Using Passive Infrared Detectors to Record Group Activity and Activity in Certain Focus Areas in Fattening Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
- Further verification of PIDs for their suitability to record the activity of a group of fattening pigs within the pen in order to obtain information on behavioral changes during the day;
- Determining whether it is possible to obtain information on behavioral changes not only at group level in general but also in specific functional areas of the pen by focusing PIDs;
- Verification of the relationship between indoor environment parameters and the activity pattern of the focused animal group.
2. Materials and Methods
2.1. Animals and Housing
2.2. Passive Infrared Detector and Functional Areas within the Pen
2.3. Visual Assessment as Reference Method
2.4. Climate Measurements
2.5. Processing of Data and Statistical Analysis
3. Results
3.1. Comparison between PID and Visual Assessment
3.2. PID Combined with Behavioral Analysis
3.2.1. Development of Group Activity over the Course of Fattening
3.2.2. Use of Different Enrichment Material
3.3. PID Combined with Climate Analysis
3.3.1. Indoor Climate
3.3.2. Activity as a Function of THI
3.3.3. NH3 Concentration Profile as a Function of Activity
4. Discussion
4.1. Comparison between PID and Visual Assessment
4.2. PID Combined with Behavioral Analysis
4.3. PID Combined with Climate Analysis
4.4. Outlook for Future Application Possibilities in Practice
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J.; et al. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef]
- Blokhuis, H.J.; Jones, R.B.; Geers, R.; Miele, M.; Veissier, I. Measuring and monitoring animal welfare: Transparency in the food product quality chain. Anim. Welf. 2003, 12, 445–455. [Google Scholar]
- Besteiro, R.; Arango, T.; Rodríguez, M.R.; Fernández, M.D.; Velo, R. Estimation of patterns in weaned piglets’ activity using spectral analysis. Biosyst. Eng. 2018, 173, 85–92. [Google Scholar] [CrossRef]
- Welfare Quality® Assessment Protocol for Pigs; Welfare Quality Consortium: Lelystad, The Netherlands, 2009.
- Ott, S.; Moons, C.P.H.; Kashiha, M.A.; Bahr, C.; Tuyttens, F.A.M.; Berckmans, D.; Niewold, T.A. Automated video analysis of pig activity at pen level highly correlates to human observations of behavioural activities. Livest. Sci. 2014, 160, 132–137. [Google Scholar] [CrossRef]
- Viazzi, S.; Ismayilova, G.; Oczak, M.; Sonoda, L.T.; Fels, M.; Guarino, M.; Vranken, E.; Hartung, J.; Bahr, C.; Berckmans, D. Image feature extraction for classification of aggressive interactions among pigs. Comput. Electron. Agric. 2014, 104, 57–62. [Google Scholar] [CrossRef]
- Oczak, M.; Viazzi, S.; Ismayilova, G.; Sonoda, L.T.; Roulston, N.; Fels, M.; Bahr, C.; Hartung, J.; Guarino, M.; Berckmans, D.; et al. Classification of aggressive behaviour in pigs by activity index and multilayer feed forward neural network. Biosyst. Eng. 2014, 119, 89–97. [Google Scholar] [CrossRef]
- Costa, A.; Ismayilova, G.; Borgonovo, F.; Viazzi, S.; Berckmans, D.; Guarino, M. Image-processing technique to measure pig activity in response to climatic variation in a pig barn. Anim. Prod. Sci. 2014, 54, 1075–1083. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O.; Edwards, S.A.; Sturm, B. A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method. Animal 2017, 11, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Nasirahmadi, A.; Richter, U.; Hensel, O.; Edwards, S.; Sturm, B. Using machine vision for investigation of changes in pig group lying patterns. Comput. Electron. Agric. 2015, 119, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Gronskyte, R.; Clemmensen, L.H.; Hviid, M.S.; Kulahci, M. Monitoring pig movement at the slaughterhouse using optical flow and modified angular histograms. Biosyst. Eng. 2016, 141, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Kashiha, M.; Bahr, C.; Haredasht, S.A.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. The automatic monitoring of pigs water use by cameras. Comput. Electron. Agric. 2013, 90, 164–169. [Google Scholar] [CrossRef]
- Lao, F.; Brown-Brandl, T.; Stinn, J.P.; Liu, K.; Teng, G.; Xin, H. Automatic recognition of lactating sow behaviors through depth image processing. Comput. Electron. Agric. 2016, 125, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Besteiro, R.; Rodríguez, M.R.; Fernández, M.D.; Ortega, J.A.; Velo, R. Agreement between passive infrared detector measurements and human observations of animal activity. Livest. Sci. 2018, 214, 219–224. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Liu, S.; Radcliffe, J.S.; Vonderohe, C. Evaluation and characterization of Passive Infrared Detectors to monitor pig activities in an environmental research building. Biosyst. Eng. 2017, 158, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.; Pedersen, C.B. Animal Activity Measured by Infrared Detectors. J. Agric. Eng. Res. 1995, 61, 239–246. [Google Scholar] [CrossRef]
- Langbein, J.; Scheibe, K.M.; Eichhorn, K.; Lindner, U.; Streich, W.J. An activity-data-logger for monitoring free-ranging animals. Appl. Anim. Behav. Sci. 1996, 48, 115–124. [Google Scholar] [CrossRef]
- Puppe, B.; Schön, P.C.; Wendland, K. Monitoring of piglets’ open field activity and choice behaviour during the replay of maternal vocalization: A comparison between Observer and PID technique. Lab. Anim. 1999, 33, 215–220. [Google Scholar] [CrossRef]
- Nielsen, B.L.; Kjaer, J.B.; Friggens, N.C. Temporal changes in activity measured by passive infrared detection (PID) of broiler strains growing at different rates. Arch. Geflügelk. 2004, 68, 106–110. [Google Scholar]
- Nielsen, B.L. Use of passive infrared detectors (PIDs) to monitor bursts of activity in groups of broilers. Arch. Geflügelk. 2003, 67, 42–44. [Google Scholar]
- Von Wachenfelt, E.; Pedersen, S.; Gustafsson, G. Release of heat, moisture and carbon dioxide in an aviary system for laying hens. Br. Poult. Sci. 2001, 42, 171–179. [Google Scholar] [CrossRef]
- Blanes, V.; Pedersen, S. Ventilation Flow in Pig Houses measured and calculated by Carbon Dioxide, Moisture and Heat Balance Equations. Biosyst. Eng. 2005, 92, 483–493. [Google Scholar] [CrossRef]
- Pijpers, A.; Schoevers, E.J.; Van Gogh, H.; Van Leengoed, L.A.; Visser, I.J.; Van Miert, A.S.; Verheijden, J.H. The influence of disease on feed and water consumption and on pharmacokinetics of orally administered oxytetracycline in pigs. J. Anim. Sci. 1991, 69, 2947–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, T.N.; Kristensen, A.R. A model for Monitoring the Condition of Young Pigs by their Drinking Behaviour. Comput. Electron. Agric. 2005, 48, 138–154. [Google Scholar] [CrossRef]
- Andersen, H.M.-L.; Dybkjær, L.; Herskin, M.S. Growing pigs’ drinking behaviour: Number of visits, duration, water intake and diurnal variation. Animal 2014, 8, 1881–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin, A.; Van Milgen, J.; Dubois, S.; Noblet, J. Effect of high temperature on feeding behaviour and heat production in group-housed young pigs. Br. J. Nutr. 2001, 86, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zonderland, J.J.; Schepers, F.; Bracke, M.B.M.; Den Hartog, L.A.; Kemp, B.; Spoolder, H.A.M. Characteristics of biter and victim piglets apparent before a tail-biting outbreak. Animal 2011, 5, 767–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.L.V.; Andersen, H.M.-L.; Pedersen, L.J. Can tail damage outbreaks in the pig be predicted by behavioural change? Vet. J. 2016, 209, 50–56. [Google Scholar] [CrossRef]
- Ursinus, W.W.; Van Reenen, C.G.; Kemp, B.; Bolhuis, J.E. Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: Predicting the inevitable? Appl. Anim. Behav. Sci. 2014, 156, 22–36. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Keen, A.; Metz, J.H.M.; Speelman, L.; Verstegen, M.W.A. Ammonia Emission Patterns during the Growing Periods of Pigs Housed on Partially Slatted Floors. J. Agric. Eng. Res. 1995, 62, 105–116. [Google Scholar] [CrossRef]
- McGinn, S.M.; Flesch, T.K.; Chen, D.; Crenna, B.; Denmead, O.T.; Naylor, T.; Rowell, D. Coarse Particulate Matter Emissions from Cattle Feedlots in Australia. J. Environ. Qual. 2010, 39, 791–798. [Google Scholar] [CrossRef]
- Vitt, R.; Weber, L.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosyst. Eng. 2017, 164, 85–97. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Hillmann, E.; Schrader, L.; Mayer, C.; Gygax, L. Effects of weight, temperature and behaviour on the circadian rhythm of salivary cortisol in growing pigs. Animal 2008, 2, 405–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, D.L.; Walters, D.E.; Legge, K.F. Variations in motor activity and in food and water intake over 24 h periods in pigs. J. Agric. Sci. 1980, 95, 371–380. [Google Scholar] [CrossRef]
- Fraser, D.; Phillips, P.A.; Thompson, B.K.; Tennessen, T. Effect of straw on the Behaviour of Growing Pigs. Appl. Anim. Behav. Sci. 1991, 30, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Saha, C.K.; Zhang, G.; Kai, P.; Bjerg, B. Effects of a partial pit ventilation system on indoor air quality and ammonia emission from a fattening pig room. Biosyst. Eng. 2010, 105, 279–287. [Google Scholar] [CrossRef]
- Ekkel, E.D.; Spoolder, H.A.M.; Hulsegge, I.; Hopster, H. Lying characteristics as determinants for space requirements in pigs. Appl. Anim. Behav. Sci. 2003, 80, 19–30. [Google Scholar] [CrossRef]
- Ralph, C.R.; Tilbrook, A.J. Invited Review: The usefulness of measuring glucocorticoids for assessing animal welfare. J. Anim. Sci. 2016, 94, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Hart, B.L. Biological Basis of the Behavior of Sick Animals. Neurosci Biobehav Rev. 1988, 12, 123–137. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Verstegen, M.W.A. Reactions of pigs to a hot environment. In Livestock Environment VII, Proceedings of the Seventh International Symposium, Beijing, China, 18−20 May 2005; T. Brown-Brandl; American Society of Agricultural Engineers: St. Joseph, MO, USA, 2005. [Google Scholar]
- Larsen, M.L.V.; Andersen, H.M.-L.; Pedersen, L.J. Changes in activity and object manipulation before tail damage in finisher pigs as an early detector of tail biting. Animal 2019, 13, 1037–1044. [Google Scholar] [CrossRef]
- Statham, P.; Green, L.; Bichard, M.; Mendl, M. Predicting tail-biting from behaviour of pigs prior to outbreaks. Appl. Anim. Behav. Sci. 2009, 121, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Meese, G.B.; Ewbank, R. The establishment and nature of the dominance hierarchy in the domesticated pig. Anim. Behav. 1973, 21, 326–334. [Google Scholar] [CrossRef]
- Arey, D.S.; Franklin, M.F. Effects of straw and unfamiliarity on fighting between newly mixed growing pigs. Appl. Anim. Behav. Sci. 1995, 45, 23–30. [Google Scholar] [CrossRef]
- Hoy, S. Nutztierethologie; Eugen Ulmer KG: Stuttgart, Germany, 2009; pp. 105–139. [Google Scholar]
- De Haer, L.C.M.; Merks, J.W.M. Patterns of daily food intake in growing pigs. Anim. Prod. 1992, 54, 95–104. [Google Scholar] [CrossRef]
- Quiniou, N.; Dubois, S.; Noblet, J. Voluntary feed intake and feeding behaviour of group-housed growing pigs are affected by ambient temperature and body weight. Livest. Prod. Sci 2000, 63, 245–253. [Google Scholar] [CrossRef]
- Nielsen, B.L.; Lawrence, A.B.; Whittemore, C.T. Effect of group size on feeding behaviour, social behaviour, and performance of growing pigs using single-space feeders. Livest. Prod. Sci 1995, 44, 73–85. [Google Scholar] [CrossRef]
- Hyun, Y.; Ellis, M. Effect of group size and feeder type on growth performance and feeding patterns in finishing pigs. J. Anim. Sci. 2002, 80, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Reimert, I.; Bolhuis, J.E.; Kemp, B.; Rodenburg, T.B. Indicators of positive and negative emotions and emotional contagion in pigs. Physiol. Behav. 2013, 109, 42–50. [Google Scholar] [CrossRef]
- Held, S.D.E.; Špinka, M. Animal play and animal welfare. Anim. Behav. 2011, 81, 891–899. [Google Scholar] [CrossRef]
- Lawrence, A. Consumer Demand Theory and the Assessment of Animal Welfare. Anim. Behav. 1987, 35, 293–295. [Google Scholar] [CrossRef]
- Guy, J.H.; Meads, Z.A.; Shiel, R.S.; Edwards, S.A. The effect of combining different environmental enrichment materials on enrichment use by growing pigs. Appl. Anim. Behav. Sci. 2013, 144, 102–107. [Google Scholar] [CrossRef]
- Jeppsson, K.-H. Diurnal Variation in Ammonia, Carbon Dioxide and Water Vapour Emission from an Uninsulated, Deep Litter Building for Growing/Finishing Pigs. Biosyst. Eng. 2002, 81, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Janssen, J.; Krause, K.-H. Stallinterne Beeinflussung der Gesamtemissionen aus Tierhaltungen. Grundlagen der Landtechnik 1987, 37, 213–220. (In German) [Google Scholar]
- Burton, D.L.; Beauchamp, E.G. Nitrogen Losses from Swine Housings. Agricultural Wastes 1986, 15, 59–74. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Heber, A.J.; Lim, T.T.; Diehl, C.A.; Duggirala, R.; Haymore, B.L.; Sutton, A.L. Ammonia emission from a large mechanically-ventilated swine building during warm weather. J. Environ. Qual. 2000, 29, 751–758. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Heber, A.J.; Cortus, E.L.; Lim, T.-T.; Bogan, B.W.; Grant, R.H.; Boehm, M.T. Assessment of ammonia emissions from swine facilities in the U.S.—Application of knowledge from experimental research. Environ. Sci. Policy 2012, 22, 25–35. [Google Scholar] [CrossRef]
- Ekwevugbe, T.; Brown, N.; Fan, D. A Design Model for Building Occupancy Detection Using Sensor Fusion. In Proceedings of the 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST 2012), Campione d’Italia, Italy, 18−20 June 2012. [Google Scholar]
General Division In | Subtype | Description | Place-Bound Behavior Assessment? |
---|---|---|---|
Inactive | Lying | Pig lying in prone or lateral position without performing any activity | No |
Active | Standing | Pig stays longer than 1 sec on the spot, the floor is only touched with the feet and possibly the snout | No |
Sitting | Forefeet and hindquarters of the pig have ground contact at the same time | No | |
Locomotion | Movement at any speed and in any direction | No | |
Excretion | Pig urinates and/or defecates | No | |
Drinking | Pig is in a standing or sitting position and has the nipple drinker in its mouth | Yes, nipple drinker/drinking area | |
Eating | Pig is in standing or sitting position at the feeder and keeps its muzzle in the trough | Yes, wet feeder/feeding area | |
Exploration of enrichment material | Pig chews, bites, licks, drags or works with its snout on the enrichment material (regardless of body position) | Yes, enrichment material/exploration area |
(Focus) Areas and for this Area Expected or Rather Defined Behavior Measured with Corresponding PID vs. Visual Assessment | Fattening Day (with Visual Assessment) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
12 | 35 | 40 | 47 | 61 | 68 | 75 | 82 | 89 | 96 | |
Group PID + active behavior | 0.87 ** | 0.83 ** | 0.85 ** | 0.86 ** | 0.84 ** | 0.79 ** | 0.78 ** | 0.71 ** | 0.80 ** | 0.60 ** |
Wet feeder PID + Eating | 0.73 ** | 0.70 ** | 0.80 ** | 0.80 ** | 0.69 ** | 0.71 ** | 0.61 ** | 0.76 ** | 0.74 ** | 0.62 ** |
Nipple drinker PID + Drinking | 0.30 ** | 0.35 ** | 0.17 * | 0.20 * | 0.26 ** | 0.16 | 0.21 * | 0.15 | 0.24 ** | 0.24 ** |
Exploratory PID + Exploration | 0.43 ** | 0.59 ** | 0.54 ** | 0.24 ** | 0.75 ** | 0.36 ** | 0.60 ** | 0.57 ** | 0.88 ** | 0.47 ** |
Resting PID + Lying | −0.80 ** | −0.79 ** | −0.83 ** | −0.79 ** | −0.76 ** | −0.70 ** | −0.73 ** | −0.65 ** | −0.70 ** | −0.47 ** |
Elimination PID + Excretion | 0.28 ** | - | 0.19 * | 0.24 ** | 0.24 ** | 0.08 | 0.31 ** | 0.14 | 0.12 | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Von Jasmund, N.; Wellnitz, A.; Krommweh, M.S.; Büscher, W. Using Passive Infrared Detectors to Record Group Activity and Activity in Certain Focus Areas in Fattening Pigs. Animals 2020, 10, 792. https://doi.org/10.3390/ani10050792
Von Jasmund N, Wellnitz A, Krommweh MS, Büscher W. Using Passive Infrared Detectors to Record Group Activity and Activity in Certain Focus Areas in Fattening Pigs. Animals. 2020; 10(5):792. https://doi.org/10.3390/ani10050792
Chicago/Turabian StyleVon Jasmund, Naemi, Anna Wellnitz, Manuel Stephan Krommweh, and Wolfgang Büscher. 2020. "Using Passive Infrared Detectors to Record Group Activity and Activity in Certain Focus Areas in Fattening Pigs" Animals 10, no. 5: 792. https://doi.org/10.3390/ani10050792
APA StyleVon Jasmund, N., Wellnitz, A., Krommweh, M. S., & Büscher, W. (2020). Using Passive Infrared Detectors to Record Group Activity and Activity in Certain Focus Areas in Fattening Pigs. Animals, 10(5), 792. https://doi.org/10.3390/ani10050792