Quality and Physicochemical Traits of Carcasses and Meat from Geese Fed with Lupin-Rich Feed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lupin Seeds
2.2. Animals and Diets
2.3. Growth Performance
2.4. Chemical Analyses
2.5. Meat Quality
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Lupin Seeds
3.2. Growth Performance
3.3. Carcass Traits
3.4. Physicochemical Traits
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buzała, M.; Adamski, M.; Janicki, B. Characteristics of performance traits and the quality of meat and fat in Polish oat geese. World Poult. Sci. J. 2014, 70, 531–542. [Google Scholar] [CrossRef]
- Lewko, L.; Gornowicz, E.; Pietrzak, M.; Korol, W. The effect of origin, sex and feeding on sensory evaluation and some quality characteristics of goose meat from Polish native flocks. Ann. Anim. Sci. 2017, 17, 1185–1196. [Google Scholar] [CrossRef] [Green Version]
- Smulikowska, S.; Rutkowski, A. Nutritional recommendations and nutritional value of poultry feeds. Cooperative work. In Fifth Edition—Changed and Supplemented; Institute of Physiology and Animal Nutrition: Jabłonna, Poland, 2019; pp. 58–65. ISBN 978-83-951612-1-6. (In Polish) [Google Scholar]
- Sirirat, N.; Lu, J.-J.; Tsung-Yu Hung, A.; Chen, S.-Y.; Lein, T.-F. Effect of Different Levels of Nanoparticles Chromium Picolinate Supplementation on Growth Performance, Mineral Retention, and Immune Responses in Broiler Chickens. J. Agric. Sci. 2012, 4, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Kuźniacka, J.; Adamski, M.; Czarnecki, R.; Banaszak, M. Results of Rearing Broiler Chickens Under Various Systems. J. Agric. Sci. 2014, 6, 19–25. [Google Scholar] [CrossRef]
- Barbera, S. WHC trend, an up-to-date method to measure water holding capacity in meat. Meat Sci. 2019, 152, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Księżak, J.; Święcicki, W.; Szukała, J.; Rutkowski, A.; Jerzak, M.; Barszczewski, J. Improvement of Domestic Sources of Vegetable Protein, Their Production, Marketing System and Use in Animal Feed; Final Report on the Implementation of the Multiannual Programme for 2011–2015; IUNG-PIB: Puławy, Poland, 2015; pp. 5–71. (In Polish) [Google Scholar]
- Kaczmarek, S.A.; Hejdysz, M.; Kubis, M.; Rutkowski, A. Influence of graded inclusion of white lupin (Lupinus albus) meal on performance, nutrient digestibility and intestinal morphology of broiler chickens. Br. Poult. Sci. 2016, 57, 364–374. [Google Scholar] [CrossRef]
- Sońta, M.; Rekiel, A. Production and use of Fabaceae in feed. Part 2. Use of Fabaceae in animal diet. Przeg. Hodow. 2017, 1, 19–25. (In Polish) [Google Scholar]
- Piasecka-Jóźwiak, K.; Księżak, J.; Słowik, E.; Chabłowska, B. The use of lupin flour as nutritional additive to organic wheat sourdough bread. J. Res. Appl. Agric. Eng. 2018, 63, 56–61. [Google Scholar]
- Chilomer, K.; Kasprowicz-Potocka, M.; Gulewicz, P.; Frankiewicz, A. The influence of lupin seed germination on the chemical composition and standardized ileal digestibility of protein and amino acids in pigs. J. Anim. Physiol. Anim. Nutr. 2013, 97, 639–646. [Google Scholar] [CrossRef]
- Milczarek, A.; Osek, M. Effectiveness of using faba bean seeds and corn distillers’ grains with solubles as a partial replacement of soybean meal in the feeding of Pulawska pigs. Acta Sci. Pol. Zootech. 2014, 13, 55–66. [Google Scholar]
- Jansen, G.; Jürgens, H.-U.; Schliephake, E.; Seddig, S.; Ordon, F. Effects of the growing system and season on the alkaloid content and yield of different sweet L. angustifolius genotypes. J. Appl. Bot. Food Qual. 2015, 88, 1–4. [Google Scholar] [CrossRef]
- Hejdysz, M.; Kaczmarek, S.A.; Rutkowski, A. Extrusion cooking improves the metabolizable energy of faba beans and amino acid digestibility in broilers. Anim. Feed Sci. Technol. 2016, 212, 100–111. [Google Scholar] [CrossRef]
- Kaczmarek, S.A.; Hejdysz, M.; Kubis, M.; Kasporiwcz-Potocka, M.; Rutkowski, A. The nutritional value of yellow lupin (Lupinus luteus L.) for broilers. Anim. Feed Sci. Technol. 2016, 222, 43–53. [Google Scholar] [CrossRef]
- Rutkowski, A.; Kaczmarek, S.A.; Hejdysz, M.; Jamroz, D. Effect of extrusion on nutrients’ digestibility, metabolizable energy and nutritional value of yellow lupin seeds for broiler chickens. Ann. Anim. Sci. 2016, 16, 1059–1072. [Google Scholar] [CrossRef] [Green Version]
- Jezierny, D.; Mosenthin, R.; Weiss, E. The use of grain legumes as a protein source in pig nutrition: A review. Anim. Feed Sci. Technol. 2010, 157, 111–128. [Google Scholar] [CrossRef]
- Hejdysz, M.; Kaczmarek, S.A.; Rogiewicz, A.; Rutkowski, A. Influence of graded levels of meals from three lupin species on growth performance and nutrient digestibility on broiler chickens. Br. Poult. Sci. 2019, 60, 288–296. [Google Scholar] [CrossRef]
- Chiofalo, B.; Lo Presti, V.; Chiofalo, V.; Gresta, F. The productive traits, fatty acid profile and nutritional indices of three lupin (Lupinus spp.) species cultivated in a Mediterranean environment for livestock. Anim. Feed Sci. Technol. 2012, 171, 230–239. [Google Scholar] [CrossRef]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Adamski, M. The Quality of Carcass and Meat from Geese Fed Diets with or without Soybean Meal. Animals 2020, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Haraf, G. Influence of feeding and geese genotype on carcass dissection and meat quality—The review of research. Nauk. Inż. Technol. 2014, 1, 24–42. (In Polish) [Google Scholar]
- Smulikowska, S.; Konieczka, P.; Czerwinski, J.; Mieczkowska, A.; Jankowiak, J. Feeding broiler chickens with practical diets containing lupin seeds (L. angustifolius or L. luteus): Effects of incorporation level and mannanase supplementation on growth performance, digesta viscosity, microbial fermentation and gut morphology. J. Anim. Feed Sci. 2014, 23, 64–72. [Google Scholar] [CrossRef]
- Olver, M.D.; Jonker, A. Effect of Sweet, Bitter and Soaked Micronised Bitter Lupins on Broiler Performance. Br. Poult. Sci. 1997, 38, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Gdala, J.; Buraczewska, L. Chemical composition and carbohydrate content of seed from several lupin species. J. Anim. Feed Sci. 1996, 5, 403–416. [Google Scholar] [CrossRef]
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutritive Value of Feedstuffs. In Poultry Feeding Standards, 5th ed.; The Kielanowski Institute of Animal Physiology and Nutrition, PAS: Jabłonna, Poland, 2018; pp. 58–65. (In Polish) [Google Scholar]
- AOAC. Official Methods of Analysis of the Association Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2007. [Google Scholar]
- Kaczmarek, S.A.; Kasprowicz-Potocka, M.; Hejdysz, M.; Mikuła, R.; Rutkowski, A. The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. J. Anim. Feed Sci. 2014, 23, 160–166. [Google Scholar] [CrossRef]
- Kuźniacka, J.; Biesek, J.; Banaszak, M.; Rutkowski, A.; Kaczmarek, S.; Adamski, M.; Hejdysz, M. Effect of Dietary Protein Sources Substituting Soybean Meal on Growth Performance and Meat Quality in Ducks. Animals 2020, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Ziołecki, J.; Doruchowski, W. Methods for the Evaluation of Meat Quality and Yield; Publisher COBRD: Poznań, Poland, 1989; pp. 1–22. (In Polish) [Google Scholar]
- CIE. Colorimetry; Publication CIE 15.2; Central Bureau of CIE: Vienna, Austria, 1986. [Google Scholar]
- Honikel, K.O. The water binding of meat. Fleischwirtschaft 1987, 67, 1098–1102. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirt 1952, 4, 295–297. [Google Scholar]
- PN-A-82109:2010. Raw and processed meat—Determination of fat, protein and water content. Near InfraRed Transmission (NIT) spectrometry with calibration for artificial neural network (ANN). 2010. (In Polish) [Google Scholar]
- Burgos-Diaz, C.; Opazo-Navarrete, M.; Wandersleben, T.; Soto-Anual, M.; Barahona, T.; Bustamante, M. Chemical and Nutritional Evaluation of Protein-Rich Ingredients Obtained through a Technological Process from Yellow Lupin Seeds (Lupinus luteus). Plant Food Hum. Nutr. 2019, 74, 508–517. [Google Scholar] [CrossRef]
- Rutkowski, A.; Kaczmarek, S.A.; Hejdysz, M.; Nowaczewski, S.; Jamroz, D. Concentrates made from legume seeds (Lupinus angustifolius, Lupinus luteus and Pisum sativum) and rapeseed meal as protein sources in laying hen diets. Ann. Anim. Sci. 2015, 15, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Musco, N.; Cutrignelli, M.I.; Calabro, S.; Tudisco, R.; Infascelli, F.; Grazioli, R.; Lo Presti, V.; Gresta, F.; Chiofalo, B. Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds. Anim. Physiol. Anim. Nutr. 2017, 101, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Hejdysz, M.; Kaczmarek, S.A.; Rogiewicz, A.; Rutkowski, A. Influence of graded dietary levels of meals from three lupin species o the excreta dry matter intestianal viscosity, excretion of total and free sialic acids, and intestinal morphology of broiler chickens. Anim. Feed Sci. Technol. 2018, 241, 223–232. [Google Scholar] [CrossRef]
- Biesiada-Drzazga, B.; Górski, J.; Górska, A. Analysis of slaughter value and muscle fibre thickness of selected muscles in goose broilers as related to feeding applied during the rearing period. Anim. Sci. Pap. Rep. 2006, 24 (Suppl. 2), 37–44. [Google Scholar]
- Luadadio, V.; Tufarelli, V. Dehulled-micronised lupin (Lupinus albus L. cv. Multitalia) as the main protein source for broilers: Influence on growth performance, carcass tratis and meat fatty acid composition. J. Sci. Food Agric. 2011, 91, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Mikulski, D.; Zduńczyk, Z.; Juśkiewicz, J.; Rogiewicz, A.; Jankowski, J. The effect of different blue lupine (L. angustifolius) inclusion levels on gastrontestinal function, growth performance and meat quality in growing-finishing turkeys. Anim. Feed Sci. Technol. 2014, 198, 347–352. [Google Scholar] [CrossRef]
- Bieliński, K.; Skarżyński, Ł.; Pakulska, E. Faba beans, peas, sweet lupin seeds, flaxseed meal and rapeseed meal as protein sources in goose diet. Rocz. Nauk. Zootech. 1982, 9, 247–262. (In Polish) [Google Scholar]
- Biesiada-Drzazga, B. Effects of dietary inclusion of sunflower meal and yellow lupin meal on the quality of muscle and fatty tissue in geese. Rocz. Inst. Przem. Mięs. Tłuszcz. 2008, 46, 25–34. (In Polish) [Google Scholar]
- Pietrzak, D.; Mierzejewska, E.; Mroczek, J.; Michalczuk, M.; Damaziak, K.; Makarski, M.; Adamczak, L. Effect of diet and sex on selected quality parameters of meat from White Kołuda geese. Zesz. Probl. Post. Nauk Rol. 2013, 574, 49–56. (In Polish) [Google Scholar]
- Augustyńska-Prejsnar, A.; Sokołowicz, Z. Effect of breed and thermal treatment on the breast muscle quality of organically reared hens after their first year of use as layers. Żywn. Nauk. Technol. Jakość 2018, 25, 151–162. (In Polish) [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Picard, B.; Lefaucheur, L.; Berri, C.; Duclos, M. Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 2002, 42, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, D.; Xu, X.; Xu, W. Comparative proteomic analysis of proteins associated with water holding capacity in goose muscles. Food Res. Int. 2019, 116, 354–361. [Google Scholar] [CrossRef]
- Bedane, T.F.; Altin, O.; Erol, B.; Marra, F.; Erdogdu, F. Thawing of frozen food products in a staggered through-field electrode radio frequency system: A case study for frozen chicken breast meat with effects on drip loss and texture. Innov. Food Sci. Emerg. Technol. 2018, 50, 139–147. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; David, L.; Hopkins, D.J. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Tyra, M.; Mitka, I. Effect of intramuscular fat (IMF) on quality (sensory) parameters of meat. Wiadom. Zootech. 2015, 4, 50–56. (In Polish) [Google Scholar]
- Gumułka, M.; Połtowicz, K. Comparison of carcass traits and meat quality of intensively reared geese from a Polish genetic resource flock to those of commercial hybrids. Poult. Sci. 2020, 99, 839–847. [Google Scholar] [CrossRef]
- Weston, A.R.; Rogers, R.W.; Althen, T.G. Review. The Role of Collagen in Meat Tenderness. Prof. Anim. Sci. 2002, 18, 107–111. [Google Scholar] [CrossRef]
- Jamroz, D.; Kubizna, J. Some beneficial effects of legume antinutritive substances. Krmiva 2007, 49, 317–346. [Google Scholar]
- Jamroz, D.; Kubizna, J. Harmful substances in leguminous seeds—Their negative and beneficial properties. Pol. J. Vet. Sci. 2008, 11, 389–404. [Google Scholar]
Component | Narrow-Leaved Lupin | Yellow Lupin | White Lupin |
---|---|---|---|
Dry matter | 887 | 885 | 886 |
Crude protein | 261 | 421 | 351 |
Ether extract | 57.2 | 55.1 | 109 |
Starch | 9.02 | 10.6 | 11.1 |
Neutral detergent fiber | 218 | 253 | 224 |
Total oligosaccharides (RFO 2) | 60.0 | 112 | 80.7 |
Raffinose | 12.3 | 10.9 | 7.21 |
Stachyose | 28.3 | 63.3 | 64.2 |
Verbascose | 19.4 | 37.5 | 9.3 |
Phytate P | 6.20 | 7.82 | 5.10 |
Alkaloids | 0.42 | 0.41 | 0.18 |
Total NSP 3 | 401 | 317 | 292 |
Soluble NSP 4 | 176.1 | 58.5 | 66.1 |
Simple sugars 5 | 10.4 | 14.6 | 12.8 |
Viscosity (cP) 6 | 2.14 | 1.63 | 1.55 |
Amino acids (g/100g of crude protein) | |||
Asp | 9.01 | 9.51 | 10.31 |
Thr | 3.13 | 2.85 | 3.63 |
Ser | 4.47 | 4.51 | 4.85 |
Glu | 20.7 | 21.3 | 19.51 |
Pro | 4.11 | 3.34 | 3.95 |
Gly | 3.64 | 3.62 | 3.84 |
Ala | 3.04 | 2.98 | 3.28 |
Met + cys | 1.61 | 2.52 | 2.09 |
Val | 3.47 | 3.23 | 3.92 |
Ile | 3.63 | 3.67 | 4.15 |
Leu | 6.42 | 7.12 | 7.01 |
Tyr | 3.33 | 2.48 | 4.34 |
Phe | 3.67 | 3.66 | 4.21 |
Lys | 4.27 | 4.52 | 4.62 |
His | 2.64 | 2.78 | 2.47 |
Arg | 10.31 | 11.62 | 10.44 |
Days 1–42 | Group 1 | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Triticale, % | 50 | 50 | 50 | 50 |
Concentrates, % | 50 | 50 | 50 | 50 |
Calculated nutritional value of feed | ||||
Metabolizable energy (ME), MJ/kg | 11.55 | 11.54 | 11.53 | 11.53 |
Crude protein, % | 20.52 | 20.51 | 20.44 | 20.47 |
Calcium, % | 1.00 | 1.00 | 1.00 | 1.00 |
p-available, % | 0.40 | 0.40 | 0.41 | 0.41 |
Lysine, % | 1.17 | 1.10 | 1.10 | 1.10 |
Methionine, % | 0.41 | 0.41 | 0.41 | 0.41 |
Valine, % | 0.89 | 0.80 | 1.00 | 0.97 |
Threonine, % | 0.81 | 0.81 | 0.81 | 0.81 |
Na, % | 0.16 | 0.16 | 0.16 | 0.16 |
Cl, % | 0.14 | 0.14 | 0.14 | 0.14 |
Days 43–77 | 1 | 2 | 3 | 4 |
Triticale, % | 60 | 60 | 60 | 60 |
Concentrates, % | 40 | 40 | 40 | 40 |
Calculated nutritional value of concentrates | ||||
Metabolizable energy (ME), MJ/kg | 11.65 | 11.67 | 11.64 | 11.66 |
Crude protein, % | 18.01 | 18.03 | 18.00 | 18.01 |
Calcium, % | 0.81 | 0.81 | 0.81 | 0.81 |
p-available, % | 0.36 | 0.36 | 0.36 | 0.36 |
Lysine, % | 0.90 | 0.90 | 0.90 | 0.90 |
Methionine, % | 0.45 | 0.45 | 0.45 | 0.45 |
Valine, % | 0.73 | 0.73 | 0.73 | 0.73 |
Threonine, % | 0.70 | 0.70 | 0.70 | 0.70 |
Na, % | 0.16 | 0.16 | 0.16 | 0.16 |
Cl, % | 0.14 | 0.14 | 0.14 | 0.14 |
Composition of concentrates, % | Group 1 | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Soybean meal, 44% | 65 | - | - | - |
Yellow lupin | - | 68.98 | - | - |
Narrow-leaved lupin | - | - | 68.4 | - |
White lupin | - | - | - | 70 |
Potato protein | - | 3 | 8 | 6 |
Brewers’ yeast | - | 3 | 8 | 6 |
Triticale in concentrate | 23.04 | 12 | 1.22 | 2 |
Soybean oil | 5.2 | 5.4 | 7.6 | 8.8 |
Premix 2 | 2 | 2 | 2 | 2 |
Fodder chalk | 2 | 2 | 1.92 | 1.58 |
Monocalcium phosphate | 1.52 | 1.74 | 1.54 | 2.16 |
NaHCO3 | 0.84 | 0.8 | 0.8 | 0.8 |
Fodder salt | 0.18 | 0.12 | 0.14 | 0.14 |
L-lysine | - | 0.32 | 0.08 | 0.14 |
DL-methionine | 0.2 | 0.4 | 0.28 | 0.32 |
L-threonine | 0.02 | 0.24 | - | 0.02 |
Tryptophan | - | - | 0.02 | 0.04 |
Calculated nutritional value of concentrates | ||||
Metabolizable energy (ME), MJ/kg | 10.79 | 10.79 | 10.77 | 10.79 |
Crude protein, % | 31.42 | 31.43 | 31.44 | 31.47 |
Calcium, % | 1.92 | 1.92 | 1.92 | 1.92 |
p-available, % | 0.56 | 0.56 | 0.56 | 0.56 |
Lysine, % | 1.82 | 1.82 | 1.82 | 1.82 |
Methionine, % | 0.65 | 0.65 | 0.65 | 0.65 |
Valine, % | 1.14 | 1.14 | 1.14 | 1.14 |
Threonine, % | 1.28 | 1.28 | 1.28 | 1.28 |
Na, % | 0.31 | 0.31 | 0.31 | 0.31 |
Cl, % | 0.19 | 0.19 | 0.19 | 0.19 |
Group | BWG 0–42 | BWG 43–77 | BWG 0–77 | FI 0–42 | FI 43–77 | FI 0–77 | FCR 0–42 | FCR 43–77 | FCR 0–77 |
---|---|---|---|---|---|---|---|---|---|
1 | 3.81 b | 2.74 | 6.64 | 8.53 b | 11.81 b | 20.34 b | 2.25 b | 4.38 | 3.07 b |
2 | 4.05 a | 2.72 | 6.87 | 8.99 a | 12.41 b | 21.40 a | 2.21 b | 4.61 | 3.12 b |
3 | 3.54 c | 2.94 | 6.58 | 8.48 b | 13.18 a | 21.66 a | 2.40 a | 4.55 | 3.30 a |
4 | 4.02 a | 2.91 | 6.88 | 9.09 a | 12.10 b | 21.19 a | 2.26 b | 4.25 | 3.08 b |
SEM | 0.04 | 0.06 | 0.06 | 0.06 | 0.15 | 0.15 | 0.02 | 0.08 | 0.03 |
p | <0.0001 | 0.457 | 0.144 | <0.0001 | 0.003 | 0.005 | 0.005 | 0.411 | 0.029 |
Group 1 | Pre-Slaughter Body Weight (g) | Weight of Carcass (g) | Dressing Percentage (%) | Weight and Proportion in Carcass | Weight of Offal (g) | Carcass Remains (g) | |||
---|---|---|---|---|---|---|---|---|---|
Neck with Skin | Wings | ||||||||
g | % | g | % | ||||||
1 | 6743 | 4262 | 63.26 | 348.0 | 8.13 | 675.0 | 15.87 | 369.1 | 9054 |
2 | 6910 | 4318 | 62.48 | 272.0 | 6.38 | 638.0 | 14.73 | 365.2 | 1128 |
3 | 6410 | 3894 | 60.99 | 285.4 | 7.30 | 562.6 | 14.40 | 325.9 | 967.1 |
4 | 6930 | 4385 | 63.37 | 346.3 | 7.95 | 632.5 | 14.51 | 335.9 | 1001 |
SEM | 135.08 | 87.70 | 0.71 | 18.25 | 3.76 | 26.34 | 3.45 | 13.70 | 56.06 |
p-value | 0.525 | 0.197 | 0.648 | 0.247 | 0.410 | 0.101 | 0.163 | 0.332 | 0.371 |
Group 1 | Weight and Proportion in Carcass | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Breast Muscles | Leg Muscles | Total Muscles | Skin with Subcutaneous Fat | Abdominal Fat | Total Fat | |||||||
g | % | g | % | g | % | g | % | G | % | g | % | |
1 | 606.6 | 14.23 | 642.9 | 15.10 | 1250 | 29.33 | 1086 | 25.51 | 135.2 b | 3.16 b | 1222 | 18.17 |
2 | 650.9 | 14.98 | 575.9 | 13.51 | 1227 | 28.48 | 970.6 | 22.43 | 185.5 a,b | 4.39 a,b | 1156 | 16.77 |
3 | 547.8 | 14.23 | 562.6 | 14.52 | 1111 | 28.75 | 901.4 | 23.06 | 176.0 a,b | 4.46 a,b | 1077 | 16.72 |
4 | 583.2 | 13.32 | 621.0 | 14.27 | 1204 | 27.60 | 1127 | 25.70 | 223.1 a | 5.08 a | 1350 | 19.61 |
SEM | 26.78 | 3.49 | 24.10 | 3.48 | 49.41 | 2.94 | 49.53 | 3.12 | 11.06 | 3.88 | 58.58 | 3.37 |
p-value | 0.272 | 0.448 | 0.140 | 0.520 | 0.172 | 0.697 | 0.068 | 0.080 | 0.033 | 0.038 | 0.096 | 0.165 |
Group 1 | pH15 | pH24 | Color 2 | Water-Holding Capacity (%) | Drip Loss (%) | Protein (%) | Collagen (%) | Salt (%) | Connective Tissue (%) | Fat (%) | Water (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | B* | |||||||||||
1 | 8.17 | 7.98 a | 38.97 | 18.29 | 3.16 | 39.50 | 0.98 | 20.82 d | 1.40 a,b | 0.53 b | 6.71 b | 3.16 c | 74.71 a |
2 | 7.85 | 7.79 a,b | 36.98 | 19.45 | 4.06 | 36.56 | 0.92 | 20.59 c | 1.27 a,b | 0.58 b | 6.15 c | 3.64 b | 73.89 d |
3 | 7.97 | 7.89 a,b | 39.30 | 17.60 | 3.22 | 36.72 | 0.96 | 21.01 b | 1.53 a | 0.60 b | 7.28 a | 3.19 c | 74.20 b |
4 | 8.02 | 7.71 b | 40.27 | 17.48 | 3.03 | 36.09 | 0.95 | 21.77 a | 1.16 b | 1.07 a | 5.32 d | 3.90 a | 72.47 c |
SEM | 3.72 | 3.73 | 2.55 | 3.34 | 3.92 | 2.73 | 4.00 | 3.21 | 3.99 | 4.02 | 3.78 | 3.91 | 1.06 |
p-value | 0.065 | 0.002 | 0.274 | 0.342 | 0.617 | 0.643 | 0.992 | <0.0001 | 0.002 | <0.0001 | 0.004 | <0.0001 | <0.0001 |
Group 1 | Color 2 | Water-Holding Capacity (%) | Protein (%) | Collagen (%) | Salt (%) | Connective Tissue (%) | Fat (%) | Water (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | ||||||||
1 | 42.26 | 14.28 | 4.23 | 34.57 | 19.03 c | 1.57 a,b | 0.53 c | 8.24 a | 7.23 b | 71.95 b |
2 | 42.97 | 13.86 | 4.11 | 35.11 | 19.53 b | 1.39 c | 0.55 c | 7.11 c | 5.72 c | 73.09 a |
3 | 43.06 | 15.69 | 5.22 | 34.64 | 19.99 a | 1.62 a | 0.61 b | 8.12 a,b | 5.39 d | 73.06 a |
4 | 40.85 | 15.30 | 4.26 | 38.67 | 18.88 d | 1.46 b,c | 0.94 a | 7.73 b | 8.92 a | 70.13 c |
SEM | 2.41 | 3.48 | 3.88 | 2.75 | 3.26 | 3.97 | 4.02 | 3.73 | 3.82 | 1.13 |
p-value | 0.474 | 0.512 | 0.679 | 0.342 | <0.0001 | 0.002 | <0.0001 | 0.001 | <0.0001 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźniacka, J.; Hejdysz, M.; Banaszak, M.; Biesek, J.; Kaczmarek, S.; Grabowicz, M.; Rutkowski, A.; Adamski, M. Quality and Physicochemical Traits of Carcasses and Meat from Geese Fed with Lupin-Rich Feed. Animals 2020, 10, 519. https://doi.org/10.3390/ani10030519
Kuźniacka J, Hejdysz M, Banaszak M, Biesek J, Kaczmarek S, Grabowicz M, Rutkowski A, Adamski M. Quality and Physicochemical Traits of Carcasses and Meat from Geese Fed with Lupin-Rich Feed. Animals. 2020; 10(3):519. https://doi.org/10.3390/ani10030519
Chicago/Turabian StyleKuźniacka, Joanna, Marcin Hejdysz, Mirosław Banaszak, Jakub Biesek, Sebastian Kaczmarek, Małgorzata Grabowicz, Andrzej Rutkowski, and Marek Adamski. 2020. "Quality and Physicochemical Traits of Carcasses and Meat from Geese Fed with Lupin-Rich Feed" Animals 10, no. 3: 519. https://doi.org/10.3390/ani10030519
APA StyleKuźniacka, J., Hejdysz, M., Banaszak, M., Biesek, J., Kaczmarek, S., Grabowicz, M., Rutkowski, A., & Adamski, M. (2020). Quality and Physicochemical Traits of Carcasses and Meat from Geese Fed with Lupin-Rich Feed. Animals, 10(3), 519. https://doi.org/10.3390/ani10030519