Uncovering the Physiological Mechanisms Underlying the Roe Deer (Capreolus capreolus) Testicular Cycle: Analyses of Gelatinases and VEGF Patterns and Correlation with Testes Weight and Testosterone
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Testicular Weight and Tissue Sampling (TW)
2.3. DNA Isolation for Oligonucleosomes Detection
2.4. Testicular Testosterone Analysis by RIA (TEST)
2.5. RNA Extraction and Real-Time qPCR for VEGF121, VEGF165, VEGFR1, VEGFR2, TIMP1 and TIMP2
2.6. MMPs Activity Assay
2.7. Statistical Analyses
3. Results
3.1. Testicular Involution and Apoptosis
3.2. Quantification of Tissue Expression of the Genes of Interest
3.3. MMPs Activity
3.4. Spearman Correlation Rank Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klonisch, T.; Schön, J.; Hombach-Klonisch, S.; Blottner, S. The roe deer as a model for studying seasonal regulation of testis function. Int. J. Androl. 2006, 29, 122–128. [Google Scholar] [CrossRef]
- Schams, D.; Barth, D. Annual profiles of reproductive hormones in peripheral plasma of the male roe deer (Capreolus capreolus). J. Reprod. Fertil. 1982, 66, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Blottner, S.; Hingst, O.; Meyer, H.H. Seasonal spermatogenesis and testosterone production in roe deer (Capreolus capreolus). J. Reprod. Fertil. 1996, 108, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Blottner, S.; Wagener, A.; Schön, J.; Göritz, F.; Fickel, J. Reproductive fitness in roe bucks (Capreolus capreolus): Seasonal timing of testis function. Eur. J. Wildl. Res. 2006, 52, 9–13. [Google Scholar] [CrossRef]
- Schön, J.; Blottner, S. Estrogens are involved in seasonal regulation of spermatogenesis and sperm maturation in roe deer (Capreolus capreolus). Gen. Comp. Endocrinol. 2008, 159, 257–263. [Google Scholar] [CrossRef]
- Kozioł, K.; Koziorowski, M. Steroid hormones in peripheral blood plasma and androgen receptors in testis and epididymis of roe deer male (Capreolus capreolus) during the reproduction season. Small Rumin. Res. 2013, 115, 86–93. [Google Scholar] [CrossRef]
- Goeritz, F.; Quest, M.; Wagener, A.; Fassbender, M.; Broich, A.; Hildebrandt, T.B.; Hofmann, R.R.; Blottner, S. Seasonal timing of sperm production in roe deer: Interrelationship among changes in ejaculate parameters, morphology and function of testis and accessory glands. Theriogenology 2003, 59, 1487–1502. [Google Scholar] [CrossRef]
- Hombach-Klonisch, S.; Schön, J.; Kehlen, A.; Blottner, S.; Klonisch, T. Seasonal expression of INSL3 and Lgr8/Insl3 receptor transcripts indicates variable differentiation of Leydig cells in the roe deer testis. Biol. Reprod. 2004, 71, 1079–1087. [Google Scholar] [CrossRef]
- Ventrella, D.; Elmi, A.; Barone, F.; Carnevali, G.; Govoni, N.; Bacci, M.L. Hair Testosterone and Cortisol Concentrations in Pre- and Post-Rut Roe Deer Bucks: Correlations with Blood Levels and Testicular Morphometric Parameters. Animals 2018, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Roelants, H.; Schneider, F.; Göritz, F.; Streich, J.; Blottner, S. Seasonal changes of spermatogonial proliferation in roe deer, demonstrated by flow cytometric analysis of c-kit receptor, in relation to follicle-stimulating hormone, luteinizing hormone, and testosterone. Biol. Reprod. 2002, 66, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Schön, J.; Göritz, F.; Streich, J.; Blottner, S. Histological organization of roe deer testis throughout the seasonal cycle: Variable and constant components of tubular and interstitial compartment. Anat. Embryol. 2004, 208, 151–159. [Google Scholar]
- Hänsch, M.; Simon, P.; Schön, J.; Kaese, M.; Braun, B.C.; Jewgenow, K.; Göritz, F.; Küpper, J.; Ahmadvand, N.; Geyer, R.; et al. Polysialylation of NCAM correlates with onset and termination of seasonal spermatogenesis in roe deer. Glycobiology 2014, 24, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Wagener, A.; Blottner, S.; Göritz, F.; Fickel, J. Detection of growth factors in the testis of roe deer (Capreolus capreolus). Anim. Reprod. Sci. 2000, 64, 65–75. [Google Scholar] [CrossRef]
- Wagener, A.; Blottner, S.; Göritz, F.; Streich, W.J.; Fickel, J. Differential changes in expression of a and b FGF, IGF-1 and -2, and TGF-α during seasonal growth and involution of roe deer testis. Growth Factors. 2003, 21, 95–102. [Google Scholar] [CrossRef]
- Wagener, A.; Fickel, J.; Schön, J.; Fritzenkötter, A.; Göritz, F.; Blottner, S. Seasonal variation in expression and localization of testicular transforming growth factors TGF-β1 and TGF-β3 corresponds with spermatogenic activity in roe deer. J. Endocrinol. 2005, 187, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.A.; Turba, M.E.; Zannoni, A.; Bacci, M.L.; Forni, M. Gelatinases, endonuclease and Vascular Endothelial Growth Factor during development and regression of swine luteal tissue. BMC Dev. Biol. 2006, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Bacci, M.L.; Barazzoni, A.M.; Forni, M.; Costerbosa, G.L. In situ detection of apoptosis in regressing corpus luteum of pregnant sow: Evidence of an early presence of DNA fragmentation. Domest. Anim. Endocrinol. 1996, 13, 361–372. [Google Scholar] [CrossRef]
- Blottner, S.; Schön, J.; Roelants, H. Apoptosis is not the cause of seasonal testicular involution in roe deer. Cell Tissue Res. 2007, 327, 615–624. [Google Scholar] [CrossRef]
- Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999, 13, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.; Kasukurthi, K.B.; Mahla, R.S.; Pawar, R.M.; Goel, S. Expression of vascular endothelial growth factor (VEGF) transcript and protein in the testis of several vertebrates, including endangered species. Theriogenology 2012, 77, 608–614. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y. Effect of VEGF on the angiogenesis in male reproduction system. Zhonghua Nan Ke Xue Natl. J. Androl. 2004, 10, 49–51. [Google Scholar]
- Rudolfsson, S.H.; Wikström, P.; Jonsson, A.; Collin, O.; Bergh, A. Hormonal regulation and functional role of vascular endothelial growth factor A in the rat testis. Biol. Reprod. 2004, 70, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Schön, J.; Blottner, S.; Gabler, C.; Fickel, J. Vascular endothelial growth factor A is a putative paracrine regulator in seasonally controlled spermatogenesis: Insights from a ruminant model, the roe deer. Growth Factors. 2010, 28, 202–210. [Google Scholar] [CrossRef]
- Wagener, A.; Blottner, S.; Göritz, F.; Streich, W.J.; Fickel, J. Circannual changes in the expression of vascular endothelial growth factor in the testis of roe deer (Capreolus capreolus). Anim. Reprod. Sci. 2010, 117, 275–278. [Google Scholar] [CrossRef]
- Tabecka-Lonczynska, A.; Mytych, J.; Solek, P.; Kulpa-Greszta, M.; Sowa-Kucma, M.; Koziorowski, M. Vascular endothelial growth factor (VEGF-A) and fibroblast growth factor (FGF-2) as potential regulators of seasonal reproductive processes in male European bison (Bison bonasus, Linnaeus 1758). Gen. Comp. Endocrinol. 2018, 263, 72–79. [Google Scholar] [CrossRef]
- Klagsbrun, M.; Moses, M.A. Molecular angiogenesis. Chem. Biol. 1999, 6, R217–R224. [Google Scholar] [CrossRef] [Green Version]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [Green Version]
- Rundhaug, J.E. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 2005, 9, 267–285. [Google Scholar] [CrossRef]
- Hulboy, D.L.; Rudolph, L.A.; Matrisian, L.M. Matrix metalloproteinases as mediators of reproductive function. Mol. Hum. Reprod. 1997, 3, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar]
- Longin, J.; Guillaumot, P.; Chauvin, M.-A.; Morera, A.-M.; Magueresse-Battistoni, B.L. MT1-MMP in rat testicular development and the control of Sertoli cell proMMP-2 activation. J. Cell Sci. 2001, 114, 2125–2134. [Google Scholar]
- Baumgart, E.; Lenk, S.V.; Loening, S.A.; Jung, K. Quantitative differences in matrix metalloproteinase (MMP)-2, but not in MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 or TIMP-2, in seminal plasma of normozoospermic and azoospermic patients. Hum. Reprod. 2002, 17, 2919–2923. [Google Scholar] [CrossRef] [Green Version]
- Métayer, S.; Dacheux, F.; Dacheux, J.-L.; Gatti, J.-L. Comparison, characterization, and identification of proteases and protease inhibitors in epididymal fluids of domestic mammals. Matrix metalloproteinases are major fluid gelatinases. Biol. Reprod. 2002, 66, 1219–1229. [Google Scholar] [CrossRef] [Green Version]
- Lipshultz, L.I.; Howards, S.S.; Niederberger, C.S. Infertility in the Male; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Warinrak, C.; Wu, J.-T.; Hsu, W.-L.; Liao, J.-W.; Chang, S.-C.; Cheng, F.-P. Expression of matrix metalloproteinases (MMP-2, MMP-9) and their inhibitors (TIMP-1, TIMP-2) in canine testis, epididymis and semen. Reprod. Domest. Anim. 2015, 50, 48–57. [Google Scholar] [CrossRef]
- Kratz, E.M.; Kałuża, A.; Ferens-Sieczkowska, M.; Olejnik, B.; Fiutek, R.; Zimmer, M.; Piwowar, A. Gelatinases and their tissue inhibitors are associated with oxidative stress: A potential set of markers connected with male infertility. Reprod. Fertil. Dev. 2016, 28, 1029–1037. [Google Scholar] [CrossRef]
- Belardin, L.B.; Antoniassi, M.P.; Camargo, M.; Intasqui, P.; Fraietta, R.; Bertolla, R.P. Semen levels of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases (TIMP) protein families members in men with high and low sperm DNA fragmentation. Sci. Rep. 2019, 9, 903. [Google Scholar] [CrossRef]
- Rocha, D.R.; Martins, J.A.; van Tilburg, M.F.; Oliveira, R.V.; Moreno, F.B.; Monteiro-Moreira, A.C.; Moreira, R.A.; Araújo, A.A.; Moura, A.A. Effect of increased testicular temperature on seminal plasma proteome of the ram. Theriogenology 2015, 84, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
- Asgari, R.; Mansouri, K.; Bakhtiari, M.; Vaisi-Raygani, A. CD147 as an apoptosis regulator in spermatogenesis: Deciphering its association with matrix metalloproteinases’ pathway. Mol. Biol. Rep. 2019, 46, 1099–1105. [Google Scholar] [CrossRef]
- Wong, C.; Cheng, C.Y. The blood-testis barrier: Its biology, regulation, and physiological role in spermatogenesis. Curr. Top. Dev. Biol. 2005, 71, 263–296. [Google Scholar]
- Mattioli, S.; De Marinis, A.M. Guida al Rilevamento Biometrico degli Ungulati; Istituto Superiore per la Protezione e la Ricerca Ambientale: Bologna, Italy, 2009.
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Potter, S.J.; DeFalco, T. Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction 2017, 153, R151–R162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargent, K.M.; Clopton, D.T.; Lu, N.; Pohlmeier, W.E.; Cupp, A.S. VEGFA splicing: Divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res. 2016, 363, 31–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caires, K.C.; de Avila, J.; McLean, D.J. Vascular endothelial growth factor regulates germ cell survival during establishment of spermatogenesis in the bovine testis. Reproduction 2009, 138, 667–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalbandian, A.; Dettin, L.; Dym, M.; Ravindranath, N. Expression of vascular endothelial growth factor receptors during male germ cell differentiation in the mouse. Biol. Reprod. 2003, 69, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-S.; Maguire, E.M.; Bai, Y.-S.; Huang, L.; Liu, Y.; Xu, L.; Fauzi, I.; Zhang, S.-Q.; Xiao, Q.; Ma, N.-F. A novel regulatory axis, CHD1L-MicroRNA 486-matrix metalloproteinase 2, controls spermatogonial stem cell properties. Mol. Cell. Biol. 2019, 39, 357–418. [Google Scholar] [CrossRef] [Green Version]
- Saengsoi, W.; Shia, W.-Y.; Shyu, C.-L.; Wu, J.-T.; Warinrak, C.; Lee, W.-M.; Cheng, F.-P. Detection of matrix metalloproteinase (MMP)-2 and MMP-9 in canine seminal plasma. Anim. Reprod. Sci. 2011, 127, 114–119. [Google Scholar] [CrossRef]
- Kozioł, K.; Koziorowski, M. Morphological defects of epididymal spermatozoa in male roe deer (Capreolus capreolus) during the reproductive season. Pol. J. Vet. Sci. 2015, 18, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Ventrella, D.; Elmi, A.; Bertocchi, M.; Aniballi, C.; Parmeggiani, A.; Govoni, N.; Bacci, M.L. Progesterone and cortisol levels in blood and hair of wild pregnant red deer (Cervus elaphus) hinds. Animals 2020, 10, 143. [Google Scholar] [CrossRef] [Green Version]
Gene | Primer Sequence (5′-->3′) | PCR size (bp) | Accession Number | Reference | |
---|---|---|---|---|---|
VEGF121 | For: | GTTCATCTTCAAGCCGTCCTGTG | 130 | AF 152593 | Present study |
Rev: | TTGGTGAGGTTTGATCCGCATAATC | ||||
VEGF165 | For: | CCACCGAGGAGTTCAACATCAC | 177 | AF 152594 | Present study |
Rev: | CAAACAAATGCTTTCTCCGCTCTG | ||||
VEGFR1 | For: | GAGTCACGGAAGAGGATG | 171 | NM_001191132 | Present study |
Rev: | TTAACAGGAGCCAGAAGAG | ||||
VEGFR2 | For: | GGCTACTTCTTGTCATCGTTCTAC | 137 | NM_001110000 | Present study |
Rev: | TCGTAAGGCAGGCGTTCAC | ||||
GAPDH | For: | CACCGTCCATGCCATCAC | 109 | AF363637 | Present study |
Rev: | CTCCGATGCCTGCTTCACTACCTT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmi, A.; Zannoni, A.; Govoni, N.; Bertocchi, M.; Forni, M.; Ventrella, D.; Bacci, M.L. Uncovering the Physiological Mechanisms Underlying the Roe Deer (Capreolus capreolus) Testicular Cycle: Analyses of Gelatinases and VEGF Patterns and Correlation with Testes Weight and Testosterone. Animals 2020, 10, 444. https://doi.org/10.3390/ani10030444
Elmi A, Zannoni A, Govoni N, Bertocchi M, Forni M, Ventrella D, Bacci ML. Uncovering the Physiological Mechanisms Underlying the Roe Deer (Capreolus capreolus) Testicular Cycle: Analyses of Gelatinases and VEGF Patterns and Correlation with Testes Weight and Testosterone. Animals. 2020; 10(3):444. https://doi.org/10.3390/ani10030444
Chicago/Turabian StyleElmi, Alberto, Augusta Zannoni, Nadia Govoni, Martina Bertocchi, Monica Forni, Domenico Ventrella, and Maria Laura Bacci. 2020. "Uncovering the Physiological Mechanisms Underlying the Roe Deer (Capreolus capreolus) Testicular Cycle: Analyses of Gelatinases and VEGF Patterns and Correlation with Testes Weight and Testosterone" Animals 10, no. 3: 444. https://doi.org/10.3390/ani10030444
APA StyleElmi, A., Zannoni, A., Govoni, N., Bertocchi, M., Forni, M., Ventrella, D., & Bacci, M. L. (2020). Uncovering the Physiological Mechanisms Underlying the Roe Deer (Capreolus capreolus) Testicular Cycle: Analyses of Gelatinases and VEGF Patterns and Correlation with Testes Weight and Testosterone. Animals, 10(3), 444. https://doi.org/10.3390/ani10030444