laying hens fed flaxseed: Highlights on n-3 fatty acids, cholesterol, lignans and isoflavones. Animal 2017, 11, 705–712. [Google Scholar] [CrossRef]
- Mattioli, S.; Machado Duarte, J.M.; Castellini, C.; D’Amato, R.; Regni, L.; Proietti, P.; Businelli, D.; Cotozzolo, E.; Rodrigues, M.; Dal Bosco, A. Use of olive leaves (whether or not fortified with sodium selenate) in rabbit feeding: Effect on performance, carcass and meat characteristics, and estimated indexes of fatty acid metabolism. Meat Sci. 2018, 143, 230–236. [Google Scholar] [CrossRef]
- Aouidi, F.; Okba, A.; Hamdi, M. Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. J. Sci. Food Agric. 2017, 97, 3195–3203. [Google Scholar] [CrossRef]
- D’Amato, R.; De Feudis, M.; Hasuoka, P.E.; Regni, L.; Pacheco, P.H.; Onofri, A.; Businelli, D.; Proietti, P. The selenium supplementation influences olive tree production and oil stability against oxidation and can alleviate the water deficiency effects. Front. Plant Sci. 2018, 9, 1191. [Google Scholar] [CrossRef]
- Fisinin, V.I.; Papazyan, T.T.; Surai, P.F. Producing specialist poultry products to meet human nutrition requirements: Selenium enriched eggs. Worlds. Poult. Sci. J. 2008, 4, 85–98. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Del Buono, D.; D’Amato, R.; Tedeschini, E.; Businelli, D. Selenium protects olive (Olea europaea L.) from drought stress. Sci. Hortic. 2013, 164, 165–171. [Google Scholar] [CrossRef]
- D’Amato, R.; Proietti, P.; Onofri, A.; Regni, L.; Esposto, S.; Servili, M.; Businelli, D.; Selvaggini, R. Biofortification (Se): Does it increase the content of phenolic compounds in virgin olive oil (VOO)? PLoS ONE 2017, 12, e0176580. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; van Saun, R.J.; Bobe, G.; Stewart, W.C.; Vorachek, W.R.; Mosher, W.D.; Nichols, T.; Forsberg, N.E.; Pirelli, G.J. Organic and inorganic selenium: I. oral bioavailability in ewes. J. Anim. Sci. 2012, 90, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Cun, G.S.; Robinson, P.H.; Benes, S.E. Bioavailability of selenium in “Jose” tall wheatgrass (Thinopyrum ponticum var ’Jose’) hay as a substitute for sodium selenite in the diets of dairy cattle. Sci. Total Environ. 2015, 518, 159–167. [Google Scholar] [CrossRef]
- Naziri, E.; Nenadis, N.; Mantzouridou, F.T.; Tsimidou, M.Z. Valorization of the major agrifood industrial by-products and waste from Central Macedonia (Greece) for the recovery of compounds for food applications. Food Res. Int. 2014, 65, 350–358. [Google Scholar] [CrossRef]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- The European Parliament And The Council. Directive 2010/63/EU on the Protection of Animals Used for Scientific Purposes; Gazzetta Ufficiale: Rome, Italy, 2010; pp. 1–13. [Google Scholar]
- Zagzag, D.; Brem, S.; Robert, F. Neovascularization and tumor growth in the rabbit brain. A model for experimental studies of angiogenesis and the blood-brain barrier. Am. J. Pathol. 1988, 131, 361. [Google Scholar]
- Mattioli, S.; Dal Bosco, A.; Duarte, J.M.M.; D’Amato, R.; Castellini, C.; Beone, G.M.; Fontanella, M.C.; Beghelli, D.; Regni, L.; Businelli, D.; et al. Use of Selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profile and Selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. 2019, 51, 98–105. [Google Scholar] [CrossRef]
- Fabiani, R.; Rosignoli, P.; De Bartolomeo, A.; Fuccelli, R.; Morozzi, G. DNA-damaging ability of isoprene and isoprene mono-epoxide (EPOX I) in human cells evaluated with the comet assay. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2007, 629, 7–13. [Google Scholar] [CrossRef]
- Bocchini, M.; D’Amato, R.; Ciancaleoni, S.; Fontanella, M.C.; Palmerini, C.A.; Beone, G.M.; Onofri, A.; Negri, V.; Marconi, G.; Albertini, E.; et al. Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Front. Plant Sci. 2018, 9, 389. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Mugnai, C.; Mourvaki, E.; Cardinali, R.; Moscati, L.; Paci, G.; Castellini, C. Effect of genotype and rearing system on the native immunity and oxidative status of growing rabbits. Ital. J. Anim. Sci. 2009, 8, 781–783. [Google Scholar] [CrossRef] [Green Version]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Schüep, W.; Rettenmaier, R. Analysis of vitamin E homologs in plasma and tissue: High-performance liquid chromatography. Methods Enzymol. 1994, 234, 294–302. [Google Scholar] [PubMed]
- Lawrence, R.A.; Burk, R.F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–958. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.R.; Ai-guo, M.; Duthie, S.J. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat. Res. Repair 1995, 336, 69–77. [Google Scholar] [CrossRef]
- Collins, A.R.; Duthie, S.J.; Dobson, V.L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte dna. Carcinogenesis 1993, 14, 1733–1735. [Google Scholar] [CrossRef]
- StataCorp, L.P. Stata Statistical Software: Release 14; StataCorp L.P.: College Station, TX, USA, 2015. [Google Scholar]
- Burk, R.F.; Norsworthy, B.K.; Hill, K.E.; Motley, A.K.; Byrne, D.W. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Combs, G.F. Biomarkers of selenium status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef] [Green Version]
- Rahim, A.G.A.; Arthur, J.R.; Mills, C.F. Effects of dietary copper, cadmium, iron, molybdenum and manganese on selenium utilization by the rat. J. Nutr. 1986, 116, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Stewart, R.D.H.; Griffiths, N.M.; Thomson, C.D.; Robinson, M.F. Quantitative selenium metabolism in normal New Zealand women. Br. J. Nutr. 1978, 40, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choct, M.; Naylor, A.J. The effect of dietary selenium source and vitamin E levels on performance of male broilers. Asian-Australasian J. Anim. Sci. 2004, 17, 1000–1006. [Google Scholar] [CrossRef]
- Thomson, C.D. Selenium speciation in human body fluids. Analyst 1998, 123, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Mahan, D.C. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J. Anim. Sci. 2001, 79, 942–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wastney, M.E.; Combs, G.F.; Canfield, W.K.; Taylor, P.R.; Patterson, K.Y.; Hill, A.D.; Moler, J.E.; Patterson, B.H. A Human Model of Selenium that Integrates Metabolism from Selenite and Selenomethionine. J. Nutr. 2011, 141, 708–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broome, C.S.; McArdle, F.; Kyle, J.A.M.; Andrews, F.; Lowe, N.M.; Hart, C.A.; Arthur, J.R.; Jackson, M.J. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am. J. Clin. Nutr. 2004, 80, 154–162. [Google Scholar] [CrossRef]
- Xiong, Y.L. Protein Oxidation and Implications for Muscle Food Quality. In Antioxidants in Muscle Foods: Nutritional Strategies to Improve Quality; Wiley and Sons: New York, NY, USA, 2000; pp. 85–90. [Google Scholar]
- Delles, R.M.; Xiong, Y.L.; True, A.D.; Ao, T.; Dawson, K.A. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poult. Sci. 2014, 93, 1561–1570. [Google Scholar] [CrossRef]
- Ebeid, T.A.; Zeweil, H.S.; Basyony, M.M.; Dosoky, W.M.; Badry, H. Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status and immune response in growing rabbits. Livest. Sci. 2013, 155, 323–331. [Google Scholar] [CrossRef]
- Casamassima, D.; Chiosi, F.; Vizzarri, F.; Palazzo, M.; Costagliola, C. The effect of Laurus nobilis on the blood and lenses antioxidant activity in rabbit under fat-enriched diet. Physiol. Res. 2017, 66, 325. [Google Scholar] [CrossRef]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Waters, D.J.; Shen, S.; Cooley, D.M.; Bostwick, D.G.; Qian, J.; Combs, G.F.; Glickman, L.T.; Oteham, C.; Schlittler, D.; Morris, J.S. Effects of dietary selenium supplementation on DNA damage and apoptosis in canine prostate. J. Natl. Cancer Inst. 2003, 95, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rosa, V.; Erkekoǧlu, P.; Forestier, A.; Favier, A.; Hincal, F.; Diamond, A.M.; Douki, T.; Rachidi, W. Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells. Free Radic. Res. 2012, 46, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
Diet Parameters | Unit | Experimental Diets 1 | p Value 2 | SE 3 | ||
---|---|---|---|---|---|---|
C | OL | SeOL | ||||
Daily Feed Intake | 110 | 112 | 111 | 0.62 | 0.67 | |
Minerals 4 | ||||||
Ca | mg/d | 673.20 | 713.05 | 736.61 | 0.230 | 28.25 |
Mg | “ | 6.67 | 6.48 | 6.36 | 0.586 | 2.36 |
Fe | “ | 4.95 a | 4.68 a | 8.08 b | 0.048 | 0.32 |
Se | µg/d | 0.04 A | 1.76 A | 24.03 B | 0.002 | 1.47 |
Antioxidants | ||||||
α-tocotrienol | µg/d | 12.10 | 7.84 | 13.32 | 0.039 | 3.65 |
δ-tocopherol | “ | 19.80 | 32.48 | 38.85 | 0.225 | 8.65 |
γ-tocopherol | “ | 25.30 a | 67.20 b | 57.72 b | 0.020 | 10.47 |
α-tocopherol | “ | 1446.50 a | 1658.72 a | 2064.60 b | 0.021 | 97.11 |
ΣVitamin E isomers | “ | 1512.50 a | 1840.16 a | 2335.44 b | 0.047 | 201.12 |
ΣCarotenes | “ | 5322.90 a | 7066.08 b | 8721.27 c | 0.025 | 663.45 |
Minerals 4 | Unit | Experimental Diets 1 | p Value 2 | Pooled SE 3 | ||
---|---|---|---|---|---|---|
C | OL | SeOL | ||||
Ca | µg/mL | 141.57 | 183.60 | 140.80 | 0.05 | 24.76 |
Mg | “ | 11.10 | 8.77 | 10.97 | 0.12 | 0.88 |
Fe | “ | 5.20 | 5.90 | 7.07 | 0.09 | 1.24 |
Se | ng/mL | 51.60 a | 68.25 a | 128.10 b | 0.03 | 33.28 |
Se Speciation | Unit | Experimental Diets 1 | p Value 2 | SE 3 | ||
---|---|---|---|---|---|---|
C | OL | SeOL | ||||
Se (IV) 4 | ng/mL | 1.13 a | 4.19 b | 2.60 a | 0.02 | 0.90 |
Se (VI) 5 | “ | 19.71 a | 38.36 b | 42.73 b | 0.03 | 10.32 |
Inorganic-Se | “ | 20.84 a | 42.55 b | 45.33 b | 0.04 | 12.60 |
SeCys 6 | “ | 23.22 | 36.50 | 26.14 | 0.14 | 8.45 |
SeMet 7 | “ | 19.85 A | 22.45 A | 89.61 B | 0.01 | 12.65 |
MeSeCys 8 | “ | 2.71 b | 1.13 a | 1.37 a | 0.04 | 0.36 |
Organic-Se | 45.78 a | 60.08 a | 117.12 c | 0.03 | 20.31 |
Oxidative Status | Unit | Experimental Diets 1 | p Value 2 | SE 3 | ||
---|---|---|---|---|---|---|
C | OL | SeOL | ||||
TBARS 4 | nmol MDA/mL | 30.03 | 42.48 | 37.08 | 0.24 | 7.90 |
Carbonyls | nmol/mg proteins | 0.35 A | 2.69 B | 2.98 B | 0.01 | 0.74 |
α-tocotrienol | nmol/mL | 0.01 | 0.01 | 0.01 | 0.37 | 0.01 |
δ-tocopherol | “ | 0.45 | 0.36 | 0.34 | 0.30 | 0.01 |
γ-tocopherol | “ | 0.01 | 0.01 | 0.01 | 0.34 | 0.02 |
α-tocopherol | “ | 0.81 | 0.94 | 1.44 | 0.24 | 0.34 |
Retinol | “ | 10.50 | 13.00 | 13.83 | 0.06 | 2.00 |
GPx | nmol/min/mg protein | 19.81 | 19.18 | 19.23 | 0.12 | 2.75 |
FRAP 5 | μmol/L Fe2+ | 317 A | 374 A | 444 B | 0.01 | 90.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattioli, S.; Rosignoli, P.; D’Amato, R.; Fontanella, M.C.; Regni, L.; Castellini, C.; Proietti, P.; Elia, A.C.; Fabiani, R.; Beone, G.M.; et al. Effect of Feed Supplemented with Selenium-Enriched Olive Leaves on Plasma Oxidative Status, Mineral Profile, and Leukocyte DNA Damage in Growing Rabbits. Animals 2020, 10, 274. https://doi.org/10.3390/ani10020274
Mattioli S, Rosignoli P, D’Amato R, Fontanella MC, Regni L, Castellini C, Proietti P, Elia AC, Fabiani R, Beone GM, et al. Effect of Feed Supplemented with Selenium-Enriched Olive Leaves on Plasma Oxidative Status, Mineral Profile, and Leukocyte DNA Damage in Growing Rabbits. Animals. 2020; 10(2):274. https://doi.org/10.3390/ani10020274
Chicago/Turabian StyleMattioli, Simona, Patrizia Rosignoli, Roberto D’Amato, Maria Chiara Fontanella, Luca Regni, Cesare Castellini, Primo Proietti, Antonia Concetta Elia, Roberto Fabiani, Gian Maria Beone, and et al. 2020. "Effect of Feed Supplemented with Selenium-Enriched Olive Leaves on Plasma Oxidative Status, Mineral Profile, and Leukocyte DNA Damage in Growing Rabbits" Animals 10, no. 2: 274. https://doi.org/10.3390/ani10020274