The Effect of Feeding Roughages of Varying Digestibility Prepartum on Energy Status and Metabolic Profiles in Beef Cows around Parturition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Experimental Diets and Feeding
2.3. Data Collection
2.4. Feed Sampling and Analysis
2.5. Blood Sampling and Analysis
2.6. Statistical Analysis
3. Results
3.1. Intake
3.2. BW and BCS
3.3. Calf Performance
3.4. Plasma Metabolite and Hormone Concentrations
4. Discussion
4.1. Intake
4.2. BW and BCS
4.3. Calf Performance
4.4. Metabolites and Hormones
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumm, K.-I. Produktionskostnad för Grovfoder till Köttdjur (Cost of Roughage Production to Beef Cattle); Report no 23; Department of Animal Environment and Health, Swedish University of Agricultural Sciences: Skara, Sweden, 2009; Available online: https://pub.epsilon.slu.se/14068/11/kumm_k-i_170905.pdf (accessed on 14 October 2019).
- Arnesson, A.; Salevid, P. Dikalvsproduktion på Två Gårdar i Västsverige (Cow-Calf Production on Two Farms in Western Sweden); Report no. 30; Department of Animal Environment and Health, Swedish University of Agricultural Sciences: Skara, Sweden, 2011; Available online: https://www.slu.se/globalassets/ew/org/inst/hmh/hmh-pdf/rapport_30.pdf (accessed on 16 October 2019).
- Spörndly, R. Fodertabeller för Idisslare; Report no. 257; Department of animal nutrition and management, Swedish University of Agricultural Science: Uppsala, Sweden, 2003; p. 96. [Google Scholar]
- Cherney, D.J.R.; Cherney, J.H.; Lucey, R.F. In vitro digestion kinetics and quality of perennial grasses as influenced by forage maturity. J. Dairy Sci. 1993, 76, 790–797. [Google Scholar] [CrossRef]
- Allen, M.S. Physical constraints on voluntary intake of forages by ruminants. J. Anim. Sci. 1996, 74, 3063–3075. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, E.; Hallin, O. Näringskvalitet i rörsvingelhybrid (Feed value of Festulolium). In Meddelande Från södra Jordbruksförsöksdistriktet, Rapport Från Växtodlings—Och Växtskyddsdagar i Växjö, 6–7 December; Germundsson, L., Servin, D., Eds.; Swedish University of Agricultural Sciences, Partnerskap: Alnarp, Sweden, 2016; Volume 69, pp. 31:1–31:5. [Google Scholar]
- Collins, M.; Casler, M.D. Forage quality of five cool-season grasses. II. Species effects. Anim. Feed Sci. Technol. 1990, 27, 209–218. [Google Scholar] [CrossRef]
- Kammes, K.L.; Heemink, G.B.H.; Albrecht, K.A.; Combs, D.K. Utilization of kura clover-reed canarygrass silage versus alfalfa silage by lactating dairy cows. J. Dairy Sci. 2008, 91, 3138–3144. [Google Scholar] [CrossRef]
- Martinsson, K.; Ericson, L. Rörsvingelhybrid—Ett Nytt Vallgräs; Nytt Nr. 2; Department of Agricultural research for Northern Sweden, Swedish University of Agricultural Sciences: Umeå, Sweden, 2011; Available online: https://pub.epsilon.slu.se/8413/1/martinsson_k_etal_111109.pdf (accessed on 16 October 2019).
- Narasimhalu, P.; McRae, K.B.; Kunelius, H.T. Hay composition, and intake and digestibility in sheep of newly introduced cultivars of timothy, tall fescue, and reed canarygrass. Anim. Feed Sci. Technol. 1995, 55, 77–85. [Google Scholar] [CrossRef]
- NorFor Feed Table. Available online: http://feedstuffs.norfor.info/ (accessed on 15 October 2019).
- Manninen, M.; Huhta, H. Influence of pre partum and post partum plane of nutrition on the performance of crossbred suckler cows and their progeny. Agric. Food Sci. 2001, 10, 3–18. [Google Scholar] [CrossRef]
- Wiedmeier, R.D.; Provenza, F.D.; Burritt, E.A. Exposure to ammoniated wheat straw as suckling calves improves performance of mature beef cows wintered on ammoniated wheat straw. J. Anim. Sci. 2002, 80, 2340–2348. [Google Scholar] [CrossRef] [PubMed]
- Zaborski, D.; Grzesiak, W.; Szatkowska, I.; Dybus, A.; Muszynska, M.; Jedrzejczak, M. Factors affecting dystocia in cattle. Reprod. Dom. Anim. 2009, 44, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.L.; Lemenager, R.P.; Horstman, L.A.; Hendrix, K.S.; Moss, G.E. Effects of body composition, pre- and postpartum energy level and early weaning on reproductive performance of beef cows and preweaning calf gain. J. Anim. Sci. 1990, 68, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Stalker, L.A.; Adams, D.C.; Klopfenstein, T.J.; Feuz, D.M.; Funston, R.N. Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance. J. Anim. Sci. 2006, 84, 2582–2589. [Google Scholar] [CrossRef] [Green Version]
- Herd, D.B.; Sprott, L.R. Body Condition, Nutrition and Reproduction of Beef Cows; Texas Agricultural Extension Service, Texas A&M University: College Station, TX, USA, 1986; 12p, Available online: http://agrilifecdn.tamu.edu/victoriacountyagnr/files/2010/07/Body-Condition-Nutrition-Reproduction-of-Beef-Cows.pdf (accessed on 19 October 2019).
- Volden, H.; Larsen, M. Digestion and metabolism in the gastrointestinal tract. In NorFor—The Nordic Feed Evaluation System, 1st ed.; Volden, H., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 59–80. [Google Scholar]
- Clark, J.H.; Klusmeyer, T.H.; Cameron, M.R. Microbial protein synthesis and flows of nitrogenous fractions to the duodenum of dairy cows. J. Dairy Sci. 1992, 75, 2304–2323. [Google Scholar] [CrossRef]
- Åkerlind, M.; Volden, H. Standard feed value. In NorFor—The Nordic Feed Evaluation System, 1st ed.; Volden, H., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 137–139. [Google Scholar]
- Van Es, A.J.H. Feed evaluation for dairy cows. Livest. Prod. Sci. 1975, 2, 95–107. [Google Scholar] [CrossRef]
- Van Es, A.J.H. Feed evaluation for ruminants. 1. The system in use from May 1977 onwards in the Netherlands. Livest. Prod. Sci. 1978, 5, 331–345. [Google Scholar] [CrossRef]
- Volden, H.; Nilsen, N.I. Energy and metabolizable protein supply. In NorFor—The Nordic Feed Evaluation System, 1st ed.; Volden, H., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 81–84. [Google Scholar]
- Nilsen, N.I.; Volden, H. Animal requirements and recommendations. In NorFor—The Nordic Feed Evaluation System, 1st ed.; Volden, H., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 85–111. [Google Scholar]
- NRC (National Research Council). Nutrient Requirements for Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Madsen, J. The basis for the proposed Nordic protein evaluation system for ruminants. The AAT-PBV system. Acta Agric. Scand. 1985, 25 (Suppl.), 9–20. [Google Scholar]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Lindgren, E. Vallfodrets Näringsvärde Bestämt in vivo Och Med Olika Laboratoriemetoder; Report no 45; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences: Uppsala, Sweden, 1979. [Google Scholar]
- Lindgren, E. Nykalibrering av VOS Metoden för Bestämning av Energivärde Hos Vallfoder; Working Paper; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences: Uppsala, Sweden, 1983. [Google Scholar]
- Lindgren, E. Fodrets Energivärde; Course paper Feed Science HNU 3; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences: Uppsala, Sweden, 1988. [Google Scholar]
- Weisbjerg, M.R.; Hvelplund, T. Bestemmelse af Nettoenergiindhold (FEK) i Råvarer og Kraftfoderblandinger; Research Report 3; Statens husdyrbrugsforsøg: Copenhagen, Denmark, 1993; 39p. [Google Scholar]
- Chai, W.; Udén, P. An alternative oven method combined with different detergent strengths in the analysis of neutral detergent fibre. Anim. Feed Sci. Technol. 1998, 74, 281–288. [Google Scholar] [CrossRef]
- Weiss, K.; Kaiser, E. Milchsäurebestimmung in Silage Extrakten mit Hilfe der HPLC. Das wirtschaftseigene Futter 1995, 41, 69–80. [Google Scholar]
- Weiss, K. Gärungsverlauf und Gärqualität von Silagen aus Nitratarmem Grünfutter. Ph.D. Thesis, Faculty of Agriculture and Horticulture, Humboldt University of Berlin, Berlin, Germany, 2000. [Google Scholar]
- Lengerken, J.; Zimmermann, K. Handbuch Futtermittelprüfung, 1st ed.; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1991. [Google Scholar]
- Khanal, P.; Axel, A.M.D.; Kongsted, A.H.; Husted, S.V.; Johnsen, L.; Pandey, D.; Pedersen, K.L.; Birtwistle, M.; Markussen, B.; Kadarmideen, H.N.; et al. Late gestation under- and overnutrition have differential impacts when combined with a post-natal obesogenic diet on glucose–lactate–insulin adaptations during metabolic challenges in adolescent sheep. Acta Physiol. 2015, 213, 519–536. [Google Scholar] [CrossRef]
- Huhtanen, P.; Khalili, H.; Nousiainen, J.I.; Rinne, M.; Jaakkola, S.; Heikkilä, T.; Nousiainen, J. Prediction of the relative intake potential of grass silage by dairy cows. Livest. Prod. Sci. 2002, 73, 111–130. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Andersen, J.B. Integration of metabolism and intake regulation: A review focusing on periparturient animals. J. Dairy Sci. 2000, 83, 1573–1597. [Google Scholar] [CrossRef]
- Linden, D.R.; Titgemeyer, E.C.; Olson, K.C.; Anderson, D.E. Effects of gestation and lactation on forage intake, digestion, and passage rates of primiparous beef heifers and multiparous beef cows. J. Anim. Sci. 2014, 92, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Kunz, P.L.; Blum, J.W.; Hart, I.C.; Bickel, H.; Landis, J. Effects of different energy intakes before and after calving on food intake, performance and blood hormones and metabolites in dairy cows. Anim. Prod. 1985, 40, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Douglas, G.N.; Overton, T.R.; Bateman, H.G.; Dann, H.M.; Drackley, J.K. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in holstein cows. J. Dairy Sci. 2006, 89, 2141–2157. [Google Scholar] [CrossRef] [Green Version]
- Lake, S.L.; Scholljegerdes, E.J.; Atkinson, R.L.; Nayigihugu, V.; Paisley, S.I.; Rule, D.C.; Moss, G.E.; Robinson, T.J.; Hess, B.W. Body condition score at parturition and postpartum supplemental fat effects on cow and calf performance. J. Anim. Sci. 2005, 83, 2908–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossen, D. Feeding Strategies for Dairy Cows. Individual Feed Allocation Using Automatic Live Weight Registrations as Management Parameter. Ph.D. Thesis, Danish Cattle Federation, University of Aarhus, University of Copenhagen, Copenhagen, Denmark, 2008. [Google Scholar]
- Buskirk, D.D.; Lemenager, R.P.; Horstman, L.A. Estimation of net energy requirements (NEm and NE∆) of lactating beef cows. J. Anim. Sci. 1992, 70, 3867–3876. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Topps, J.H. The effect of body condition of dairy cows at calving on their food intake and performance when given complete diets. Anim. Prod. 1982, 35, 113–119. [Google Scholar] [CrossRef]
- Friggens, N.C. Body lipid reserves and the reproductive cycle: Towards a better understanding. Livest. Prod. Sci. 2003, 83, 219–236. [Google Scholar] [CrossRef]
- Manninen, M.; Sankari, S.; Jauhiainen, L.; Kivinen, T.; Anttila, P.; Soveri, T. Effects of outdoor winter housing and feeding level on performance and blood metabolites of suckler cows fed whole-crop barley silage. Livest. Sci. 2008, 115, 179–194. [Google Scholar] [CrossRef]
- Short, R.E.; Bellows, R.A.; Staigmiller, R.B.; Berardinelli, J.G.; Custer, E.E. Physiological mechanisms controlling anestrus and infertility in postpartum beef cattle. J. Anim. Sci. 1990, 68, 799–816. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.G.; Spitzer, J.C.; Perkins, J.L. Influence of prepartum body condition score change on reproduction in multiparous beef cows calving in moderate body condition. J. Anim. Sci. 1999, 77, 1048–1054. [Google Scholar] [CrossRef] [Green Version]
- Richards, M.W.; Wetteman, R.P.; Schoenemann, H.M. Nutritional anestrus in beef cows: Body weight change, body condition, luteinizing hormone in serum and ovarian activity. J. Anim. Sci. 1986, 67, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.B.; Faulkner, D.B.; Shike, D.W. Influence of prepartum dietary energy on beef cow performance and calf growth and carcass characteristics. Livest. Sci. 2016, 184, 21–27. [Google Scholar] [CrossRef]
- Niederecker, K.N.; Larson, J.M.; Kallenbach, R.L.; Meyer, A.M. Effects of feeding stockpiled tall fescue versus summer-baled tall fescue-based hay to late gestation beef cows: I. Cow performance, maternal metabolic status, and fetal growth. J. Anim. Sci. 2018, 96, 4618–4632. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.W.; Bauman, D.E. Adaptations of glucose metabolism during pregnancy and lactation. J. Mammary Gland Biol. Neoplasia 1997, 2, 265–278. [Google Scholar] [CrossRef]
- Chilliard, Y.; Bocquier, F.; Doreau, M. Digestive and metabolic adaptations of ruminants to undernutrition, and consequences on reproduction. Reprod. Nutr. Dev. 1998, 38, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Holtenius, K.; Agenäs, S.; Delavaud, C.; Chilliard, Y. Effects of feeding intensity during the dry period. 2. Metabolic and hormonal responses. J. Dairy Sci. 2003, 86, 883–891. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant adaption to negative energy balance—Influences on the etiology of ketosis and fatty Liver. Vet. Clin. North Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell Univ. Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Bell, A.W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 1995, 73, 2804–2819. [Google Scholar] [CrossRef]
- Radunz, A.E.; Fluharty, F.L.; Day, M.L.; Zerby, H.N.; Loerch, S.C. Prepartum dietary energy source fed to beef cows: I. Effects on pre- and postpartum cow performance. J. Anim. Sci. 2010, 88, 2717–2728. [Google Scholar] [CrossRef] [Green Version]
- Gunn, P.J.; Schoonmaker, J.P.; Lemenager, R.P.; Bridges, G.A. Feeding excess crude protein to gestating and lactating beef heifers: Impact on parturition, milk composition, ovarian function, reproductive efficiency and pre-weaning progeny growth. Livest. Sci. 2014, 167, 435–448. [Google Scholar] [CrossRef]
- Hammond, A.C. Effect of dietary protein level, ruminal protein solubility, and time after feeding on plasma urea nitrogen and the relationship of plasma urea nitrogen to other ruminal and plasma parameters. J. Anim. Sci. 1983, 57 (Suppl. 1), 435. [Google Scholar]
- Nocek, J.E.; Russell, J.B. Protein and energy as an integrated system—Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk-production. J. Dairy Sci. 1988, 71, 2070–2107. [Google Scholar] [CrossRef]
- Jardstedt, M.; Hessle, A.; Nørgaard, P.; Richardt, W.; Nadeau, E. Feed intake and urinary excretion of nitrogen and purine derivatives in pregnant suckler cows fed alternative roughage-based diets. Livest. Sci. 2017, 202, 82–88. [Google Scholar] [CrossRef]
- Cassady, J.M.; Maddock, T.D.; DiCostanzo, A.; Lamb, G.C. Initial body condition score affects hormone and metabolite response to nutritional restriction and repletion in yearling postpubertal beef heifers. J. Anim. Sci. 2009, 87, 2262–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item 2 | Prepartum 1 | Postpartum | |||
---|---|---|---|---|---|
TM | FE + Urea Mix | RC | BR + Urea Mix | Timothy | |
DM, g/kg | 483 ± 29.2 | 361 ± 18.7 | 472 ± 59.9 | 808 ± 20.3 | 498 ± 73.7 |
Ash, g/kg DM | 60.5 ± 3.81 | 72.0 ± 4.02 | 45.0 ± 2.37 | 59.4 ± 6.12 | 54.5 ± 4.42 |
CP, g/kg DM | 111 ± 7.0 | 97.2 ± 3.35 | 130 ± 14.5 | 69.6 ± 5.08 | 128 ± 8.3 |
aNDFom, g/kg DM | 576 ± 18.5 | 543 ± 13.4 | 648 ± 15.2 | 774 ± 19.2 | 596 ± 13.1 |
ADFom, g/kg DM | 346 ± 9.6 | 319 ± 13.4 | 380 ± 16.0 | 472 ± 12.7 | 357 ± 10.9 |
ADL, g/kg DM | 43.8 ± 4.70 | 31.3 ± 7.82 | 54.1 ± 5.31 | 59.2 ± 3.42 | 40.5 ± 1.71 |
In vitro OMD, % of OM | 69.7 ± 0.67 | 78.6 ± 1.24 | 59.0 ± 2.47 | 37.2 ± 1.39 | 76.0 ± 1.94 |
NE, MJ/kg DM | 5.8 ± 0.07 | 6.4 ± 0.10 | 5.2 ± 0.20 | 4.0 ± 0.07 | 6.5 ± 0.14 |
MP, g/kg DM | 63 ± 0.6 | 63 ± 0.8 | 58 ± 1.6 | 44 ± 1.0 | 65 ± 1.0 |
PBV, g/kg DM | 17 ± 6.2 | −6.3 ± 7.0 | 45 ± 13.1 | −12 ± 4.9 | 28 ± 8.0 |
WSC, g/kg DM | 178 | 207 | 74 | - | 109 |
pH | 4.94 | 4.49 | 4.34 | - | 4.55 |
Ethanol, g/kg DM | 5.7 | 5.6 | 1.9 | - | 3.6 |
Lactic acid, g/kg DM | 10.7 | 42.4 | 18.7 | - | 36.6 |
Acetic acid, g/kg DM | 6.6 | 11.1 | 6.0 | - | 8.6 |
Ammonia-N, g/kg N 3 | 74 | 83 | 82 | - | 78 |
Item | Prepartum 1 | p-value | ||||
---|---|---|---|---|---|---|
TM | FE | RC | BR | SEM | Diet | |
DM intake | ||||||
Prepartum, kg/d 2 | 12.9 a | 13.9 a | 9.17 b | 8.15 b | 0.413 | <0.001 |
Postpartum, kg/d 3 | 16.5 | 17.5 | 15.7 | 16.7 | 0.844 | 0.52 |
Prepartum, % of BW | 1.68 a | 1.64 a | 1.29 b | 1.09 b | 0.071 | <0.001 |
Postpartum, % of BW | 2.56 | 2.20 | 2.30 | 2.25 | 0.134 | 0.96 |
NE intake, MJ/d | ||||||
Prepartum 2 | 64.6 b | 80.0 a | 42.2 c | 34.6 d | 1.70 | <0.001 |
Postpartum 3 | 94.4 | 98.4 | 87.9 | 93.1 | 4.73 | 0.47 |
CP intake, g/d | ||||||
Prepartum 2 | 1396 a | 1384 a | 1252 a | 679 b | 35.8 | <0.001 |
Postpartum 3 | 2129 | 2209 | 1984 | 2078 | 130 | 0.65 |
MP intake, g/d | ||||||
Prepartum 2 | 889 a | 973 a | 513 b | 306 c | 32.7 | <0.001 |
Postpartum 3 | 1320 | 1332 | 1210 | 1310 | 91.5 | 0.78 |
NE intake, % of requirement | ||||||
Prepartum 2 | 118 b | 139 a | 78.8 c | 61.0 d | 3.66 | <0.001 |
Postpartum 3 | 139 | 137 | 134 | 142 | 6.72 | 0.86 |
MP intake, % of requirement | ||||||
Prepartum 2 | 166 b | 188 a | 106 c | 65.6 d | 4.16 | <0.001 |
Postpartum 3 | 210 | 215 | 203 | 217 | 17.8 | 0.94 |
Item | Diet 1 | |||||
---|---|---|---|---|---|---|
TM | FE | RC | BR | SEM | p-value | |
BW, kg | ||||||
Baseline 2,5 | 714 | 777 | 694 | 724 | 27.5 | 0.20 |
At weaning 7 | 730 | 789 | 728 | 722 | 26.6 | 0.30 |
End grazing period 7 | 705 | 741 | 695 | 700 | 25.0 | 0.54 |
BW change, kg | ||||||
Prepartum 3,5 | 99 a | 127 a | 43 b | 22 b | 10.6 | <0.001 |
Corrected for gestation 4,5 | 24 a | 52 a | −22 b | −28 b | 10.7 | <0.001 |
Day 1 to 21 postpartum 6 | 35 a | 28 ab | 31 ab | 9 b | 11.8 | 0.03 |
Day 21 to weaning 7 | −39 ab | −74 a | −8 b | −4 b | 14.1 | 0.008 |
Day 21 to end of grazing period 7 | −62 ab | −120 a | −42 b | −26 b | 15.4 | 0.004 |
BCS, scale 1 to 9 | ||||||
Baseline 2,5 | 6.10 | 5.71 | 5.95 | 5.71 | 0.308 | 0.70 |
Prepartum, week -1 5 | 6.41 ab | 6.47 a | 5.61 ab | 4.87 b | 0.342 | <0.001 |
At weaning 7 | 6.38 | 6.38 | 6.13 | 5.49 | 0.259 | 0.10 |
End grazing period 7 | 6.56 | 6.13 | 6.10 | 5.42 | 0.308 | 0.13 |
BCS change, scale 1 to 9 | ||||||
Prepartum 3,5 | 0.32 a | 0.77 a | −0.35 b | −0.88 b | 0.359 | <0.001 |
Week -1 prepartum to day 21 postpartum 6 | 0.37 | 0.08 | −0.17 | −0.15 | 0.150 | 0.07 |
Day 21 to weaning 7 | −0.30 | −0.56 | 0.49 | 0.67 | 0.326 | 0.049 |
Day 21 to end of grazing period 7 | −0.36 | −0.53 | 0.46 | 0.60 | 0.283 | 0.02 |
Item | Diet 1 | |||||
---|---|---|---|---|---|---|
TM | FE | RC | BR | SEM | p-value | |
Birth weight, kg 2,4 | 48.7 | 51.0 | 46.7 | 45.3 | 2.29 | 0.29 |
Weaning weight, kg 3,5 | 317 | 316 | 312 | 302 | 15.5 | 0.92 |
Growth, kg/d 5 | 1.35 | 1.35 | 1.32 | 1.29 | 0.070 | 0.93 |
Item 2 | Diet 1 | p-value | ||||||
---|---|---|---|---|---|---|---|---|
TM | FE | RC | BR | SEM | Diet | Time | ||
Glucose, | Zero 3 | 4.15 | 4.04 | 4.18 | 4.19 | 0.324 | 0.94 | - |
mmol/L | Week -13 | 4.22 | 4.223 | 4.57 | 4.00 | 0.278 | 0.48 | - |
Weeks -8 to -1 | 4.12a | 4.19a | 3.82 ab | 3.55 b | 0.313 | <0.001 | 0.049 | |
Postpartum 4 | 3.50 | 3.49 | 2.98 | 3.09 | 0.247 | 0.12 | <0.001 | |
Insulin, | Zero 3 | 0.301 | 0.165 | 0.285 | 0.345 | 0.0703 | 0.19 | - |
μg/L | Week -13 | 0.390 | 0.457 | 0.334 | 0.449 | 0.0954 | 0.71 | - |
Weeks -4 to -1 | 0.351a | 0.369a | 0.179 b | 0.166 b | 0.0491 | <0.001 | 0.02 | |
Postpartum 4 | 0.447a | 0.337ab | 0.249 ab | 0.188 b | 0.0567 | 0.007 | 0.03 | |
BHBA, | Zero 3 | 0.388 | 0.348 | 0.383 | 0.270 | 0.0517 | 0.10 | - |
mmol/L | Week -13 | 0.534 a | 0.541 a | 0.393 ab | 0.275 b | 0.0597 | <0.001 | - |
Weeks -8 to -1 | 0.663 a | 0.641 a | 0.424 b | 0.427 b | 0.0485 | <0.001 | 0.37 | |
Postpartum 4 | 0.558 a | 0.487 ab | 0.393 b | 0.564 a | 0.0419 | 0.02 | 0.001 | |
NEFA, | Zero 3 | 0.219 | 0.173 | 0.290 | 0.439 | 0.0800 | 0.07 | - |
mmol/L | Week -13 | 0.169 b | 0.191 b | 0.352 ab | 0.638 a | 0.0876 | 0.001 | - |
Weeks -8 to -1 | 0.355 b | 0.194 b | 0.385 b | 0.821 a | 0.0726 | <0.001 | 0.20 | |
Postpartum4 | 0.260 | 0.264 | 0.355 | 0.442 | 0.0955 | 0.25 | <0.001 | |
Trigl., | Zero 3 | 0.335 | 0.369 | 0.349 | 0.403 | 0.0324 | 0.34 | - |
mmol/L | Week -13 | 0.283 b | 0.322 ab | 0.385 ab | 0.425 a | 0.0340 | 0.01 | - |
Weeks -8 to -1 | 0.335 ab | 0.382 ab | 0.325 b | 0.417 a | 0.0321 | 0.02 | <0.05 | |
Postpartum4 | 0.115 | 0.163 | 0.121 | 0.095 | 0.0176 | 0.06 | 0.12 | |
BUN, | Zero 3 | 2.76 b | 2.77 b | 4.71 a | 2.55 b | 0.716 | 0.002 | - |
mmol/L | Week -13 | 4.03 b | 2.45 c | 7.74 a | 4.51 b | 0.682 | <0.001 | - |
Weeks -8 to -1 | 3.57 c | 2.99 c | 7.44 a | 4.67 b | 0.303 | <0.001 | 0.04 | |
Postpartum 4 | 2.50 | 2.37 | 3.21 | 2.78 | 0.248 | 0.08 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jardstedt, M.; Nadeau, E.; Olaf Nielsen, M.; Nørgaard, P.; Hessle, A. The Effect of Feeding Roughages of Varying Digestibility Prepartum on Energy Status and Metabolic Profiles in Beef Cows around Parturition. Animals 2020, 10, 496. https://doi.org/10.3390/ani10030496
Jardstedt M, Nadeau E, Olaf Nielsen M, Nørgaard P, Hessle A. The Effect of Feeding Roughages of Varying Digestibility Prepartum on Energy Status and Metabolic Profiles in Beef Cows around Parturition. Animals. 2020; 10(3):496. https://doi.org/10.3390/ani10030496
Chicago/Turabian StyleJardstedt, Mikaela, Elisabet Nadeau, Mette Olaf Nielsen, Peder Nørgaard, and Anna Hessle. 2020. "The Effect of Feeding Roughages of Varying Digestibility Prepartum on Energy Status and Metabolic Profiles in Beef Cows around Parturition" Animals 10, no. 3: 496. https://doi.org/10.3390/ani10030496
APA StyleJardstedt, M., Nadeau, E., Olaf Nielsen, M., Nørgaard, P., & Hessle, A. (2020). The Effect of Feeding Roughages of Varying Digestibility Prepartum on Energy Status and Metabolic Profiles in Beef Cows around Parturition. Animals, 10(3), 496. https://doi.org/10.3390/ani10030496