A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Study Description
2.2. Data Extraction
2.3. Meta-analyses
2.4. Statistical Analyses
3. Results
3.1. Overall Effects of Agolin
3.2. Short- and Long-term Effects of Agolin
4. Discussion
4.1. Animal Performance
4.2. Rumen Fermentation
4.3. Methane Emissions
5. Conclusions
Data Availability
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cabello, F.C.; Godfrey, H.P. Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environ. Microbiol. 2016, 18, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Cobellis, G.M.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 545, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2011, 166, 338–355. [Google Scholar] [CrossRef]
- Blanch, M.; Carro, M.; Ranilla, M.J.; Viso, A.; Vazquez-Anon, M.; Bach, A. Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Anim. Feed Sci. Technol. 2016, 219, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, P.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J. Anim. Sci. 2004, 82, 3230–3236. [Google Scholar] [CrossRef]
- Durmic, Z.; Ramírez-Restrepo, C.A.; Gardiner, C.; O´Neil, C.J.; Hussein, E.; Vercoe, P.E. Differences in the nutrient concentrations, in vitro methanogenic potential and other fermentative traits of tropical grasses and legumes for beef production systems in northern Australia. J. Sci. Food Agric. 2017, 97, 4075–4086. [Google Scholar] [CrossRef]
- Pirondini, M.; Colombini, S.; Malagutti, L.; Rapetti, L.; Galassi, G.; Zanchi, R.; Crovetto, G.M. Effects of a selection of additives on in vitro ruminal methanogenesis and in situ and in vivo NDF digestibility. Anim. Sci. J. 2015, 86, 59–68. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Peiren, N.; Cone, J.W.; Zweifel, B.; Fievez, V.; De Campeneere, S. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livest. Sci. 2015, 180, 134–142. [Google Scholar] [CrossRef]
- Klop, G.; van Laar-van Schuppen, S.; Pellikaan, W.; Hendriks, W.; Bannink, A.; Dijkstra, J. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo. Anim. 2017, 11, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.; Robinson, P.; Williams, P.; Losa, R. Effects of addition of an essential oil complex to the diet of lactating dairy cows on whole tract digestion of nutrients and productive performance. Anim. Feed Sci. Technol. 2010, 157, 64–71. [Google Scholar] [CrossRef]
- Dunkel, S.; Zweifel, B.; Schaeffer, H.; Trauboth, K.; Strube, M. Die Wirkung der Zulage einer Mischung aus ätherischen Ölen auf die Leistung von Milchkühen. VDLUFA-Schriftenreihe. Tierische Produktion 2016, 69, 592–600. [Google Scholar]
- Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci. 2019, 35, 304–311. [Google Scholar] [CrossRef]
- Hart, K.; Jones, H.; Waddams, K.; Zweifel, B.; Newbold, C.J. An Essential Oil Blend Decreases Methane Emissions and Increases Milk Yield in Dairy Cows. Open J. Anim. Sci. 2019, 9, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Newbold, C.J.; Zweifel, B. The effect of essential oils on rumen bacteria and protozoa in dairy cattle. In Proceedings of the British Society of Animal Science, Chester, UK, 26–27 April 2017. [Google Scholar]
- Guasch, I.; Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating cows. J. Anim. Sci. 2016, 94, 718–719. [Google Scholar] [CrossRef] [Green Version]
- Klop, G.; Dijkstra, J.; Dieho, K.; Hendriks, W.; Bannink, A. Enteric methane production in lactating dairy cows with continuous feeding of essential oils or rotational feeding of essential oils and lauric acid. J. Dairy. Sci. 2017, 100, 3563–3575. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Inter. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Ruiz, D.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.; O’Kiely, P.; Reynolds, C.; Schwarm, A.; Shingfield, K.; Yu, Z. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Anim. Feed. Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.J.; Humphreys, J.M.; Holden, N.M. An evaluation of life cycle assessment of European milk production. J. Environ. Manag. 2011, 92, 372–379. [Google Scholar] [CrossRef]
- CanWest-DHI, Persistency of Milk Production. Available online: http://www.agromedia.ca/ADM_Articles/content/DHI_persist.pdf (accessed on 18 March 2019).
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to meta-analysis; John Wiley & Sons: Bridgewater, NJ, USA, 2011; pp. 1–452. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Soft. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidem. 2006, 59, 7–10. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N. Invited review: integrating quantitative findings from multiple studies using mixed model methodology. J. Dairy Sci. 2001, 84, 741–755. [Google Scholar] [CrossRef]
- Dersimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials. 1989, 7, 177–188. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.; Castillejos, L.; Ferret, A. Invited review: essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C.; Petit, H.; Berthiaume, R.; Whyte, T.; Chouinard, P. Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. J. Dairy Sci. 2006, 89, 4352–4364. [Google Scholar] [CrossRef]
- Yang, W.Z.; Benchaar, C.; Ametaj, B.N.; Chaves, A.V.; He, M.L.; McAllister, T.A. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 2007, 90, 5671–5681. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C.; Petit, H.; Berthiaume, R.; Ouellet, D.; Chiquette, J.; Chouinard, P. Effects of Essential Oils on Digestion, Ruminal Fermentation, Rumen Microbial Populations, Milk Production, and Milk Composition in Dairy Cows Fed Alfalfa Silage or Corn Silage. J. Dairy Sci. 2007, 90, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.; Lee, C.; Cassidy, T.; Heyler, K.; Tekippe, J.; Varga, G.; Corl, B.; Brandt, R. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013, 96, 1189–1202. [Google Scholar] [CrossRef]
- Tekippe, J.; Hristov, A.; Heyler, K.; Cassidy, T.; Zheljazkov, V.; Ferreira, J.; Karnati, S.; Varga, G. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. J. Dairy Sci. 2011, 94, 5065–5079. [Google Scholar] [CrossRef] [Green Version]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Kamel, C. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 2006, 89, 761–771. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 2007, 132, 186–201. [Google Scholar] [CrossRef]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.; Fraser, G.; Colombatto, D.; McAllister, T.; Beauchemin, K. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Muthusamy, N.; Sankar, V. Phytogenic compounds used as a feed additives in poultry production. Inter. J. Sci. Environ. Technol. 2015, 4, 167–171. [Google Scholar]
- Patra, A.K. Meta-analyses of effects of phytochemicals on digestibility and rumen fermentation characteristics associated with methanogenesis. J. Sci. Food Agri. 2010, 90, 2700–2708. [Google Scholar] [CrossRef]
- Matloup, O.; El Tawab, A.A.; Hassan, A.; Hadhoud, F.; Khattab, M.; Khalel, M.; Sallam, S.; Kholif, A. Performance of lactating Friesian cows fed a diet supplemented with coriander oil: feed intake, nutrient digestibility, ruminal fermentation, blood chemistry, and milk production. Anim Feed Sci. Technol. 2017, 226, 88–97. [Google Scholar] [CrossRef]
- Benchaar, C.; Lettat, A.; Hassanat, F.; Yang, W.; Forster, R.; Petit, H.; Chouinard, P. Eugenol for dairy cows fed low or high concentrate diets: Effects on digestion, ruminal fermentation characteristics, rumen microbial populations and milk fatty acid profile. Anim. Feed Sci. Technol. 2012, 178, 139–150. [Google Scholar] [CrossRef]
- Marty, R.J.; Demeyer, D.I. Effect of inhibitors of methane production on fermentation pattern and sotichiometry in vitro using rumen contents from sheep given molasses. Br. J. Nutr. 1973, 30, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Cabezas-Garcia, E.; Krizsan, S.; Shingfield, K.J.; Huhtanen, P. Between-cow variation in digestion and rumen fermentation variables associated with methane production. J. Dairy Sci. 2017, 100, 4409–4424. [Google Scholar] [CrossRef]
- Guyader, J.; Eugene, M.; Noziere, P.; Morgavi, D.P.; Doreau, M.; Martin, C. Influence of rumen protozoa on methane emission in ruminants: A meta-analysis approach. Animals 2014, 8, 1816–1825. [Google Scholar] [CrossRef]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belanche, A.; de la Fuente, G.; Newbold, C.J. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol. 2014, 90, 663–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Country | Year | Parity | Design | Unit | n1 | Days 2 | Diet Ingredients 3 | F:C ratio 4 | Reference |
---|---|---|---|---|---|---|---|---|---|---|
1 | USA | 2009 | Multiparous | Crossover | Pen | 4 | 28 | AH, WS, FA, ST, C | 67/33 | [10] |
2 | UK | 2015 | All | Crossover | Cow | 8 | 35 | GS, CS, PB, C | 78/22 | [14] |
3 | Hungary | 2008 | All | Crossover | Cow | 76 | 28 | CS, AH, SBM, C | 55/45 | Unpublished |
4 | UK | 2016 | Multiparous | Randomized block | Cow | 75 | 174 | GS, CS, PB, C | 76/24 | [13] |
5 | Netherlands | 2017 | 2nd parity | Randomized block | Cow | 3 | 22 | CS, GS, SBM, C | 70/30 | [9] |
6 | Spain | 2015 | Primiparous | Randomized block | Cow | 24 | 56 | GH, CS, AH, ST, SBM, C | 60/40 | [12] |
7 | Spain | 2015 | Multiparous | Randomized block | Cow | 6 | 56 | GH, CS, AH, ST, SBM, C | 60/40 | [12] |
8 | Spain | 2016 | All | Randomized block | Cow | 20 | 56 | GH, CS, AH, ST, SBM, C | 80/20 | [15] |
9 | Switzerland | 2012 | All | Randomized block | Cow | 80 | 180 | GS, CS, GH, C | 67/33 | [11] |
10 | Germany | 2012 | All | Randomized block | Pen | 8 | 60 | CS, GS, AS, SBM, C | 52/48 | Unpublished |
11 | Hungary | 2010 | All | Randomized block | Cow | 65 | 92 | CS, AH, SBM, C | 55/45 | Unpublished |
12 | Netherlands | 2017 | All | Straight through | Cow | 8 | 70 | CS, GS, SBM, C | 70/30 | [16] |
13 | Belgium | 2011 | Multiparous | Straight through | Cow | 4 | 42 | GS, CS, SBM, C | 83/17 | [8] |
14 | France | 2011 | Multiparous | Straight through | Cow | 6 | 42 | CS, GH, SBM, C | 70/30 | Unpublished |
15 | France | 2014 | Multiparous | Straight through | Cow | 6 | 42 | GS, GH, SBM, C | 55/45 | Unpublished |
16 | UK | 2014 | All | Straight through | Pen | 5 | 30 | GS, WB, PB, C | 67/33 | Unpublished |
17 | UK | 2014 | All | Straight through | Pen | 6 | 53 | GS, WW, PB, C | 72/28 | Unpublished |
18 | UK | 2014 | All | Straight through | Pen | 6 | 57 | GS, CS, PB, C | 64/36 | Unpublished |
19 | UK | 2014 | Primiparous | Straight through | Pen | 6 | 244 | GS, WW, ST, SBM, C | 64/36 | Unpublished |
20 | UK | 2014 | Multiparous | Straight through | Pen | 6 | 244 | GS, WW, ST, SBM, C | 64/36 | Unpublished |
21 | Italy | 2017 | All | Straight through | Pen | 4 | 365 | CS, GS, C | 67/33 | Unpublished |
22 | Spain | 2016 | Multiparous | Straight through | Pen | 7 | 365 | CS, GS, GH, C | 70/30 | Unpublished |
23 | Spain | 2016 | Primiparous | Straight through | Pen | 7 | 365 | CS, GS, GH, C | 70/30 | Unpublished |
Parameter 1 | Studies | Minimum | Maximum | Mean | Median | SD |
---|---|---|---|---|---|---|
Treatment duration (d) | 22 | 22.0 | 427 | 143 | 80.5 | 125.0 |
Days in milk (d) | 14 | 20.0 | 296 | 171 | 183 | 60.16 |
DMI (kg/d) | 16 | 15.6 | 27.4 | 21.4 | 22.4 | 3.547 |
Milk yield (kg/d) | 23 | 18.2 | 49.2 | 31.0 | 30.1 | 6.559 |
Milk Fat (%) | 16 | 3.32 | 4.80 | 4.03 | 3.92 | 0.445 |
Milk protein (%) | 16 | 2.79 | 3.51 | 3.25 | 3.29 | 0.190 |
Milk lactose (%) | 8 | 4.43 | 5.27 | 4.75 | 4.76 | 0.206 |
Milk SCC (log/mL) | 3 | 3.91 | 4.92 | 4.46 | 4.63 | 0.429 |
FPCM yield (kg/d) | 20 | 21.3 | 47.1 | 32.9 | 32.1 | 5.957 |
FCE (kg/kg) | 16 | 1.17 | 1.97 | 1.52 | 1.48 | 0.207 |
Rumen pH | 3 | 6.46 | 6.78 | 6.62 | 6.62 | 0.147 |
Total VFA (mmol/L) | 8 | 50.8 | 165 | 103 | 101 | 29.56 |
Acetate (%) | 7 | 57.7 | 76.5 | 66.3 | 66.8 | 6.252 |
Propionate (%) | 7 | 14.9 | 26.0 | 19.3 | 18.4 | 3.630 |
Butyrate (%) | 7 | 8.74 | 14.1 | 10.9 | 10.0 | 1.931 |
Protozoa (log cells/mL) | 3 | 5.00 | 5.80 | 5.43 | 5.52 | 0.333 |
CH4 production (g/d) | 8 | 229 | 445 | 321 | 291 | 78.86 |
CH4 yield (g/kg DMI) | 8 | 9.79 | 46.2 | 19.7 | 17.0 | 10.75 |
CH4 intensity (g/kg FPCM) | 8 | 6.66 | 17.2 | 12.2 | 13.3 | 3.310 |
Parameter 1 | n | Response Ratio (R) | 95% CI | p-Value | Heterogeneity | |
---|---|---|---|---|---|---|
Min. Max. | I2 | Q | ||||
DMI (kg/d) | 16 | 1.003 | 0.985-1.020 | 0.737 | 86 | <0.001 |
Milk yield (kg/d) | 23 | 1.020 | 1.011-1.028 | <0.001 | 16 | 0.248 |
Milk Fat (g/d) | 16 | 1.004 | 0.979-1.029 | 0.739 | 85 | 0.000 |
Milk protein (g/kg) | 16 | 1.002 | 0.996-1.008 | 0.419 | 46 | 0.023 |
Milk lactose (g/kg) | 8 | 0.998 | 0.992-1.003 | 0.519 | 76 | <0.001 |
Milk SCC (log/mL) | 3 | 0.994 | 0.944-1.045 | 0.800 | 69 | 0.040 |
FPCM yield (kg/d) | 20 | 1.031 | 1.026-1.035 | <0.001 | 0 | 0.995 |
FCE (kg/kg) | 16 | 1.030 | 1.011-1.049 | 0.002 | 34 | 0.087 |
Rumen pH | 3 | 1.006 | 0.989-1.022 | 0.476 | 0 | 0.511 |
Total VFA (mmol/L) | 8 | 0.982 | 0.946-1.019 | 0.346 | 0 | 0.685 |
Acetate (%) | 7 | 1.002 | 0.991-1.011 | 0.756 | 91 | <0.001 |
Propionate (%) | 7 | 1.011 | 0.945-1.082 | 0.744 | 97 | <0.001 |
Butyrate (%) | 7 | 0.991 | 0.963-1.019 | 0.525 | 7 | 0.377 |
Protozoa (log cells/mL) | 3 | 0.977 | 0.924-1.032 | 0.405 | 39 | 0.193 |
CH4 production (g/d) | 8 | 0.954 | 0.921-0.987 | 0.007 | 23 | 0.241 |
CH4 yield (g/kg DMI) | 8 | 0.982 | 0.918-1.050 | 0.600 | 42 | 0.088 |
CH4 intensity (g/kg FPCM) | 8 | 0.925 | 0.864-0.989 | 0.023 | 19 | 0.278 |
Parameter 1 | n | Response Ratio(R) | 95% CI | p-value | Heterogeneity | |
---|---|---|---|---|---|---|
Min.–Max. | I2 | Q | ||||
DMI (kg/d) | 17 | 1.000 | 0.976–1.024 | 0.988 | 84 | <0.001 |
Milk yield (kg/d) | 19 | 1.026 | 1.006–1.046 | 0.008 | 76 | <0.001 |
Milk Fat (g/kg) | 10 | 1.000 | 0.978–1.022 | 0.999 | 76 | <0.001 |
Milk protein (g/kg) | 10 | 1.002 | 0.991–1.012 | 0.731 | 55 | 0.018 |
Milk SCC (log/mL) | 3 | 1.036 | 0.984–1.090 | 0.177 | 0 | 0.910 |
FPCM yield (kg/d) | 16 | 1.028 | 1.009–1.047 | 0.004 | 69 | <0.001 |
FCE (kg/kg) | 15 | 1.010 | 0.989–1.029 | 0.348 | 40 | 0.055 |
Rumen pH | 3 | 1.007 | 0.991–1.023 | 0.385 | 0 | 0.445 |
Total VFA (mmol/L) | 9 | 0.973 | 0.936–1.010 | 0.158 | 4 | 0.400 |
Acetate (%) | 7 | 1.005 | 0.998–1.011 | 0.116 | 22 | 0.260 |
Propionate (%) | 7 | 1.009 | 0.969–1.049 | 0.672 | 39 | 0.131 |
Butyrate (%) | 7 | 0.985 | 0.958–1.012 | 0.276 | 0 | 0.544 |
Protozoa (log cells/mL) | 3 | 0.969 | 0.896–1.046 | 0.423 | 78 | 0.011 |
CH4 production (g/d) | 8 | 0.978 | 0.957–0.998 | 0.037 | 0 | 0.675 |
CH4 yield (g/kg DMI) | 8 | 0.980 | 0.923–1.039 | 0.497 | 49 | 0.047 |
CH4 intensity (g/kg FPCM) | 7 | 0.974 | 0.944–1.003 | 0.087 | 0 | 0.984 |
Parameter | n | Response Ratio(R) | 95% CI | p-Value | Heterogeneity | |
---|---|---|---|---|---|---|
Min.–Max. | I2 | Q | ||||
DMI (kg/d) | 16 | 1.003 | 0.980–1.026 | 0.777 | 86 | <0.001 |
Milk yield (kg/d) | 19 | 1.036 | 1.016–1.056 | <0.001 | 73 | <0.001 |
Milk Fat (g/kg) | 9 | 1.013 | 0.971–1.057 | 0.541 | 77 | <0.001 |
Milk protein (g/kg) | 9 | 0.993 | 0.973–1.012 | 0.465 | 88 | <0.001 |
Milk SCC (log/mL) | 3 | 1.000 | 0.987–1.012 | 0.972 | 0 | 0.777 |
FPCM yield (kg/d) | 15 | 1.041 | 1.028–1.054 | <0.001 | 5 | 0.392 |
FCE (kg/kg) | 12 | 1.044 | 1.007–1.080 | 0.016 | 79 | <0.001 |
Rumen pH | 3 | 1.005 | 0.988–1.020 | 0.578 | 0 | 0.546 |
Total VFA (mmol/L) | 6 | 0.978 | 0.932–1.026 | 0.373 | 5 | 0.383 |
Acetate (%) | 4 | 1.002 | 0.986–1.017 | 0.844 | 0 | 0.494 |
Propionate (%) | 4 | 1.002 | 0.948–1.059 | 0.932 | 0 | 0.994 |
Butyrate (%) | 4 | 0.974 | 0.888–1.067 | 0.568 | 0 | 0.397 |
Protozoa (log cells/mL) | 3 | 0.992 | 0.941–1.045 | 0.770 | 86 | 0.001 |
CH4 production (g/d) | 7 | 0.912 | 0.868–0.958 | <0.001 | 0 | 0.724 |
CH4 yield (g/kg DMI) | 7 | 0.871 | 0.802–0.945 | 0.001 | 0 | 0.986 |
CH4 intensity (g/kg FPCM) | 5 | 0.901 | 0.807–1.000 | 0.050 | 0 | 0.748 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belanche, A.; Newbold, C.J.; Morgavi, D.P.; Bach, A.; Zweifel, B.; Yáñez-Ruiz, D.R. A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows. Animals 2020, 10, 620. https://doi.org/10.3390/ani10040620
Belanche A, Newbold CJ, Morgavi DP, Bach A, Zweifel B, Yáñez-Ruiz DR. A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows. Animals. 2020; 10(4):620. https://doi.org/10.3390/ani10040620
Chicago/Turabian StyleBelanche, Alejandro, Charles J. Newbold, Diego P. Morgavi, Alex Bach, Beatrice Zweifel, and David R. Yáñez-Ruiz. 2020. "A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows" Animals 10, no. 4: 620. https://doi.org/10.3390/ani10040620
APA StyleBelanche, A., Newbold, C. J., Morgavi, D. P., Bach, A., Zweifel, B., & Yáñez-Ruiz, D. R. (2020). A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows. Animals, 10(4), 620. https://doi.org/10.3390/ani10040620