Increase in Milk Yield from Cows through Improvement of Forage Production Using the N2-Fixing Legume Leucaena leucocephala in a Silvopastoral System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Area Location and Characteristics
2.2. Characterization and Management of the Studied Area
2.3. Forage Chemical Composition
2.4. Fixation and Transfer of Atmospheric Nitrogen (N2)
2.5. Design and Statistical Analysis
3. Results
3.1. Milk Production
3.2. Forage Yield
3.3. Forage Chemical Composition
3.4. Fixation and Transfer of Atmospheric Nitrogen (N2)
Estimation of the Contribution of BNF
4. Discussion
4.1. Milk Production
4.2. Forage Yield
4.3. Forage Quality
4.4. Fixation and Transfer of Atmospheric Nitrogen (N2)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarabia, L.; Solorio, F.J.; Ramírez, L.; Ayala, A.; Aguilar, C.; Ku, J.; Almeida, C.; Cassador, R.; Alves, B.J.; Boddey, R.M. Improving the Nitrogen Cycling in Livestock Systems through Silvopastoral Systems. In Nutrient Dynamics for Sustainable Crop Production; Springer: Singapore, 2020; pp. 189–213. [Google Scholar]
- IPCC. Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; IGES: Hayama, Japan, 2006. [Google Scholar]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [PubMed]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar]
- Jose, S.; Dollinger, J. Silvopasture: A sustainable livestock production system. Agrofor. Syst. 2019, 93, 1–9. [Google Scholar]
- Zampaligré, N.; Dossa, L.H.; Schlecht, E. Contribution of browse to ruminant nutrition across three agro-ecological zones of Burkina Faso. J. Arid Environ. 2013, 95, 55–64. [Google Scholar]
- Morgavi, D.P.; Eugène, M.; Martin, C.; Doreau, M. Reducing methane emissions in ruminants: Is it an achievable goal. In Challenging Strategies to Promote the Sheep and Goat Sector in the Current Global Context; Options Méditerranéennes: Série A. Séminaires Méditerranéens; CIHEAM/CSIC/Universidad de León/FAO: Zaragoza, Spain, 2011; pp. 65–73. [Google Scholar]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biological and Fertility: A Handbook of Methods, 2nd ed.; CAB International: Wallingford, UK, 1993; p. 221. [Google Scholar]
- García, E. Mapa de Climas; Clasificación de Köppen Modificado por García; Escala: Mexico City, México, 1998; Volume 1. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official methods of analysis. Assoc. Anal. Chem. 1990, 1, 80–82. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar]
- Boddey, R.M.; Peoples, M.B.; Palmer, B.; Dart, P.J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr. Cycl. Agroecosyst. 2000, 57, 235–270. [Google Scholar]
- Shearer, G.; Kohl, D.H. N2-fixation in field settings: Estimations based on natural 15N abundance. Funct. Plant Biol. 1986, 13, 699–756. [Google Scholar]
- Peoples, M.B.; Palmer, B.; Boddey, R.M. The use of 15N to study biological nitrogen fixation by perennial legumes. In Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems; Springer: Dordrecht, The Netherlands, 2001; pp. 119–144. [Google Scholar]
- Bacab-Pérez, H.M.; Solorio-Sánchez, F.J. Oferta y consumo de forraje y producción de leche en ganado de doble propósito manejado en sistemas silvopastoriles en Tepalcatepec, Michoacán. Trop. Subtrop. Agroecosyst. 2011, 13, 271–278. [Google Scholar]
- Ruiz, T.E.; Febles, G.J.; Castillo, E.; Simón, L.; Lamela, L.; Hernández, I.; Jordán, H.; Galindo, J.L.; Chongo, B.B.; Delgado, D.C.; et al. Leucaena feeding systems in Cuba. Trop. Grassl.-Forrajes Trop. 2019, 7, 403–406. [Google Scholar]
- Rivera, J.E.; Chará, J.; Barahona, R. CH4, CO2 and N2O emissions from grasslands and bovine excreta in two intensive tropical dairy production systems. Agrofor. Syst. 2019, 93, 915–928. [Google Scholar] [CrossRef]
- Calle, Z.; Murgueitio, E.; Chará, J.; Molina, C.H.; Zuluaga, A.F.; Calle, A. A strategy for scaling-up intensive silvopastoral systems in Colombia. J. Sustain. For. 2013, 32, 677–693. [Google Scholar] [CrossRef]
- Leng, R.A. Factors affecting the utilization of ‘poor-quality’ forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Minson, D.J. Digestible energy of forage. Forage in Ruminant Nutrition; Minson, D.J., Ed.; Academic Press: San Diego, CA, USA, 1990; pp. 85–149. [Google Scholar]
- Poppi, D.P.; McLennan, S.R. Protein and energy utilization by ruminants at pasture. J. Anim. Sci. 1995, 73, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar] [CrossRef]
- Ruiz-González, A.; Ayala-Burgos, A.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Efficiency of utilization of dietary nitrogen for milk production by dual-purpose cows fed increasing levels of Leucaena leucocephala forage mixed with Pennisetum purpureum grass. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 121–122. [Google Scholar]
- Bottini-Luzardo, M.B.; Aguilar-Pérez, C.F.; Centurión-Castro, F.G.; Solorio-Sánchez, F.J.; Ku-Vera, J.C. Milk yield and blood urea nitrogen in crossbred cows grazing Leucaena leucocephala in a silvopastoral system in the Mexican tropics. Trop. Grassl.-Forrajes Trop. 2016, 4, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Newbold, C.J.; El Hassan, S.M.; Wang, J.; Ortega, M.E.; Wallace, R.J. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 1997, 78, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [Green Version]
- Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Romano-Muñoz, J.L.; Solorio-Sánchez, F.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Effect of Dried Leaves of Leucaena leucocephala on Rumen Fermentation, Rumen Microbial Population, and Enteric Methane Production in Crossbred Heifers. Animals 2020, 10, 300. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.T.; McSweeney, C.; Tomkins, N.W.; Eckard, R.J. Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric. Syst. 2015, 136, 138–146. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 2012, 44, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Molina-Botero, I.C.; Arroyave-Jaramillo, J.; Valencia-Salazar, S.; Barahona-Rosales, R.; Aguilar-Pérez, C.F.; Burgos, A.A.; Arango, J.; Ku-Vera, J.C. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim. Feed Sci. Technol. 2019, 251, 1–11. [Google Scholar] [CrossRef]
- Duguma, B.; Kang, B.T.; Okali, D.U. Effect of pruning intensities of three woody leguminous species grown in alley cropping with maize and cowpea on an alfisol. Agrofor. Syst. 1988, 6, 19–35. [Google Scholar] [CrossRef]
- Pena, K.D.; Nascimento Júnior, D.D.; Silva, S.C.; Euclides, V.P.; Zanine, A.D. Morphogenic and structural characteristics and herbage accumulation of Tanzania grass submitted to two cutting heights and three intervals. Rev. Bras. De Zootec. 2009, 38, 2127–2136. [Google Scholar] [CrossRef] [Green Version]
- Handley, L.L.; Raven, J.A. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 1992, 15, 965–985. [Google Scholar] [CrossRef]
- Van Kessel, C.; Farrell, R.E.; Roskoski, J.P.; Keane, K.M. Recycling of the naturally-occurring 15N in an established stand of Leucaena leucocephala. Soil Biol. Biochem. 1994, 26, 757–762. [Google Scholar] [CrossRef]
- Solorio Sanchez, F.J. Soil Fertility and Nutrient Cycling in Pure and Mixed Fodder Bank Systems Using Leguminous and Non-Leguminous Shrubs. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2005. [Google Scholar]
- Peoples, M.B.; Boddey, R.M.; Herridge, D.F. Quantification of nitrogen fixation. In Nitrogen Fixation at the Millennium; Elsevier Science: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Unkovich, M.; Baldock, J. Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol. Biochem. 2008, 40, 2915–2921. [Google Scholar] [CrossRef]
- Peoples, M.B.; Chalk, P.M.; Unkovich, M.J.; Boddey, R.M. Can differences in 15N natural abundance be used to quantify the transfer of nitrogen from legumes to neighbouring non-legume plant species? Soil Biol. Biochem. 2015, 87, 97–109. [Google Scholar] [CrossRef]
- Camacaro, S.; Garrido, J.C.; Machado, W. Fijación de nitrógeno por Leucaena leucocephala, Gliricidia sepium y Albizia lebbeck y su transferencia a las gramíneas asociadas. Zootec. Trop. 2004, 22, 49–69. [Google Scholar]
- Danso, S.K.; Bowen, G.D.; Sanginga, N. Biological nitrogen fixation in trees in agro-ecosystems. In Biological Nitrogen Fixation for Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 1992; pp. 177–196. [Google Scholar]
- Awonaike, K.O.; Hardarson, G.; Kumarasinghe, K.S. Biological nitrogen fixation of Gliricidia sepium/Rhizobium symbiosis as influenced by plant genotype, bacteria strain and their interactions. Trop. Agric. 1992, 69, 381–385. [Google Scholar]
- Liyanage, M.D.; Danso, S.K.; Jayasundara, H.P. Biological nitrogen fixation in four Gliricidia sepium genotypes. Plant Soil 1994, 161, 267–274. [Google Scholar] [CrossRef]
- Juárez, R.; Cerrillo, S.; Gutiérrez, O.; Romero, T.; Colín, N.; Bernal, B. Assessment of the nutritional value of tropical grasses obtained from conventional analyses and in vitro gas production. Técnica Pecuaria en México 2009, 47, 55–67. [Google Scholar]
- Blair, G.; Catchpoole, D.; Horne, P. Forage tree legumes: Their management and contribution to the nitrogen economy of wet and humid tropical environments. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 1990; Volume 44, pp. 27–54. [Google Scholar]
- Jayasundara, H.P.; Dennett, M.D.; Sangakkara, U.R. Biological nitrogen fixation in Gliricidia sepium and Leucaena leucocephala and transfer of fixed nitrogen to an associated grass. Trop. Grassl. 1997, 31, 529–537. [Google Scholar]
- Shelton, M.; Dalzell, S. Production, economic and environmental benefits of Leucaena pastures. Trop. Grassl. 2007, 41, 174. [Google Scholar]
Cutting | SPS Constituent (kg DM/ha) | Dry Mass (kg DM/ha) | Total N (kg N/ha) | |||
---|---|---|---|---|---|---|
Interval | L. leucocephala | M. maximus | SPS | MMM | SPS | MMM |
35 days | 1846.3 | 4506.9 | 6353.2 b | 6356.6 b | 149.49 a | 83.76 b |
50 days | 1940.2 | 4967.6 | 6907.8 b | 10,691.2 a | 142.47 a | 127.86 a |
Specie | Cutting Interval (Days) | Content (%) | |||
---|---|---|---|---|---|
DM | CP | ADF | NDF | ||
L. leucocephala | 35 | 24.3 b | 29.0 a | 24.1 | 40.3 |
L. leucocephala | 50 | 26.5 a | 26.1 b | 24.9 | 42.3 |
M. maximus (associated) | 35 | 22.9 | 9.9 a | 39.8 | 63.7 b |
M. maximus (associated) | 50 | 24.6 | 7.8 b | 41.3 | 68.4 a |
M. maximus (monoculture) | 35 | 23.8 | 8.4 b | 40.9 | 68.6 a |
M. maximus (monoculture) | 50 | 23.4 | 7.4 b | 42.5 | 69.7 a |
Legumes | Forage | Woody Material | Whole Plant | ||||||
---|---|---|---|---|---|---|---|---|---|
δ 15N | %N | Total N | δ 15N | % | Total N | Mean a δ15N | Ndfa | Total BNF | |
(‰) | % | kg ha−1 | (‰) | N | kg ha−1 | (‰) | % | kg ha−1 | |
L. leucocephala (35) | +0.67 | 4.38 | 80.14 | −1.11 | 1.06 | 10.89 | +0.15 | 89 | 80.9 |
L. leucocephala (50) | +0.35 | 4.23 | 81.57 | −1.47 | 1.05 | 2.61 | +0.33 | 95 | 80.0 |
Grass | Forage | ||||||||
δ 15N (‰) | %N | Total N kg ha−1 | |||||||
M. maximus associated (35) | +3.31 a | 1.56 a | 69.34 | ||||||
M. maximus associated (50) | +2.19 b | 1.23 b | 60.90 | ||||||
M. maximus monoculture (35) | +5.49 b | 1.33 a | 83.76 | ||||||
M. maximus monoculture (50) | +5.62 a | 1.18 b | 127.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarabia-Salgado, L.; Solorio-Sánchez, F.; Ramírez-Avilés, L.; Rodrigues Alves, B.J.; Ku-Vera, J.; Aguilar-Pérez, C.; Urquiaga, S.; Boddey, R.M. Increase in Milk Yield from Cows through Improvement of Forage Production Using the N2-Fixing Legume Leucaena leucocephala in a Silvopastoral System. Animals 2020, 10, 734. https://doi.org/10.3390/ani10040734
Sarabia-Salgado L, Solorio-Sánchez F, Ramírez-Avilés L, Rodrigues Alves BJ, Ku-Vera J, Aguilar-Pérez C, Urquiaga S, Boddey RM. Increase in Milk Yield from Cows through Improvement of Forage Production Using the N2-Fixing Legume Leucaena leucocephala in a Silvopastoral System. Animals. 2020; 10(4):734. https://doi.org/10.3390/ani10040734
Chicago/Turabian StyleSarabia-Salgado, Lucero, Francisco Solorio-Sánchez, Luis Ramírez-Avilés, Bruno José Rodrigues Alves, Juan Ku-Vera, Carlos Aguilar-Pérez, Segundo Urquiaga, and Robert Michael Boddey. 2020. "Increase in Milk Yield from Cows through Improvement of Forage Production Using the N2-Fixing Legume Leucaena leucocephala in a Silvopastoral System" Animals 10, no. 4: 734. https://doi.org/10.3390/ani10040734
APA StyleSarabia-Salgado, L., Solorio-Sánchez, F., Ramírez-Avilés, L., Rodrigues Alves, B. J., Ku-Vera, J., Aguilar-Pérez, C., Urquiaga, S., & Boddey, R. M. (2020). Increase in Milk Yield from Cows through Improvement of Forage Production Using the N2-Fixing Legume Leucaena leucocephala in a Silvopastoral System. Animals, 10(4), 734. https://doi.org/10.3390/ani10040734