Biomonitoring of Heavy Metal Pollution Using Acanthocephalans Parasite in Ecosystem: An Updated Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Heavy Metals Pollution in Fish
2.1. Bioaccumulation
2.2. Histopathology
3. Parasitic Infestation in Fish
4. Relationship between Heavy Metals Pollution and Parasite Infestation in Fish
5. Conclusions and Future Perspectives
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aladaileh, S.H.; Khafaga, A.F.; El-Hack, M.E.A.; Al-Gabri, N.A.; Abukhalil, M.H.; Alfwuaires, M.A.; Bin-Jumah, M.; Alkahtani, S.; Abdel-Daim, M.M.; Aleya, L.; et al. Spirulina platensis ameliorates the sub chronic toxicities of lead in rabbits via anti-oxidative, anti-inflammatory, and immune stimulatory properties. Sci. Total Environ 2020, 701, 134879. [Google Scholar] [CrossRef] [PubMed]
- Waheed, R.; El Asely, A.M.; Bakery, H.; El-Shawarby, R.; Abuo-Salem, M.; Abdel-Aleem, N.; Malhat, F.; Khafaga, A.; Abdeen, A. Thermal stress accelerates mercury chloride toxicity in Oreochromis niloticus via up-regulation of mercury bioaccumulation and HSP70 mRNA expression. Sci. Total Environ. 2020, 718, 137326. [Google Scholar]
- Sankhla, M.S.; Kumari, M.; Nandan, M.; Kumar, R.; Agrawal, P. Heavy metals contamination in water and their hazardous effect on human health—A review. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 759–766. [Google Scholar] [CrossRef]
- Al-Kahtani, M.A. Accumulation of heavy metals in Tilapia fish (Oreochromis niloticus) from AL-Khadoud spring, AL-Hassa, Saudi Arabia. Am. J. Appl. Sci. 2009, 6, 2024. [Google Scholar] [CrossRef] [Green Version]
- Gkretsi, V.; Mars, W.M.; Bowen, W.C.; Barua, L.; Yang, Y.; Guo, L.; Arnaud, R.S.; Dedhar, S.; Wu, C.; Michalopoulos, G.K. Loss of Integrin Linked Kinase fromMouse HepatocytesIn VitroandIn VivoResults in Apoptosis and Hepatitis. Hepatology 2007, 45, 1025–1034. [Google Scholar] [CrossRef]
- Wakawa, R.; Uzairu, A.; Kagbu, J.; Balarabe, M. Impact assessment of effluent discharge on physico-chemical parameters and some heavy metal concentrations in surface water of River Challawa Kano, Nigeria. Afr. J. Pure Appl. Chem. 2008, 2, 100–106. [Google Scholar]
- Ahmed, N.F.; Sadek, K.M.; Soliman, M.K.; Khalil, R.H.; Khafaga, A.F.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A. Moringa Oleifera Leaf Extract Repairs the Oxidative Misbalance following Sub-Chronic Exposure to Sodium Fluoride in Nile Tilapia Oreochromis niloticus. Animals 2020, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Ayyat, M.S.; Ayyat, A.M.; Naiel, M.A.; Al-Sagheer, A.A. Reversal effects of some safe dietary supplements on lead contaminated diet induced impaired growth and associated parameters in Nile tilapia. Aquaculture 2020, 515, 734580. [Google Scholar] [CrossRef]
- Amini, Z.; Pazooki, J.; Abtahi, B.; Shokri, M.R. Bioaccumulation of Zn and Cu in Chasar bathybius (Gobiidae) tissue and its nematode parasite Dichelyne minutus, southeast of the Caspian Sea, Iran. Indian J. Geomarine Sci. 2013, 42, 196–200. [Google Scholar]
- Sabra, F.S.; Mehana, E. Pesticides toxicity in fish with particular reference to insecticides. Asian J. Agric. Food Sci. 2015, 3, 40–61, ISSN: 2321–1571. [Google Scholar]
- Baruš, V.; Jarkovský, J.; Prokeš, M. Philometra ovata (Nematoda: Philometroidea): A potential sentinel species of heavy metal accumulation. Parasitol. Res. 2007, 100, 929–933. [Google Scholar] [CrossRef]
- de Buron, I.; James, E.; Riggs-Gelasco, P.J.; Ringwood, A.H.; Rolando, E.; Richardson, D. Overviewof the status of heavy metal accumulation by helminths with a note on the use of in vitro culture of adult acanthocephalans to study the mechanisms of bioaccumulation. Neotrop. Helminthol. 2009, 3, 101–110. [Google Scholar]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Vardanyan, L.; Schmieder, K.; Sayadyan, H.; Heege, T.; Heblinski, J.; Agyemang, T.; De, J.; Breuer, J. Heavy metal accumulation by certain aquatic macrophytes from Lake Sevan (Armenia). In Proceedings of Taal 2007, the 12th World Lake Conference: 1020–1038; Sengupta, M., Dalwani, R., Eds.; Ministry of Environment and Forests, Government of India: New Delhi, India, 2008. [Google Scholar]
- Burger, J. Bioindicators: A review of their use in the environmental literature 1970–2005. Environ. Bioindic. 2006, 1, 136–144. [Google Scholar] [CrossRef]
- Diamant, A. Ecology of the acanthocephalan Sclerocollum rubrimaris Schmidt and Paperna, 1978 (Rhadinorhynchidae: Gorgorhynchinae) from wild populations of rabbitfish (genus Siganus) in the northern Red Sea. J. Fish. Biol. 1989, 34, 387–397. [Google Scholar] [CrossRef]
- Sures, B. Accumulation of heavy metals by intestinal helminths in fish: An overview and perspective. Parasitology 2003, 126, S53–S60. [Google Scholar] [CrossRef]
- Luckenbach, T.; Triebskorn, R.; Müller, E.; Oberemm, A. Toxicity of waters from two streams to early life stages of brown trout (Salmo trutta f. fario L.), tested under semi-field conditions. Chemosphere 2001, 45, 571–579. [Google Scholar] [CrossRef]
- Sures, B.; Nachev, M.; Selbach, C.; Marcogliese, D.J. Parasite responses to pollution: What we know and where we go in ‘Environmental Parasitology’. Parasites Vectors 2017, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Dural, M.; Göksu, M.L.; Özak, A.A.; Derici, B. Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the Camlik lagoon of the eastern cost of mediterranean (turkey). Environ. Monit. Assess. 2006, 118, 65–74. [Google Scholar] [CrossRef]
- Goater, T.M.; Goater, C.P.; Esch, G.W. Parasitism: The Diversity and Ecology of Animal Parasites; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Najm, M.; Fakhar, M. Helminthic parasites as heavy metal bioindicators in aquatic ecosystems. Med. Lab. J. 2015, 9, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Khaleghzadeh-Ahangar, H.; Malek, M.; McKenzie, K. The parasitic nematodes Hysterothylacium sp. type MB larvae as bioindicators of lead and cadmium: A comparative study of parasite and host tissues. Parasitology 2011, 138, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Nachev, M.; Schertzinger, G.; Sures, B. Comparison of the metal accumulation capacity between the acanthocephalan Pomphorhynchus laevis and larval nematodes of the genus Eustrongylides sp. infecting barbel (Barbus barbus). Parasites Vectors 2013, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, A.; Moharram, S.; El Helaly, H. Role of parasitic helminths in bioremediating some heavy metal accumulation in the tissues of Lethrinus mahsena. Turk. J. Fish. Aquat. Sci. 2018, 18, 435–443. [Google Scholar]
- Abollo, E.; Gestal, C.; Pascual, S. Anisakis infestation in marine fish and cephalopods from Galician waters: An updated perspective. Parasitol. Res. 2001, 87, 492–499. [Google Scholar] [PubMed]
- Grutter, A.S. Infestation dynamics of gnathiid isopod juveniles parasitic on the coral-reef fish Hemigymnus melapterus (Labridae). Mar. Biol. 1999, 135, 545–552. [Google Scholar] [CrossRef]
- Olmedo, P.; Pla, A.; Hernández, A.F.; Barbier, F.; Ayouni, L.; Gil, F. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ. Int. 2013, 59, 63–72. [Google Scholar] [CrossRef]
- Khafaga, A.F.; El-Hack, M.E.A.; Taha, A.E.; Elnesr, S.S.; Alagawany, M. The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: A review. Environ. Sci. Pollut. Res. 2019, 26, 4588–4604. [Google Scholar] [CrossRef]
- Norouzi, E.; Bahramifar, N.; Ghasempouri, S.M. Effect of teeth amalgam on mercury levels in the colostrums human milk in Lenjan. Environ. Monit. Assess. 2012, 184, 375–380. [Google Scholar] [CrossRef]
- Kaur, P.; Aschner, M.; Syversen, T. Biochemical factors modulating cellular neurotoxicity of methylmercury. J. Toxicol. 2011, 2011, 721987. [Google Scholar] [CrossRef]
- Abadin, H.; Ashizawa, A.; Stevens, Y.; Llados, F.; Diamond, G.; Sage, G.; Citra, M.; Quinones, A.; Bosch, S.; Swarts, S. Toxicological Profile for Lead [Internet]; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. [Google Scholar]
- El-Hack, M.E.A.; Abdelnour, S.A.; El, A.E.-M.E.A.; Arif, M.; Khafaga, A.; Shaheen, H.; Samak, D.; Swelum, A.A. Putative impacts of phytogenic additives to ameliorate lead toxicity in animal feed. Environ. Sci. Pollut. Res. 2019, 26, 23209–23218. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, S.M.; Shaker, I.M. Assessment of heavy metals pollution in water and sediments and their effect on Oreochromis niloticus in the northern delta lakes, Egypt. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008; p. 490. [Google Scholar]
- Haseena, M.; Malik, M.F.; Javed, A.; Arshad, S.; Asif, N.; Zulfiqar, S.; Hanif, J. Water pollution and human health. Environ. Risk Assess. Remediat. 2017, 1, 16–19. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy metal mixture exposure and effects in developing nations: An update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshan, S.; Ali, S.; Ameen, U.S.; Farid, M.; Bharwana, S.A.; Hannan, F.; Ahmad, R. Effect of different heavy metal pollution on fish. Res. J. Chem. Environ. Sci. 2014, 2, 74–79. [Google Scholar]
- Padrilah, S.N.; Shukor, M.Y.A.; Yasid, N.A.; Ahmad, S.A.; Sabullah, M.K.; Shamaan, N.A. Toxicity Effects of Fish Histopathology on Copper Accumulation. Pertanika J. Trop. Agric. Sci. 2018, 41, 519–540. [Google Scholar]
- Cobbina, S.J.; Xu, H.; Zhao, T.; Mao, G.; Zhou, Z.; Wu, X.; Liu, H.; Zou, Y.; Wu, X.; Yang, L. A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos. Fish. Shellfish Immunol. 2015, 47, 1032–1042. [Google Scholar] [CrossRef]
- Association, I.L. Lead in Aquatic Environments. Understanding the Science; The International Lead Association: London, UK, 2017. [Google Scholar]
- Anzecc, A. Australian and New Zealand guidelines for fresh and marine water quality. Aust. N. Z. Environ. Conserv. Counc. Agric. Resour. Manag. Counc. Aust. N. Z. Canberra 2000, 1, 1–103. [Google Scholar]
- National Water Quality Management Strategy. Aquatic Ecosystems Rationale and Background Information (Chapter 8). Available online: https://www.waterquality.gov.au/sites/default/files/documents/anzecc-armcanz-2000-guidelines-vol2.pdf (accessed on 17 April 2020).
- NSW EPA. State of the Environment 2000. Syd. Environ. Prot. Auth. NSW Aust. 2000, 4, 45–96. Available online: https://www.epa.nsw.gov.au/ (accessed on 29 December 2019).
- EPA NSW. State of the Environment Report. NSW Environ. Prot. Auth. 2000, 1, 1–19. Available online: https://www.ga.gov.au/__data/assets/pdf_file/0012/72030/Environmental-Legislation-Guidelines-v1.0.pdf (accessed on 21 January 2020).
- EPA NSW. State of the Environment Report. Environ. Prot. Auth. NSW 2000, 7, 1–16. Available online: https://www.epa.nsw.gov.au/about-us/publications-and-reports/state-of-the-environment (accessed on 26 February 2020).
- Fatima, M.; Usmani, N.; Hossain, M.M. Heavy metal in aquatic ecosystem emphasizing its effect on tissue bioaccumulation and histopathology: A review. J. Environ. Sci. Technol. 2014, 7, 1–15. [Google Scholar]
- Jan, A.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naiel, M.A.; Ismael, N.E.; Abd El-hameed, S.A.; Amer, M.S. The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture 2020, 523, 735219. [Google Scholar] [CrossRef]
- Ezzat, S.; ElKorashey, R.; Sherif, M. The economical value of nile tilapia fish Oreochromis niloticus in relation to water quality of Lake Nasser, Egypt. J. Am. Sci. 2012, 8, 234–247. [Google Scholar]
- Riad, S.; Safaa, H.; Mohamed, F. Influence of probiotic, prebiotic and/or yeast supplementation in broiler diets on the productivity, immune response and slaughter traits. J. Ani. Poult. 2010, 1, 45–60. [Google Scholar]
- Al Naggar, Y.; Khalil, M.S.; Ghorab, M.A. Environmental pollution by heavy metals in the aquatic ecosystems of Egypt. Open Acc. J. Toxicol 2018, 3, 555603. [Google Scholar]
- Zeitoun, M.M.; Mehana, E. Impact of water pollution with heavy metals on fish health: Overview and updates. Glob. Vet. 2014, 12, 219–231. [Google Scholar]
- Atobatele, O.E.; Olutona, G.O. Distribution of three non-essential trace metals (Cadmium, Mercury and Lead) in the organs of fish from Aiba Reservoir, Iwo, Nigeria. Toxicol. Rep. 2015, 2, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Nwabunike, M. The effects of bioaccumulation of heavy metals on fish fin over two years. J. Fish. Livest. Prod. 2016, 4, 170. [Google Scholar]
- Rajeshkumar, S.; Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 2018, 5, 288–295. [Google Scholar] [CrossRef]
- Nachev, M.; Sures, B. Environmental parasitology: Parasites as accumulation bioindicators in the marine environment. J. Sea Res. 2016, 113, 45–50. [Google Scholar] [CrossRef]
- Le, T.Y.; Nachev, M.; Grabner, D.; Hendriks, A.J.; Sures, B. Development and validation of a biodynamic model for mechanistically predicting metal accumulation in fish-parasite systems. PLoS ONE 2016, 11, e0161091. [Google Scholar] [CrossRef] [PubMed]
- Oumar, D.A.; Flibert, G.; Tidjani, A.; Rirabe, N.; Patcha, M.; Bakary, T.; Ousman, A.H.; Yves, T.; Aly, S. Risks Assessments of Heavy Metals Bioaccumulation in Water and Tilapia nilotica Fish from Maguite Island of Fitri Lake. Curr. J. Appl. Sci. Technol. 2018, 26, 1–9. [Google Scholar] [CrossRef]
- Eissa, O.S. Protective effect of vitamin C and glutathione against the histopathological changes induced by imidacloprid in the liver and testis of Japanese quail. Egypt. J. Hosp. Med. 2004, 16, 39–54. [Google Scholar]
- Kim, H.-T.; Loftus, J.P.; Mann, S.; Wakshlag, J.J. Evaluation of Arsenic, Cadmium, Lead and Mercury Contamination in Over-the-Counter Available Dry Dog Foods With Different Animal Ingredients (Red Meat, Poultry, and Fish). Front. Vet. Sci. 2018, 5, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirghaed, A.T.; Hoseini, S.M.; Ghelichpour, M. Effects of dietary 1, 8-cineole supplementation on physiological, immunological and antioxidant responses to crowding stress in rainbow trout (Oncorhynchus mykiss). Fish. Shellfish Immunol. 2018, 81, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Naiel, M.A.; Ismael, N.E.; Shehata, S.A. Ameliorative effect of diets supplemented with rosemary (Rosmarinus officinalis) on aflatoxin B1 toxicity in terms of the performance, liver histopathology, immunity and antioxidant activity of Nile Tilapia (Oreochromis niloticus). Aquaculture 2019, 511, 734264. [Google Scholar] [CrossRef]
- Abalaka, S.E. Heavy metals bioaccumulation and histopathological changes in Auchenoglanis occidentalis fish from Tiga dam, Nigeria. J. Environ. Health Sci. Eng. 2015, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Saini, A.K. Toxic Effects on Fish Inhabiting Arsenic Contaminated Fresh Waters of Punjab. Ph.D. Thesis, Punjab Agricultural University, Ludhiana, India, 2012. [Google Scholar]
- Deore, S.; Wagh, S. Heavy metal induced histopathological alterations in liver of Channa gachua (Ham). J. Exp. Sci. 2012, 3, 35–38. [Google Scholar]
- Dhevakrishnan, R.; Zaman, G. Cauvery river pollutants induced histopathological changes in kidney and muscle tissues of freshwater fish, Labio rohita (Hamilton, 1822). Online Int. Interdiscip. Res. J. 2012, 2, 9–19. [Google Scholar]
- Fernández-Rubio, C.; Ordonez, C.; Abad-González, J.; Garcia-Gallego, A.; Honrubia, M.P.; Mallo, J.J.; Balana-Fouce, R. Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poult. Sci. 2009, 88, 943–948. [Google Scholar] [CrossRef]
- Mshelbwala, F.M.; Ibrahim, N.D.-G.; Saidu, S.N.; Azeez, A.A.; Akinduti, P.A.; Kwanashie, C.N.; Kadiri, A.K.F.; Muhammed, M.; Fagbamila, I.O.; Luka, P.D. Motile Salmonella serotypes causing high mortality in poultry farms in three South-Western States of Nigeria. Vet. Rec. Open 2017, 4, e000247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misganaw, K.; Getu, A. Review on major parasitic crustacean in fish. Fish. Aquac. J. 2016, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Poulin, R. Evolutionary Ecology of Parasites; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Palm, H.W. Fish parasites as biological indicators in a changing world: Can we monitor environmental impact and climate change? In Progress in Parasitology; Springer: Heidelberg, Germany, 2011; pp. 223–250. [Google Scholar]
- Feist, S.; Longshaw, M. Histopathology of fish parasite infections–importance for populations. J. Fish. Biol. 2008, 73, 2143–2160. [Google Scholar] [CrossRef]
- Mohammadi, F.; Mousavi, S.M.; Rezaie, A. Histopathological study of parasitic infestation of skin and gill on Oscar (Astronotus ocellatus) and discus (Symphysodon discus). Aquac. Aquar. Conserv. Legis. 2012, 5, 88–93. [Google Scholar]
- Nahavandinejad, M.; Seidavi, A.; Asadpour, L.; Payan-Carreira, R. Blood biochemical parameters of broilers fed differently thermal processed soybean meal. Rev. Mvz Córdoba 2014, 19, 4301–4315. [Google Scholar] [CrossRef] [Green Version]
- Sures, B.; Reimann, N. Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Polar Biol. 2003, 26, 680–686. [Google Scholar] [CrossRef]
- Brázová, T.; Hanzelová, V.; Miklisová, D.; Šalamún, P.; Vidal-Martínez, V.M. Host-parasite relationships as determinants of heavy metal concentrations in perch (Perca fluviatilis) and its intestinal parasite infection. Ecotoxicol. Environ. Saf. 2015, 122, 551–556. [Google Scholar] [CrossRef]
- Malek, M.; Haseli, M.; Mobedi, I.; Ganjali, M.; Mackenzie, K. Parasites as heavy metal bioindicators in the shark Carcharhinus dussumieri from the Persian Gulf. Parasitology 2007, 134, 1053–1056. [Google Scholar] [CrossRef]
- Golestaninasab, M.; Malek, M.; Roohi, A.; Karbassi, A.; Amoozadeh, E.; Rashidinejad, R.; Ghayoumi, R.; Sures, B. A survey on bioconcentration capacities of some marine parasitic and free-living organisms in the Gulf of Oman. Ecol. Indic. 2014, 37, 99–104. [Google Scholar] [CrossRef]
- Sures, B.; Taraschewski, H.; Rokicki, J. Lead and cadmium content of two cestodes, Monobothrium wageneri and Bothriocephalus scorpii, and their fish hosts. Parasitol. Res. 1997, 83, 618–623. [Google Scholar] [CrossRef]
- Dural, M.; Genc, E.; Sangun, M.K.; Güner, Ö. Accumulation of some heavy metals in Hysterothylacium aduncum (Nematoda) and its host sea bream, Sparus aurata (Sparidae) from North-Eastern Mediterranean Sea (Iskenderun Bay). Environ. Monit. Assess. 2011, 174, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Pascual, S.; Abollo, E. Whaleworms as a tag to map zones of heavy-metal pollution. Trends Parasitol. 2005, 21, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Morsy, K.; Bashtar, A.-R.; Abdel-Ghaffar, F.; Mehlhorn, H.; Al Quraishy, S.; El-Mahdi, M.; Al-Ghamdi, A.; Mostafa, N. First record of anisakid juveniles (Nematoda) in the European seabass Dicentrarchus labrax (family: Moronidae), and their role as bio-indicators of heavy metal pollution. Parasitol. Res. 2012, 110, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Azmat, R.; Fayyaz, S.; Kazi, N.; Mahmood, S.J.; Uddin, F. Natural bioremediation of heavy metals through nematode parasite of fish. Biotechnology 2008, 7, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Tellez, M.; Merchant, M. Biomonitoring heavy metal pollution using an aquatic apex predator, the American alligator, and its parasites. PLoS ONE 2015, 10, e0142522. [Google Scholar] [CrossRef] [Green Version]
- Sures, B. The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: A review. Aquat. Ecol. 2001, 35, 245–255. [Google Scholar] [CrossRef]
- Sures, B.; Siddall, R.; Taraschewski, H. Parasites as accumulation indicators of heavy metal pollution. Parasitol. Today 1999, 15, 16–21. [Google Scholar] [CrossRef]
- Sures, B. Host–parasite interactions in polluted environments. J. Fish. Biol. 2008, 73, 2133–2142. [Google Scholar] [CrossRef]
- Shafi, N.; Ayub, J.; Akhtar, T. Physico-chemical variables and fish parasites of River Neelum Azad Jammu and Kashmir, Pakistan. J. Bioresour. Manag. 2015, 2, 10. [Google Scholar] [CrossRef]
- Bayoumy, E.M.; Abou-El-dobal, S.K.; Hassanain, M.A. Assessment of Heavy Metal Pollution and Fish Parasites as Biological Indicators at Arabian Gulf off Dammam Coast, Saudi Arabia. Int. J. Zool. Res. 2015, 11, 198–206. [Google Scholar] [CrossRef]
- Gilbert, B.M.; Avenant-Oldewage, A. Parasites and pollution: The effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa. Environ. Sci. Pollut. Res. 2017, 24, 18742–18769. [Google Scholar] [CrossRef] [PubMed]
- Bamidele, A.; Kuton, M.P. Parasitic diseases and heavy metal analysis in Parachanna obscura (Gunther 1861) and Clarias gariepinus (Burchell 1901) from Epe Lagoon, Lagos, Nigeria. Asian Pac. J. Trop. Dis. 2016, 6, 685–690. [Google Scholar] [CrossRef]
- Ashmawy, K.I.; Hiekal, F.A.; Abo-Akadda, S.S.; Laban, N.E. The inter-relationship of water quality parameters and fish parasite occurrence. Alex. J. Vet. Sci. 2018, 59, 97–106. [Google Scholar] [CrossRef]
- Khovidhunkit, W.; Kim, M.-S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, M.; Salem, M.E.-S.; Gaber, M.; Nour, A. Effect of chitosan supplemented diet on survival, growth, feed utilization, body composition & histology of Sea bass (Dicentrarchus labrax). World, J. Eng. Technol. 2015, 3, 38. [Google Scholar]
- Hursky, O.; Pietrock, M. Intestinal nematodes affect selenium bioaccumulation, oxidative stress biomarkers, and health parameters in juvenile rainbow trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2015, 49, 2469–2476. [Google Scholar] [CrossRef]
- Paller, V.G.V.; Resurreccion, D.J.B.; de la Cruz, C.P.P.; Bandal, M.Z. Acanthocephalan parasites (Acanthogyrus sp.) of Nile tilapia (Oreochromis niloticus) as biosink of lead (Pb) contamination in a Philippine freshwater lake. Bull. Environ. Contam. Toxicol. 2016, 96, 810–815. [Google Scholar] [CrossRef]
- Leite, L.A.; Pedro, N.H.; de Azevedo, R.K.; Kinoshita, A.; Gennari, R.F.; Watanabe, S.; Abdallah, V.D. Contracaecum sp. parasitizing Acestrorhynchus lacustris as a bioindicator for metal pollution in the Batalha River, southeast Brazil. Sci. Total Environ. 2017, 575, 836–840. [Google Scholar] [CrossRef] [Green Version]
- Al-Hasawi, Z.M. Environmental Parasitology: Intestinal helminth parasites of the siganid fish Siganus rivulatus as bioindicators for trace metal pollution in the Red Sea. Parasite 2019, 26, 12. [Google Scholar] [CrossRef] [Green Version]
- Acosta, A.G.D.; Camara, C.N.M.; Ongsiako, J.R.M.J.; Tsoi, J.N.; Flores, M.J.C.; Janairo, J.I.B. Bioaccumulation of Cadmium, Copper, Lead, and Zinc in Water Buffaloes (Bubalusbubalis) Infected with Liver Flukes (Fasciolagigantica). Orient. J. Chem. 2017, 33, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
- Akinsanya, B.; Kuton, M.P. Bioaccumulation of heavy metals and parasitic fauna in Synodontis clarias (Linnaeus, 1758) and Chrysichthys nigrodigitatus (Lacepede, 1803) from Lekki Lagoon, Lagos, Nigeria. Asian Pac. J. Trop. Dis. 2016, 6, 615–621. [Google Scholar] [CrossRef]
- Graci, S.; Collura, R.; Cammilleri, G.; Buscemi, M.D.; Giangrosso, G.; Principato, D.; Gervasi, T.; Cicero, N.; Ferrantelli, V. Mercury accumulation in Mediterranean Fish and Cephalopods Species of Sicilian coasts: Correlation between pollution and the presence of Anisakis parasites. Nat. Prod. Res. 2017, 31, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, D.; Valdés, J.; González, M.T. Histopathological lesions, pathogens and parasites as health indicators of an edible clam (Protothaca thaca) inhabiting a bay exposed to anthropogenic activities in Northern Chile. Environ. Monit. Assess. 2019, 191, 536. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.O.; Vollaire, Y.; Sanchez-Chardi, A.; Roche, H. Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the Eel (Anguilla anguilla) at the Camargue Nature Reserve, France. Aquat. Toxicol. 2005, 74, 53–69. [Google Scholar] [CrossRef]
Heavy Metal | Freshwater (µg/L) | Seawater (µg/L) | References |
---|---|---|---|
Lead | 0.18–1.00 | 0.02–0.05 | International Lead association [42] |
Mercury | 0.02 | 0.02 | Anzecc [43] |
Cadmium | 0.05 | 1.0 | NWQMS [44] |
Chromium | 5 | 5 | EPA [45] |
Copper | 0.1 | 2 | EPA [46] |
Nickel | 0.1 | 2 | NSW [47] |
Host | Parasite | Habitat | Ratio | Metal | Reference |
---|---|---|---|---|---|
1. Acanthocephala | |||||
Notothenia coriiceps | Aspersentis megarhynchus | Antarctic | 3–2210 | Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sr | Sures and Reimann [77] |
The European perch (Perca fluviatilis, L.) | Acanthocephalus lucii | Ružín reservoir in eastern Slovakia | As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn | Brázová et al. [78] | |
2. Cestoda | |||||
Carcharhinus dussumieri | Paraorigmatobothrium spp. | Gulf Persian | 394–458 | Cd, Pb | Malek et al. [79] |
Himantura cf. gerrardi | Polypocephalus spp. | Gulf of Oman | 5–6 | Cd, Pb | Golestaninasab et al. [80] |
Tetragonocephalum spp. | 1.5–2 | ||||
Rhinebothrium spp. 1 | 1.2–2.5 | ||||
Glaucostegus granulatus | Rhinebothrium spp. 2 | 2.4–3.7 | |||
3. Nematoda | |||||
Scophthalmus maximus | Bothriocephalus scorpii | Baltic Sea | 1–60 | Cd, Pb | Sures et al. [81] |
Chasar bathybius | Dichelyne minutus | Caspian Sea | 19–194 | Cu, Zn | Amini et al. [10] |
Trichiurus leptarus | Hysterothylacium spp. | Gulf of Oman | 8–790 | Cd, Pb | Khaleghzadeh-Ahangar et al. [24] |
Sparus aurata | Hysterothylacium aduncum | Mediterranean Sea, Turkey | 1.3–53 | Cd, Cr, Cu, Fe, Hg, Mn, Mg, Pb, Zn | Dural et al. [82] |
Trachurus trachurus | Anisakis simplex larvae | Atlantic (Galician coast) | 6–289 | Cd, Cu, Pb, Zn | Pascual and Abollo [83] |
Todaropsis eblanae | 18–41 | ||||
Dicentrarchus labrax | Anisakis spp. | Mediterranean Sea, Egypt | 2–16 | Cd, Cu, Fe, Mn, Ni, Pb, Zn | Morsy et al. [84] |
Stenella coeruleoalba | Anisakis simplex adult | Atlantic (Galician coast) | 1.7–46 | Cd, Cu, Pb, Zn | Pascual and Abollo [83] |
Liza vaigiensis | Echinocephalus spp. | Arabian Sea | 21–360 | As, Cd, Fe, Hg, Pb, Zn | Azmat et al. [85] |
Liza vaigiensis | Ascaris spp. | 26–400 | |||
Globicephala melas | Anisakis simplex Metal adult | Atlantic (Galician coast) | 1.7–64 | Cd, Cu, Pb, Zn | Pascual and Abollo [83] |
Alligator mississippiensis | Intestinal trematodes | Florida and Louisiana | As, Cd, Cu, Fe, Pb, Se, and Zn | Tellez and Merchant [86] |
Parasite | Studied Heavy Metal/s | Host | References |
---|---|---|---|
Monogenea | Cr, Fe and Ni | Wild Fish | Feist and Longshaw [74] |
Monogeans and Crusteacean parasites | Zn and Se | Epinephelus tauvina, Acanthopagrus bifasciatus and Siganus rivulatus | Bayoumy et al. [91] |
Acanthocephalans | Pb | Oreochromis niloticus | Paller et al. [98] |
Procamallanus spp. (intestinal nematodes) | Cu, Cr, Ni, Pb and Fe | Parachanna obscura and Clarias gariepinus | Bamidele and Kuton [93] |
Acanthocephalans, larvae Contracaecum sp. (L3) and Acestrorhynchus lacustris, | Mg, Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Ba, and Pb | Acestrorhynchus lacustris | Leite et al. [99] |
Fasciola hepatica and Dicrocilium lanceatum | Cu, Cd, Pb and Zn | Cattle | Khaleghzadeh-Ahangar et al. [24] |
Acanthocephalan, nematodes and digenean parasites | Cd and Pb | Siganus rivulatus | Al-Hasawi [100] |
Liver Flukes | Cd, Cu, Pb, and Zn | Water Buffalo | Acosta et al. [101] |
Wawo worms | Cd, Pb, and Hg | Marine Fish | Nachev and Sures [58] |
Procamallanus spp. and Siphodera ghanensis | Pb, Zn, Mn, Fe and Cd | S. clarias and C. nigrodigitatus | Akinsanya and Kuton [102] |
Anisakis parasites | Hg | Graci et al. [103] | |
Bacterium-like organisms and metazoan parasites | Cu, Pb and Cd | The clam (Protothaca theca) | Montenegro et al. [104] |
geanean gill worms | Al, Hg, Ti, Zn, As and Mg | the Eel (Anguilla anguilla) | Ribeiro et al. [105] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehana, E.-S.E.; Khafaga, A.F.; Elblehi, S.S.; Abd El-Hack, M.E.; Naiel, M.A.E.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A. Biomonitoring of Heavy Metal Pollution Using Acanthocephalans Parasite in Ecosystem: An Updated Overview. Animals 2020, 10, 811. https://doi.org/10.3390/ani10050811
Mehana E-SE, Khafaga AF, Elblehi SS, Abd El-Hack ME, Naiel MAE, Bin-Jumah M, Othman SI, Allam AA. Biomonitoring of Heavy Metal Pollution Using Acanthocephalans Parasite in Ecosystem: An Updated Overview. Animals. 2020; 10(5):811. https://doi.org/10.3390/ani10050811
Chicago/Turabian StyleMehana, El-Sayed E., Asmaa F. Khafaga, Samar S. Elblehi, Mohamed E. Abd El-Hack, Mohammed A.E. Naiel, May Bin-Jumah, Sarah I. Othman, and Ahmed A. Allam. 2020. "Biomonitoring of Heavy Metal Pollution Using Acanthocephalans Parasite in Ecosystem: An Updated Overview" Animals 10, no. 5: 811. https://doi.org/10.3390/ani10050811