The Parietal Eye of Lizards (Pogona vitticeps) Needs Light at a Wavelength Lower than 580 nm to Activate Light-Dependent Magnetoreception
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.2. Experiment 2
2.3. Experiment 3
2.4. Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Combined Data of Experiments 1 and 2
3.4. Experiment 3
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nordmann, G.C.; Hochstoeger, T.; Keays, D.A. Unsolved mysteries: Magnetoreception-A sense without a receptor. PLoS Biol. 2017, 15, e2003234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diego-Rasilla, F.J.; Perez-Mellado, V.; Perez-Cembranos, A. Spontaneous magnetic alignment behaviour in free-living lizards. Sci. Nat. 2017, 104, 13. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Okano, H.; Tada, H.; Nishimura, E.; Sugimoto, K.; Mohri, K.; Fukushima, M. Lizards respond to an extremely low-frequency electromagnetic field. J. Exp. Biol. 2010, 213, 1985–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, T.; Tada, H.; Fukushima, M. Correlation between the lunar phase and tail-lifting behavior of lizards (Pogona vitticeps) exposed to an extremely low-frequency electromagnetic field. Animals 2019, 9, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vosjoli, P. The Bearded Dragon Manual (California: Advanced Vivarium Systems); CompanionHouse Books: Irvine, CA, USA, 2001. [Google Scholar]
- Evans, L.T. Tail display in an iguanid lizard, liocephalus-carinatus-coryi. Copeia 1953, 1953, 50–54. [Google Scholar] [CrossRef]
- Schwartz, A.; Henderson, R.W. Amphibians and Reptiles of the West Indies: Descriptions, Distributions, and Natural History; The University Press of Florida: Gainesville, FL, USA, 1991. [Google Scholar]
- Tosini, G. The pineal complex of reptiles: physiological and behavioral roles. Ethol. Ecol. Evol. 1997, 9, 313–333. [Google Scholar] [CrossRef]
- Wiltschko, W.; Wiltschko, R. The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula. J. Comp. Physiol. A 1999, 184, 295–299. [Google Scholar] [CrossRef]
- Su, C.Y.; Luo, D.G.; Terakita, A.; Shichida, Y.; Liao, H.W.; Kazmi, M.A.; Sakmar, T.P.; Yau, K.W. Parietal-eye phototransduction components and their potential evolutionary implications. Science 2006, 311, 1617–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochran, W.W.; Mouritsen, H.; Wikelski, M. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 2004, 304, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutschlander, M.E.; Borland, S.C.; Phillips, J.B. Extraocular magnetic compass in newts. Nature 1999, 400, 324–325. [Google Scholar] [CrossRef] [PubMed]
- Deutschlander, M.E.; Phillips, J.B.; Borland, S.C. The case for light-dependent magnetic orientation in animals. J. Exp. Biol. 1999, 202, 891–908. [Google Scholar] [PubMed]
- Wiltschko, W.; Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 2005, 191, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.B.; Borland, S.C. Magnetic compass orientation is eliminated under near-infrared light in the eastern red-spotted newt Notophthalmus viridescens. Anim. Behav. 1992, 44, 796–797. [Google Scholar] [CrossRef]
- Adler, K. Extraocular photoreception in amphibians. Photochem. Photobiol. 1976, 23, 275–298. [Google Scholar] [CrossRef]
Experiments 1 and 2 | Control Group * | EMF Group * | ||||
No. of Tail Lifts | Ratio a | No. of Increase b | No. of Tail Lifts | Ratio a | No. of Increase b | |
Pre-test baseline | 9.4 ± 14.6 | 1 | 0 | 9.8 ± 15.3 | 1 | 0 |
Test-day values | ||||||
Day 1 | 9.5 ± 14.4 | 1.0 | 0.1 ± 6.9 | 13.8 ± 20.7 | 1.4 | 4.0 ± 9.7 |
Day 2 | 9.8 ± 20.7 | 1.0 | 0.4 ±10.5 | 11.7 ± 16.7 | 1.2 | 1.9 ± 13.8 |
Day 3 | 9.1 ± 12.6 | 1.0 | −0.3 ± 11.5 | 10.6 ± 14.8 | 1.1 | 0.7 ± 14.8 |
Day 4 | 9.0 ± 16.0 | 1.0 | −0.4 ± 15.0 | 11.4± 16.8 | 1.2 | 1.5 ± 17.7 |
Day 5 | 12.4 ± 25.6 | 1.3 | 3.0 ± 23.7 | 9.9 ± 12.4 | 1.0 | 0.0 ± 10.6 |
Days 1–5 combined | 10.0 ± 18.0 | 1.1 ± 0.2 | 0.6 ± 14.3 | 11.5 ± 16.1 | 1.2 ± 0.2 | 1.6 ± 13.3 |
Experiment 1 | Control Group * | EMF Group * | ||||
No. of Tail Lifts | Ratio | No. of Increase | No. of Tail Lifts | Ratio | No. of Increase | |
Pre-test baseline | 15.5 ± 18.5 | 1 | 0 | 16.5 ± 18.8 | 1 | 0 |
Test-day values | ||||||
Day 1 | 16.6 ± 18.0 | 1.1 | 1.1 ± 9.8 | 24.4 ± 25.1 | 1.5 | 7.9 ± 12.6 |
Day 2 | 16.3 ± 28.4 | 1.0 | 0.7 ± 14.8 | 20.4 ± 20.4 | 1.2 | 3.9 ± 19.7 |
Day 3 | 13.5 ± 16.3 | 0.9 | −2.0 ± 15.6 | 20.1 ± 15.9 | 1.2 | 3.7 ± 20.8 |
Day 4 | 16.4 ± 20.5 | 1.1 | 0.8 ± 21.5 | 18.8 ± 21.3 | 1.1 | 2.3 ± 25.3 |
Day 5 | 22.5 ± 34.1 | 1.5 | 7.0 ± 33.9 | 17.1 ± 14.0 | 1.0 | 0.7 ± 15.1 |
Days 1–5 combined | 17.1 ± 23.3 | 1.1 ± 0. 2 | 1.5 ± 20.0 | 20.2 ± 18.9 | 1.2 ± 0.2 | 3.7 ± 18.4 |
Experiment 2 | Control Group * | EMF Group * | ||||
No. of Tail Lifts | Ratio | No. of Increase | No. of Tail Lifts | Ratio | No. of Increase | |
Pre-test baseline | 3.3 ± 3.5 | 1 | 0 | 3.2 ± 5.6 | 1 | 0 |
Test-day values | ||||||
Day 1 | 2.4 ± 1.6 | 0.7 | −0.9 ± 1.6 | 3.3 ± 5.4 | 1.0 | 0.0 ± 2.7 |
Day 2 | 3.4 ± 3.7 | 1.0 | 0.1 ± 4.1 | 3.0 ± 3.2 | 0.9 | −0.2 ± 3.3 |
Day 3 | 4.8 ± 5.7 | 1.4 | 1.5 ± 5.7 | 1.0 ± 1.9 | 0.3 | −2.2 ± 3.8 |
Day 4 | 1.6 ± 2.8 | 0.5 | −1.7 ± 3.6 | 4.0 ± 4.9 | 1.3 | 0.8 ± 5.0 |
Day 5 | 2.4 ± 2.4 | 0.7 | −0.9 ± 4.1 | 2.6 ± 3.4 | 0.8 | −0.6 ± 3.7 |
Days 1–5 combined | 2.9 ± 3.5 | 0.9 ± 0.4 | −0.4 ± 3.7 | 2.8 ± 3.9 | 0.9 ± 0.3 | −0.4 ± 4.0 |
Experiment 3 | Control Group * | EMF Group * | ||||
---|---|---|---|---|---|---|
No. of Tail Lifts | Ratio a | No. of Increase b | No. of Tail Lifts | Ratio a | No. of Increase b | |
Pre-test baseline | 5.9 ± 6.3 | 1 | 0 | 4.0 ± 4.7 | 1 | 0 |
Test-day values | ||||||
Day 1 | 3.8 ± 4.1 | 0.6 | −2.2 ± 6.1 | 4.1 ± 4.1 | 1.0 | 0.1 ± 5.9 |
Day 2 | 7.1 ± 9.1 | 1.2 | 1.2 ± 8.9 | 7.1 ± 9.9 | 1.8 | 3.1 ± 10.6 |
Day 3 | 7.4 ± 5.7 | 1.2 | 1.5 ± 5.3 | 7.9 ± 9.0 | 2.0 | 3.9 ± 10.4 |
Day 4 | 4.3 ± 2.8 | 0.7 | −1.7 ± 6.2 | 8.8 ± 11.2 | 2.2 | 4.8 ± 10.5 |
Day 5 | 4.9 ± 6.8 | 0.8 | −1.6 ± 9.2 | 10.6 ± 11.8 | 2.6 | 7.1 ± 10.1 |
Days 1–5 combined | 5.5 ± 5.9 | 0.9 ± 0.3 | −0.5 ± 7.1 | 7.6 ± 9.3 | 1.9 ± 0.6 | 3.7 ± 9.4 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimura, T. The Parietal Eye of Lizards (Pogona vitticeps) Needs Light at a Wavelength Lower than 580 nm to Activate Light-Dependent Magnetoreception. Animals 2020, 10, 489. https://doi.org/10.3390/ani10030489
Nishimura T. The Parietal Eye of Lizards (Pogona vitticeps) Needs Light at a Wavelength Lower than 580 nm to Activate Light-Dependent Magnetoreception. Animals. 2020; 10(3):489. https://doi.org/10.3390/ani10030489
Chicago/Turabian StyleNishimura, Tsutomu. 2020. "The Parietal Eye of Lizards (Pogona vitticeps) Needs Light at a Wavelength Lower than 580 nm to Activate Light-Dependent Magnetoreception" Animals 10, no. 3: 489. https://doi.org/10.3390/ani10030489
APA StyleNishimura, T. (2020). The Parietal Eye of Lizards (Pogona vitticeps) Needs Light at a Wavelength Lower than 580 nm to Activate Light-Dependent Magnetoreception. Animals, 10(3), 489. https://doi.org/10.3390/ani10030489