Comparative Analysis of CpG Sites and Islands Distributed in Mitochondrial DNA of Model Organisms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. CpG Islands in mtDNA
3.2. Strongly Enriched CpG Regions in mtDNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morley, S.A.; Nielsen, B.L. Plant mitochondrial DNA. Front. Biosci. 2017, 22, 1023–1032. [Google Scholar]
- Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005, 6, 389–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, W.Y.; Lemire, B. The role of mitochondria in the life of the nematode, Caenorhabditis elegans. Biochim. et Biophys. Acta (BBA)—Mol. Basis Dis. 2003, 1638, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Van Der Wijst, M.G.; Van Tilburg, A.Y.; Ruiters, M.; Rots, M.G. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci. Rep. 2017, 7, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacobazzi, V.; Castegna, A.; Infantino, V.; Andria, G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol. Genet. Metab. 2013, 110, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Vanyushin, B.; Kiryanov, G.; Kudryashova, I.; Belozersky, A. DNA-methylase in loach embryos (Misgurnus fossilis). FEBS Lett. 1971, 15, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Vanyushin, B.; Kirnos, M. The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria. FEBS Lett. 1974, 39, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Vanyushin, B.F.; Kirnos, M.D. The structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Mol. Cell. Biochem. 1977, 14, 31–36. [Google Scholar] [CrossRef]
- Reis, R.J.S.; Goldstein, S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J. Boil. Chem. 1983, 258, 9078–9085. [Google Scholar]
- Pollack, Y.; Kasir, J.; Shemer, R.; Metzger, S.; Szyf, M. Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res. 1984, 12, 4811–4824. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.E.; Okitsu, C.Y.; Smith, A.; Hsieh, C.-L. Regionally Specific and Genome-Wide Analyses Conclusively Demonstrate the Absence of CpG Methylation in Human Mitochondrial DNA. Mol. Cell. Boil. 2013, 33, 2683–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.-M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, L.; Wong, E.; Huynh, T.; Tsirigos, A.; Ong, C.T.; Low, H.M.; Sung, W.-K.; Rigoutsos, I.; Loring, J.F.; Li17G; et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010, 20, 320–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infantino, V.; Castegna, A.; Iacobazzi, F.; Spera, I.; Scala, I.; Andria, G.; Iacobazzi, V. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol. Genet. Metab. 2011, 102, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Bianchessi, V.; Vinci, M.C.; Nigro, P.; Rizzi, V.; Farina, F.; Capogrossi, M.C.; Pompilio, G.; Gualdi, V.; Lauri, A. Methylation profiling by bisulfite sequencing analysis of the mtDNA Non-Coding Region in replicative and senescent Endothelial Cells. Mitochondrion 2016, 27, 40–47. [Google Scholar] [CrossRef]
- Ferreira, A.; Serafim, T.L.; Sardao, V.A.; Cunha-Oliveira, T. Role of Mtdna-Related Mitoepigenetic Phenomena in Cancer. Eur. J. Clin. Investig. 2015, 45, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.M.; Kerr, A.R.W.; De Sousa, D.; Bird, A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 2007, 17, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Vivian, C.J.; Brinker, A.E.; Graw, S.; Koestler, D.C.; Legendre, C.; Gooden, G.C.; Salhia, B.; Welch, D.R. Mitochondrial Genomic Backgrounds Affect Nuclear DNA Methylation and Gene Expression. Cancer Res. 2017, 77, 6202–6214. [Google Scholar] [CrossRef] [Green Version]
- Mechta, M.; Ingerslev, L.R.; Fabre, O.; Picard, M.; Barres, R. Evidence Suggesting Absence of Mitochondrial DNA Methylation. Front Genet. 2017, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Bellizzi, D.; D’Aquila, P.; Scafone, T.; Giordano, M.; Riso, V.; Riccio, A.; Passarino, G. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. Curr. Neuropharmacol. 2013, 20, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Du, Q.; Chen, L.; Fu, G.; Li, S.; Fu, L.; Zhang, X.; Ma, C.; Bin, C. CpG methylation patterns of human mitochondrial DNA. Sci. Rep. 2016, 6, 23421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.; Gertz, B.; Chestnut, B.A.; Martin, L.J. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front. Cell. Neurosci. 2013, 7, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Johnson, J.; John, J.C.S. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Res. 2018, 46, 5977–5995. [Google Scholar] [CrossRef] [PubMed]
- Pirola, C.; Gianotti, T.F.; Burgueño, A.L.; Rey-Funes, M.; Loidl, C.F.; Mallardi, P.; Martino, J.S.; Castaño, G.; Sookoian, S. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 2012, 62, 1356–1363. [Google Scholar] [CrossRef]
- Rice, P.; Longden, I.; Bleasby, A. Emboss: The European Molecular Biology Open Software Suite. TIG 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Chojnacki, S.; Cowley, A.; Lee, J.; Foix, A.; Lopez, R. Programmatic Access to Bioinformatics Tools from Embl-Ebi Update: 2017. Nucleic Acids Res. 2017, 45, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S. Mitochondrial genome organization and vertebrate phylogenetics. Genet. Mol. Boil. 2000, 23, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Okimoto, R.; Macfarlane, J.L.; Clary, D.O.; Wolstenholme, D.R. The Mitochondrial Genomes of Two Nematodes, Caenorhabditis Elegans and Ascaris Suum. Genet. 1992, 130, 471–498. [Google Scholar]
- Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. Cpg and Non-Cpg Methylation in Epigenetic Gene Regulation and Brain Function. Genes 2017, 8, 6. [Google Scholar]
- Iglesias, E.; Pesini, A.; Garrido-Pérez, N.; Meade, P.; Bayona-Bafaluy, M.P.; Montoya, J.; Ruiz-Pesini, E. Prenatal exposure to oxidative phosphorylation xenobiotics and late-onset Parkinson disease. Ageing Res. Rev. 2018, 45, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Romero, Í.; Emperador, S.; Llobet, L.; Montoya, J.; Ruiz-Pesini, E. Mitogenomics: Recognizing the Significance of Mitochondrial Genomic Variation for Personalized Medicine. Curr. Pharmacogenomics Pers. Med. 2011, 9, 84–93. [Google Scholar] [CrossRef]
- Ndi, M.; Marín-Buera, L.; Salvatori, R.; Singh, A.P.; Ott, M. Biogenesis of the bc1 Complex of the Mitochondrial Respiratory Chain. J. Mol. Boil. 2018, 430, 3892–3905. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, T.; Bhattacharjee, S.; Bhattacharjee, P. Hypomethylation of mitochondrial D-loop and ND6 with increased mitochondrial DNA copy number in the arsenic-exposed population. Toxicology 2018, 408, 54–61. [Google Scholar] [CrossRef]
- Blanch, M.; Mosquera, J.L.; Ansoleaga, B.; Ferrer, I.; Barrachina, M. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease–Related Pathology and in Parkinson Disease. Am. J. Pathol. 2016, 186, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.A.; Cho, J.; Cesare, A.J.; Griffith, J.D.; Attardi, G. Termination Factor-Mediated DNA Loop between Termination and Initiation Sites Drives Mitochondrial rRNA Synthesis. Cell 2005, 123, 1227–1240. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Arakawa, Y. 16S Ribosomal RNA Methylation: Emerging Resistance Mechanism against Aminoglycosides. Clin. Infect. Dis. 2007, 45, 88–94. [Google Scholar] [CrossRef]
- Schmitt, E.; Galimand, M.; Panvert, M.; Courvalin, P.; Mechulam, Y. Structural Bases for 16 S rRNA Methylation Catalyzed by ArmA and RmtB Methyltransferases. J. Mol. Boil. 2009, 388, 570–582. [Google Scholar] [CrossRef]
- Bar Yaacov, D.; Frumkin, I.; Yashiro, Y.; Chujo, T.; Ishigami, Y.; Chemla, Y.; Blumberg, A.; Schlesinger, O.; Bieri, P.; Greber, B.J.; et al. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates. PLoS Boil. 2016, 14, e1002557. [Google Scholar] [CrossRef]
- Gustafsson, C.M.; Falkenberg, M.; Larsson, N.-G. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu. Rev. Biochem. 2016, 85, 133–160. [Google Scholar] [CrossRef]
- Lopez, J.V.; Yuhki, N.; Masuda, R.; Modi, W.; O’Brien, S.J. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 1994, 39, 174–190. [Google Scholar] [PubMed]
- Richly, E.; Lartillot, N.; Philippe, H. NUMTs in Sequenced Eukaryotic Genomes. Mol. Boil. Evol. 2004, 21, 1081–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owa, C.; Poulin, M.; Yan, L.; Shioda, T. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: Sources and avoidance of false-positive detection. PLoS ONE 2018, 13, e0192722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Organism | Accession Number of Reference Sequence * | Length of MtDNA (bp **) |
---|---|---|
invertebrates | ||
Caenorhabditis elegans | NC_001328.1 | 13,794 |
Drosophila melanogaster | NC_024511.2 | 19,524 |
Daphnia magna | NC_026914.1 | 14,948 |
vertebrates | ||
Latimeria chalumnae | NC_001804.1 | 16,407 |
Danio rerio | NC_002333.2 | 16,596 |
Ambystoma mexicanum | NC_005797.1 | 16,369 |
Gallus gallus | NC_040970.1 | 16,785 |
Mus musculus | NC_005089.1 | 16,299 |
Canis lupus familiaris | NC_002008.4 | 16,727 |
Crocodylus porosus | NC_008143.1 | 16,916 |
Pantroglodytes ellioti | KM679417.1 | 16,559 |
Homo sapiens | NC_012920.1 | 16,569 |
Organism | Genome Length (bp *) | % GC ** | Positions of CpG Islands *** | Genome Region | Length of CpG Islands (bp) | Sum of C+G **** | %C + %G | Obs/Exp ***** |
---|---|---|---|---|---|---|---|---|
Danio rerio | 16,596 | 0.40 | 3281..3531 | 16s rRNA | 251 | 126 | 50.20 | 0.95 |
6205..6432 | rep_origin, TRNY, COX1 | 228 | 120 | 52.63 | 0.91 | |||
Gallus gallus | 16,785 | 0.46 | 8703..8925 | COX2 | 223 | 118 | 52.91 | 0.97 |
Canis lupus familiaris | 16,727 | 0.40 | 16,137..16,449 | D-loop (VNTR) | 313 | 170 | 54.31 | 2.71 |
Pan troglodytes ellioti | 16,559 | 0.44 | 14,246..14,447 | CYTB | 202 | 103 | 50.99 | 1.27 |
Homo sapiens | 16,569 | 0.44 | 7764..8036 | COX2 | 273 | 137 | 50.18 | 1.13 |
Organism | Genome Length (bp **) | % GC *** | Start and Stop of MtDNA Sequence **** | MtDNA Region | Length of CpG Islands (bp) ***** | Sum of C+G | %C + %G | Obs/Exp ****** |
---|---|---|---|---|---|---|---|---|
Danio rerio | 16,596 | 0.40 | 981..1180 | TRNI, 12s rRNA | 200 | 105 | 52.50 | 1.31 |
6205..6432 | TRNN *, TRNY *, COX1 | 228 | 120 | 52.63 | 1.17 | |||
Latimeria chalumnae | 16,407 | 0.42 | 145..370 | 12s rRNA | 226 | 113 | 50.00 | 0.80 |
Crocodylus porosus | 16,916 | 0.43 | 51..311 | 12s rRNA | 261 | 133 | 50.96 | 1.61 |
12,371..12,699 | ND5 | 329 | 171 | 51.98 | 1.38 | |||
Gallus gallus | 16,785 | 0.46 | 1784..1992 | 12s rRNA | 209 | 108 | 51.57 | 1.23 |
6901..7108 | COX1 | 208 | 111 | 53.37 | 1.25 | |||
9456..9794 | ATP6 | 339 | 174 | 51.33 | 1.25 | |||
9920..10,551 | COX3 | 632 | 323 | 51.11 | 0.99 | |||
13,647..13,925 | ND5 | 279 | 143 | 51.25 | 1.23 | |||
14,984..15,210 | CYTB | 227 | 119 | 52.42 | 1.20 | |||
16,297..16,508 | ND6 | 212 | 110 | 51.89 | 0.99 | |||
Canis lupus familiaris | 16,727 | 0.40 | 16,179..16,449 | D-loop VNTR (16,130..16,430) | 271 | 149 | 54.98 | 0.83 |
Pan troglodytes ellioti | 16,559 | 0.44 | 2848..3136 | ND1 | 289 | 146 | 50.52 | 1.26 |
5572..5779 | COX1 | 208 | 112 | 53.85 | 1.17 | |||
12,379..12,642 | ND5 | 264 | 140 | 53.03 | 1.41 | |||
14,246..14,447 | CYTB | 202 | 103 | 50.99 | 1.27 | |||
Homo sapiens | 16,569 | 0.44 | 1123..1352 | 12s rRNA | 230 | 115 | 50.00 | 1.15 |
3382..3717 | ND1 | 336 | 178 | 52.98 | 1.26 | |||
12,907..13,115 | ND5 | 209 | 109 | 52.15 | 1.29 | |||
14,804..15,044 | CYTB | 241 | 126 | 52.28 | 1.33 |
Caenorhabditis elegans | Daphnia magna | Drosophila melanogaster | Latimeria chalumnae | Danio rerio | Ambystoma mexicanum | Crocodylus porosus | Gallus gallus | Mus musculus | Canis lupus familiaris | Pan troglodytes ellioti | Homo sapiens | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strand | L | H | L | H | L | H | L | H | L | H | L | H | L | H | L | H | L | H | L | H | L | H | L | H | |
Genomic region | |||||||||||||||||||||||||
TRNF | 2 | 5 | |||||||||||||||||||||||
12s rRNA | 2 | 2 | 6 | 5 | 5 | 5 | 17 | 31 | 17 | 14 | 18 | 37 | 27 | 61 | 17 | 10 | 11 | 10 | 32 | 17 | 43 | 15 | 36 | ||
16s rRNA | 8 | 11 | 12 | 5 | 15 | 37 | 30 | 48 | 13 | 26 | 42 | 62 | 29 | 25 | 18 | 29 | 9 | 28 | |||||||
TRNV | 2 | 4 | |||||||||||||||||||||||
TRNL1 | 4 | 6 | 5 | 2 | |||||||||||||||||||||
ND1 | 2 | 5 | 4 | 18 | 4 | 17 | 20 | 14 | 21 | 3 | 10 | 23 | 58 | 22 | 29 | 14 | 15 | 15 | 27 | 14 | 34 | 25 | 37 | ||
TRNI | 2 | 2 | 2 | 2 | |||||||||||||||||||||
TRNM | 3 | 2 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 3 | ||||||||||||||
ND2 | 2 | 2 | 4 | 2 | 2 | 21 | 6 | 22 | 6 | 13 | 13 | 7 | 16 | 3 | 6 | 4 | 15 | 4 | 25 | 8 | 27 | ||||
TRNW | 2 | 2 | 3 | ||||||||||||||||||||||
TRNN | 2 | ||||||||||||||||||||||||
TRNC | 3 | 2 | |||||||||||||||||||||||
TRNY | 3 | 18 | 3 | 3 | 3 | ||||||||||||||||||||
COX1 | 2 | 5 | 12 | 29 | 2 | 14 | 41 | 6 | 21 | 19 | 37 | 22 | 41 | 17 | 32 | 10 | 16 | 19 | 20 | 28 | 16 | 36 | 16 | ||
TRNS1 | 5 | 3 | 3 | ||||||||||||||||||||||
TRND | 4 | ||||||||||||||||||||||||
COX2 | 8 | 10 | 6 | 9 | 11 | 17 | 2 | 9 | 6 | 9 | 15 | 15 | 5 | 4 | 6 | 15 | 12 | 18 | 10 | ||||||
TRNK | 4 | ||||||||||||||||||||||||
ATP8 | 2 | 2 | |||||||||||||||||||||||
ATP6 | 7 | 21 | 3 | 11 | 6 | 5 | 7 | 13 | 8 | 23 | 2 | 4 | 11 | 4 | 9 | 3 | 21 | 7 | 30 | ||||||
COX3 | 12 | 18 | 2 | 6 | 11 | 4 | 21 | 5 | 10 | 11 | 22 | 11 | 9 | 2 | 6 | 7 | 14 | 8 | 10 | 9 | 27 | ||||
TRNG | 3 | ||||||||||||||||||||||||
ND3 | 2 | 9 | 4 | 2 | 6 | 2 | 13 | 31 | 5 | 8 | 4 | 3 | 8 | 7 | 9 | 11 | 4 | ||||||||
TRNR | 3 | 2 | |||||||||||||||||||||||
ND4L | 2 | 15 | 2 | 3 | 8 | 4 | 7 | 18 | 2 | 6 | 2 | 6 | 10 | ||||||||||||
ND4 | 12 | 23 | 2 | 8 | 17 | 12 | 34 | 8 | 20 | 11 | 35 | 12 | 39 | 7 | 19 | 7 | 23 | 15 | 39 | 13 | 39 | ||||
TRNH | 2 | ||||||||||||||||||||||||
TRNS2 | 2 | 4 | 2 | 7 | 4 | ||||||||||||||||||||
TRNL2 | 2 | 2 | |||||||||||||||||||||||
ND5 | 23 | 2 | 2 | 16 | 57 | 8 | 33 | 2 | 5 | 20 | 78 | 5 | 51 | 14 | 42 | 20 | 64 | 12 | 46 | 16 | 59 | ||||
ND6 | 4 | 18 | 7 | 22 | 12 | 3 | 14 | 9 | 16 | 3 | 2 | 13 | 5 | 5 | |||||||||||
AT-REGION | 6 | 4 | |||||||||||||||||||||||
TRNE | 3 | ||||||||||||||||||||||||
CYTB | 2 | 10 | 5 | 9 | 2 | 2 | 14 | 10 | 16 | 22 | 8 | 13 | 23 | 21 | 13 | 28 | 13 | 11 | 16 | 27 | 20 | 22 | 19 | 33 | |
TRNP | 2 | ||||||||||||||||||||||||
TRNT | 2 | ||||||||||||||||||||||||
D-LOOP | 3 | 10 | 10 | 9 | 11 | 4 | 9 | 15 | 17 | 9 | 11 | 77 | 26 | 18 | 35 | 14 | 20 | ||||||||
sum of all CpG sites/strand ** | 14 | 40 | 79 | 174 | 16 | 28 | 143 | 308 | 163 | 328 | 98 | 226 | 247 | 492 | 183 | 326 | 110 | 201 | 192 | 317 | 170 | 332 | 196 | 356 |
Species | Strand | Start and Stop of MtDNA Sequence | CpG Count | Genes/Replication Origin Region |
---|---|---|---|---|
Caenorhabditiselegans | L | 3341..3356 | 3 | TRNL1, TRNS1 |
Daphnia magna | L | 1302..1323 | 3 | TRNY *, COX1 |
H | 1293..1319 | 4 | TRNY *, COX1 | |
Latimeria chalumnae | L | 2762..2788 | 4 | 16s rRNA, TRNL1, ND1 |
H | 1106..1134 | 4 | TRNV, 16s rRNA | |
H | 2693..2819 | 12 | 16s rRNA, TRNL1, ND1 | |
H | 5279..5466 | 14 | TRNN *, TRNC *, TRNY * | |
H | 7857..7908 | 6 | COX2, TRNK | |
H | 8526..8861 | 25 | ATP6, COX3 | |
H | 15,468...15,523 | 6 | CYTB, TRNW | |
Danio rerio | L | 6225..6412 | 14 | TRNN *, rep_origin *, TRNY * |
L | 11,558..11,579 | 3 | ND4L, ND4 | |
H | 951..1402 | 36 | TRNI, 12s rRNA | |
H | 3727..3873 | 12 | TRNL1, ND1 | |
H | 6219..6414 | 18 | rep_origin *, TRNY * | |
H | 8802..8845 | 4 | COX2, TRNK | |
H | 9538..9829 | 23 | ATP6, COX3 | |
H | 10,883..11,253 | 26 | ND3, TRNR, ND4L | |
Ambystoma mexicanum | L | 5153..5198 | 5 | rep_origin* |
L | 15,333..15,346 15,446..15,463 | 2 2 | intergenic region | |
H | 2606..2649 | 5 | 16s rRNA, TRNL1 | |
H | 5051..5179 | 10 | TRNA *, TRNN *, rep_origin * | |
H | 15,336..15,355 15,439..15,464 | 3 3 | intergenic region | |
Crocodylus porosus | L | 11,619..11,679 | 4 | TRNS2, intergenic region |
L | 13,688..13,713 | 4 | ND5, ND6 * | |
H | 3624..3720 | 11 | ND1, TRNI | |
H | 4664..5023 | 24 | ND2, TRNW | |
H | 7648..7931 | 21 | COX2, TRNK | |
H | 9918..9935 | 2 | TRNR, ND4L | |
H | 11,590..11,617 | 4 | intergenic region | |
H | 11,822..12,011 | 15 | TRNL2, ND5 | |
Gallus gallus | H | 1199..2726 | 98 | D-loop, TRNP, 12s rRNA, 16s rRNA, TRNV |
H | 4971..5040 | 8 | ND1, TRNI | |
H | 6404..6523 | 10 | TRNA *, TRNN * | |
H | 9542..10,097 | 37 | ATP6, COX3 | |
Mus musculus | L | 5167..5187 | 3 | rep_origin |
H | 5168..5186 | 18 | rep_origin | |
Canis lupus familiaris | L | 5187..5226 | 7 | rep_origin *, TRNC * |
L | 7969..7991 | 3 | ATP8, ATP6 | |
H | 2652..2692 | 5 | 16s rRNA, TRNL1 | |
H | 4983..5183 | 12 | TRNW, TRNA *, TRNN *, rep_origin *, TRNC * | |
H | 7982..7995 | 3 | ATP8, ATP6 | |
Pan troglodytes ellioti | L | 5156..5187 | 4 | intergenic region, TRNC * |
L | 7951..8003 | 5 | ATP8, ATP6 | |
H | 4946..5783 | 57 | TRNW, TRNA *, TRNN *, TRNC *, TRNY *, COX1 | |
H | 7964..8004 | 6 | ATP8, ATP6 | |
H | 8558..8720 | 12 | ATP6, COX3 | |
Homo sapiens | L | 5737..5768 | 5 | intergenic region, TRNC * |
H | 5540..6268 | 50 | TRNW, TRNA *, TRNN *, TRNC *, TRNY *, COX1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowal, K.; Tkaczyk, A.; Ząbek, T.; Pierzchała, M.; Ślaska, B. Comparative Analysis of CpG Sites and Islands Distributed in Mitochondrial DNA of Model Organisms. Animals 2020, 10, 665. https://doi.org/10.3390/ani10040665
Kowal K, Tkaczyk A, Ząbek T, Pierzchała M, Ślaska B. Comparative Analysis of CpG Sites and Islands Distributed in Mitochondrial DNA of Model Organisms. Animals. 2020; 10(4):665. https://doi.org/10.3390/ani10040665
Chicago/Turabian StyleKowal, Krzysztof, Angelika Tkaczyk, Tomasz Ząbek, Mariusz Pierzchała, and Brygida Ślaska. 2020. "Comparative Analysis of CpG Sites and Islands Distributed in Mitochondrial DNA of Model Organisms" Animals 10, no. 4: 665. https://doi.org/10.3390/ani10040665
APA StyleKowal, K., Tkaczyk, A., Ząbek, T., Pierzchała, M., & Ślaska, B. (2020). Comparative Analysis of CpG Sites and Islands Distributed in Mitochondrial DNA of Model Organisms. Animals, 10(4), 665. https://doi.org/10.3390/ani10040665