Detection of a 4 bp Mutation in the 3′UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Samples and Data Collection
2.2. DNA Isolation and DNA Pool Construction
2.3. Primer Design and Genotyping
2.4. Statistical Analysis
3. Results
3.1. Identification of a 3′UTR 4 bp Indel within Sox9
3.2. Analysis of Genotype and Allele Frequencies
3.3. Association Analysis between Indel Genotypes and Growth Traits in SBWC Goats
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jo, A.; Denduluri, S.; Zhang, B.; Wang, Z.; Yin, L.; Yan, Z.; Kang, R.; Shi, L.L.; Mok, J.; Lee, M.J.; et al. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis. 2014, 1, 149–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croft, B.; Ohnesorg, T.; Hewitt, J.; Bowles, J.; Quinn, A.; Tan, J.; Corbin, V.; Pelosi, E.; van den Bergen, J.; Sreenivasan, R.; et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat. Commun. 2018, 9, 5319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Wang, J.; Liu, N.; Cui, W.; Dong, W.; Xing, B.; Pan, C. Pig SOX9: Expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight. Theriogenology 2019, 138, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Lefebvre, V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J. Bone Miner. Metab. 2011, 29, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Henry, S.P.; Liang, S.; Akdemir, K.C.; de Crombrugghe, B. The postnatal role of Sox9 in cartilage. J. Bone Miner. Res. 2012, 27, 2511–2525. [Google Scholar] [CrossRef]
- Mertin, S.; Mcdowall, S.G.; Harley, V.R. The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res. 1999, 27, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, V.; Huang, W.; Harley, V.R.; Goodfellow, P.N.; de Crombrugghe, B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol. Cell. Biol. 1997, 17, 2336–2346. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.J.; Wheatley, S.; Muscat, G.E.; Conway-Campbell, J.; Bowles, J.; Wright, E.; Bell, D.M.; Tam, P.P.; Cheah, K.S.; Koopman, P. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev. Biol. 1997, 183, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Lefebvre, V.; Zhang, Z.; Eberspaecher, H.; de Crombrugghe, B. Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J. Biol. Chem. 1998, 273, 14989–14997. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, H.; Kamitani, T.; Yang, X.; Kandyil, R.; Bridgewater, L.C.; Fellous, M.; Mori-Akiyama, Y.; de Crombrugghe, B. The transcription factor Sox9 is degraded by the ubiquitin-proteasome system and stabilized by a mutation in a ubiquitin-target site. Matrix Biol. 2005, 23, 499–505. [Google Scholar] [CrossRef]
- Shi, S.; Wang, C.; Acton, A.J.; Eckert, G.J.; Trippel, S.B. Role of sox9 in growth factor regulation of articular chondrocytes. J. Cell. Biochem. 2015, 116, 1391–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, J.C.; Yue, S.; Lee, A.; Kikani, B.; Temnycky, A.; Barnes, K.M.; Baron, J. Persistent Sox9 expression in hypertrophic chondrocytes suppresses transdifferentiation into osteoblasts. Bone 2019, 125, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yan, H.; Xu, H.; Yang, Q.; Zhang, S.; Pan, C.; Chen, H.; Zhu, H.; Liu, J.; Qu, L.; et al. A novel indel within goat casein alpha S1 gene is significantly associated with litter size. Gene 2018, 671, 161–169. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, L.; Lan, X.; Asif, N.; Guan, F.; Fu, D.; Li, B.; Yan, C.; Zhang, H.; Zhang, X.; et al. Genome-wide definition of selective sweeps reveals molecular evidence of trait-driven domestication among elite goat (Capra species) breeds for the production of dairy, cashmere, and meat. GigaScience 2018, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, K.; Liu, J.; Zhu, H.; Qu, L.; Chen, H.; Lan, X.; Pan, C.; Song, X. An 11-bp Indel Polymorphism within the CSN1S1 Gene Is Associated with Milk Performance and Body Measurement Traits in Chinese Goats. Animals 2019, 9, 1114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cui, W.; Yang, H.; Wang, M.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. A novel missense mutation (L280V) within POU1F1 gene strongly affects litter size and growth traits in goat. Theriogenology 2019, 135, 198–203. [Google Scholar] [CrossRef]
- Hui, Y.; Zhang, Y.; Wang, K.; Pan, C.; Chen, H.; Qu, L.; Song, X.; Lan, X. Goat DNMT3B: An indel mutation detection, association analysis with litter size and mRNA expression in gonads. Theriogenology 2020, 147, 108–115. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, S.; Li, J.; Wang, X.; Peng, K.; Lan, X.; Pan, C. Development of a touch-down multiplex PCR method for simultaneously rapidly detecting three novel insertion/deletions (indels) within one gene: An example for goat GHR gene. Anim. Biotechnol. 2019, 30, 366–371. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Wang, K.; Yan, H.; Pan, C.; Chen, H.; Liu, J.; Zhu, H.; Qu, L.; Lan, X. Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology 2019, 125, 115–121. [Google Scholar] [CrossRef]
- Naicy, T.; Venkatachalapathy, R.T.; Aravindakshan, T.V.; Radhika, G.; Raghavan, K.C.; Mini, M.; Shyama, K. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats. Theriogenology 2016, 86, 2172–2178. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, V.R.; Sorensen, K.K.; Christensen, O.F.; Busch, M.E.; Vingborg, R.K.; Velander, I.H.; Lund, M.S.; Bendixen, C. Identification of QTL for dorso-caudal chronic pleuritis in 12 crossbred porcine families. Anim. Genet. 2010, 41, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Wang, X.; Tian, X.; Geng, R.; Li, W.; Jing, Z.; Han, R.; Tian, Y.; Liu, X.; Kang, X.; et al. Molecular characterization and an 80-bp indel polymorphism within the prolactin receptor (PRLR) gene and its associations with chicken growth and carcass traits. 3 Biotech 2019, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, E.; Wang, K.; Zhang, Y.; Yan, H.; Qu, L.; Chen, H.; Lan, X.; Pan, C. Two Insertion/Deletion Variants within SPAG17 Gene Are Associated with Goat Body Measurement Traits. Animals 2019, 9, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, T.; Li, W.; Liu, D.; Liang, K.; Wang, X.; Li, H.; Jiang, R.; Tian, Y.; Kang, X.; Li, Z. Two insertion/deletion variants in the promoter region of the QPCTL gene are significantly associated with body weight and carcass traits in chickens. Anim. Genet. 2019, 50, 279–282. [Google Scholar] [CrossRef]
- Cui, W.; Liu, N.; Zhang, X.; Zhang, Y.; Qu, L.; Yan, H.; Lan, X.; Dong, W.; Pan, C. A 20-bp insertion/deletion (indel) polymorphism within the CDC25A gene and its associations with growth traits in goat. Arch. Anim. Breed. 2019, 62, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, D.; Tang, S.; Li, D.; Han, R.; Tian, Y.; Li, H.; Li, G.; Li, W.; Liu, X.; et al. A multiallelic indel in the promoter region of the Cyclin-dependent kinase inhibitor 3 gene is significantly associated with body weight and carcass traits in chickens. Poult. Sci. 2019, 98, 556–565. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Wang, K.; Zhang, S.; Pan, C.; Chen, H.; Qu, L.; Yan, H.; Lan, X. A novel 12-bp indel polymorphism within the GDF9 gene is significantly associated with litter size and growth traits in goats. Anim. Genet. 2017, 48, 735–736. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, S.; He, L.; Zhu, H.; Wang, Z.; Yan, H.; Huang, Y.; Dang, R.; Lei, C.; Chen, H.; et al. A 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat. Theriogenology 2019, 139, 49–57. [Google Scholar] [CrossRef]
- Lan, X.Y.; Penagaricano, F.; Dejung, L.; Weigel, K.A.; Khatib, H. Short communication: A missense mutation in the PROP1 (prophet of Pit 1) gene affects male fertility and milk production traits in the US Holstein population. J. Dairy Sci. 2013, 96, 1255–1257. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Kang, Z.; Jiang, E.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 2020, 146, 20–25. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Jiang, E.; Yan, H.; Zhu, H.; Chen, H.; Liu, J.; Qu, L.; Pan, C.; Lan, X. InDels within caprine IGF2BP1 intron 2 and the 3′-untranslated regions are associated with goat growth traits. Anim. Genet. 2020, 51, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Lachance, C.; Leclerc, P. Mediators of the Jak/STAT signaling pathway in human spermatozoa. Biol. Reprod. 2011, 85, 1222–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menchaca, A.; Pinczak, A.; Rubianes, E. Follicular recruitment and ovulatory response to FSH treatment initiated on day 0 or day 3 postovulation in goats. Theriogenology 2002, 58, 1713–1721. [Google Scholar] [CrossRef]
- Wagner, T.; Wirth, J.; Meyer, J.; Zabel, B.; Held, M.; Zimmer, J.; Pasantes, J.; Bricarelli, F.D.; Keutel, J.; Hustert, E.; et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994, 79, 1111–1120. [Google Scholar] [CrossRef]
- Von Bohlen, A.E.; Bohm, J.; Pop, R.; Johnson, D.S.; Tolmie, J.; Stucker, R.; Morris-Rosendahl, D.; Scherer, G. A mutation creating an upstream initiation codon in the SOX9 5′ UTR causes acampomelic campomelic dysplasia. Mol. Genet. Genom. Med. 2017, 5, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, X.; Jia, W.; Pan, C.; Li, X.; Lei, C.; Chen, H.; Lan, X. Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor (ATBF1) Gene. Asian Australas. J. Anim. Sci. 2015, 28, 1394–1406. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; He, S.; Chen, L.; Li, W.; Di, J.; Liu, M. Estimates of linkage disequilibrium and effective population sizes in Chinese Merino (Xinjiang type) sheep by genome-wide SNPs. Genes Genom. 2017, 39, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yan, H.; Wang, K.; Cui, Y.; Chen, R.; Liu, J.; Zhu, H.; Qu, L.; Pan, C. Goat SPEF2: Expression profile, indel variants identification and association analysis with litter size. Theriogenology 2019, 139, 147–155. [Google Scholar] [CrossRef]
- Yang, W.; Yan, H.; Wang, K.; Cui, Y.; Zhou, T.; Xu, H.; Zhu, H.; Liu, J.; Lan, X.; Qu, L.; et al. Goat PDGFRB: Unique mRNA expression profile in gonad and significant association between genetic variation and litter size. R. Soc. Open Sci. 2019, 6, 180805. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, V.; Dvir-Ginzberg, M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect. Tissue Res. 2017, 58, 2–14. [Google Scholar] [CrossRef]
- Akiyama, H.; Chaboissier, M.C.; Martin, J.F.; Schedl, A.; de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002, 16, 2813–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, G.I.; Kim, H.J.; Lee, J.H. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5, -6 and -9) genes. Biomaterials 2011, 32, 4385–4392. [Google Scholar] [CrossRef] [PubMed]
- Kozhemyakina, E.; Lassar, A.B.; Zelzer, E. A pathway to bone: Signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015, 142, 817–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikegami, D.; Akiyama, H.; Suzuki, A.; Nakamura, T.; Nakano, T.; Yoshikawa, H.; Tsumaki, N. Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways. Development 2011, 138, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Dy, P.; Wang, W.; Bhattaram, P.; Wang, Q.; Wang, L.; Ballock, R.T.; Lefebvre, V. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev. Cell. 2012, 22, 597–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, C.; Tabin, C.J. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 2000, 127, 3141–3159. [Google Scholar]
- Topol, L.; Chen, W.; Song, H.; Day, T.F.; Yang, Y. Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J. Biol. Chem. 2009, 284, 3323–3333. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Zheng, Q.; Engin, F.; Munivez, E.; Chen, Y.; Sebald, E.; Krakow, D.; Lee, B. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 19004–19009. [Google Scholar] [CrossRef] [Green Version]
- Akman, H.B.; Erson-Bensan, A.E. Alternative polyadenylation and its impact on cellular processes. Microrna 2014, 3, 2–9. [Google Scholar] [CrossRef]
- Sandberg, R.; Neilson, J.R.; Sarma, A.; Sharp, P.A.; Burge, C.B. Proliferating cells express mRNAs with shortened 3′untranslated regions and fewer microRNA target sites. Science 2008, 320, 1643–1647. [Google Scholar] [CrossRef] [Green Version]
- Ozmen, O.; Kul, S.; Unal, E.O. Polymorphism of sheep POU1F1 gene exon 6 and 3′UTR region and their association with milk production traits. Iran J. Vet. Res. 2014, 15, 331–335. [Google Scholar] [PubMed]
- Hou, J.; An, X.; Song, Y.; Gao, T.; Lei, Y.; Cao, B. Two Mutations in the Caprine MTHFR 3′UTR Regulated by MicroRNAs Are Associated with Milk Production Traits. PLoS ONE 2015, 10, e0133015. [Google Scholar] [CrossRef] [PubMed]
- Miltiadou, D.; Hager-Theodorides, A.L.; Symeou, S.; Constantinou, C.; Psifidi, A.; Banos, G.; Tzamaloukas, O. Variants in the 3′ untranslated region of the ovine acetyl-coenzyme A acyltransferase 2 gene are associated with dairy traits and exhibit differential allelic expression. J. Dairy Sci. 2017, 100, 6285–6297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primers Name | Sequences (5′-3′) | Sizes (bp) | Function | Location | Note |
---|---|---|---|---|---|
P1 | F: GCTATTCTTTGCCGCCCTGTG | 112/108 | Indel detection | 3′UTR | Original design |
R: TCTCGGAGCAACTAAGCCTGTG | |||||
P2 | F: AGTGCCCTTTTCTCCTCCTA | 166/162 | Indel detection | 3′UTR | Original design |
R: TGACCCTCCACTACCTCTTT | |||||
P3 | F: CCTACCACCACCATCTAAGTT | 172/168 | Indel detection | 3′UTR | Original design |
R: CCCTTTCTGTTCCATACCAATA | |||||
P4 | F: TCCTTGCGGTCTCGGTGTTC | 242/238 | Indel detection | 3′UTR | Original design |
R: AAGCCCAGAAACTGCCTTAACG |
Observed Genotypes (N = 1109) | Frequencies | Ho | He | PIC | χ2 (p-Value) | |
---|---|---|---|---|---|---|
Genotypes | Alleles | |||||
DD (0) | 0 | 0.198(D) | 0.682 | 0.318 | 0.268 | 67.916 (p = 0.0001) |
ID (440) | 0.397 | 0.802(I) | ||||
II (669) | 0.603 |
Traits | Genotypes (bp) | p-Values | |
---|---|---|---|
ID | II | ||
BH (cm) | 54.78 ± 0.18 (n = 439) | 55.01 ± 0.14 (n = 668) | 0.329 |
BL (cm) | 66.84 a ± 0.25 (n = 439) | 65.92 c ± 0.22 (n = 668) | 0.006 |
HH (cm) | 57.77 ± 0.18 (n = 439) | 57.87 ± 0.15 (n = 667) | 0.708 |
CW (cm) | 19.13 ± 0.14 (n = 439) | 19.12 ± 0.11 (n = 668) | 0.974 |
CD (cm) | 27.67 a ± 0.14 (n = 439) | 27.20 b ± 0.11 (n = 668) | 0.010 |
HG (cm) | 83.15 a ± 0.48 (n = 439) | 81.13 c ± 0.41 (n = 668) | 0.001 |
CC (cm) | 8.05 a ± 0.03 (n = 440) | 7.95 b ± 0.03 (n = 668) | 0.041 |
HW (cm) | 16.71 a ± 0.16 (n = 440) | 15.92 c ± 0.14 (n = 668) | 4.37 × 10−4 |
BTI | 124.33 a ± 0.50 (n = 439) | 122.80 b ± 0.50 (n = 668) | 0.026 |
BLI | 122.40 a ± 0.52 (n = 439) | 120.10 c ± 0.40 (n = 668) | 3.83 × 10−4 |
CCI | 152.19 a ± 0.90 (n = 439) | 147.48 c ± 0.73 (n = 668) | 5.2 × 10−5 |
TCI | 14.75 a ± 0.08 (n = 439) | 14.46 c ± 0.06 (n = 668) | 0.004 |
CWI | 69.28 a ± 0.45 (n = 439) | 70.49 b ± 0.34 (n = 668) | 0.029 |
HWI | 119.86 a ± 1.53 (n = 439) | 125.56 b ± 1.16 (n = 668) | 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Bi, Y.; Wang, R.; Pan, C.; Chen, H.; Lan, X.; Qu, L. Detection of a 4 bp Mutation in the 3′UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits. Animals 2020, 10, 672. https://doi.org/10.3390/ani10040672
He L, Bi Y, Wang R, Pan C, Chen H, Lan X, Qu L. Detection of a 4 bp Mutation in the 3′UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits. Animals. 2020; 10(4):672. https://doi.org/10.3390/ani10040672
Chicago/Turabian StyleHe, Libang, Yi Bi, Ruolan Wang, Chuanying Pan, Hong Chen, Xianyong Lan, and Lei Qu. 2020. "Detection of a 4 bp Mutation in the 3′UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits" Animals 10, no. 4: 672. https://doi.org/10.3390/ani10040672
APA StyleHe, L., Bi, Y., Wang, R., Pan, C., Chen, H., Lan, X., & Qu, L. (2020). Detection of a 4 bp Mutation in the 3′UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits. Animals, 10(4), 672. https://doi.org/10.3390/ani10040672