Physiological Stress Reactions in Red Deer Induced by Hunting Activities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Red Deer Population
2.2. Data Collection
2.3. Steroid Extraction and Quantification
2.4. Physical and Immunological Conditions
2.5. Statistical Analysis
3. Results
3.1. Physiological Stress Reactions
3.2. Physical and Immunological Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Romero, L.M. Physiological stress in ecology: Lessons from biomedical research. Trends Ecol. Evol. 2004, 19, 249–255. [Google Scholar] [PubMed]
- Martin, L.B. Stress and immunity in wild vertebrates: Timing is everything. Gen. Comp. Endocrinol. 2009, 163, 70–76. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef]
- Busch, D.S.; Hayward, L.S. Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol. Conserv. 2009, 142, 2844–2853. [Google Scholar] [CrossRef]
- Landys, M.M.; Ramenofsky, M.; Wingfield, J.C. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen. Comp. Endocrinol. 2006, 148, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Barja, I.; Silván, G.; Rosellini, S.; Piñeiro, A.; González-Gil, A.; Camacho, L.; Illera, J.C. Stress physiological responses to tourist pressure in a wild population of European pine marten. J. Steroid Biochem. Mol. Biol. 2007, 104, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, B.; Fletcher, G.E.; Boonstra, R.; Sheriff, M.J. Measures of physiological stress: A transparent or opaque window into the status, management and conservation of species? Conserv. Physiol. 2014, 2, cou023. [Google Scholar] [CrossRef] [PubMed]
- Palme, R. Measuring fecal steroids: Guidelines for practical application. Ann. N. Y. Acad. Sci. 2005, 1046, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, R.; Hubbs, A.H.; Lacey, E.A.; McColl, C.J. Seasonal changes in glucocorticoid and testosterone concentrations in free-living arctic ground squirrels from the boreal forest of the Yukon. Can. J. Zool. 2001, 79, 49–58. [Google Scholar] [CrossRef]
- Kim, J.G.; Jung, H.S.; Kim, K.J.; Min, S.S.; Yoon, B.J. Basal blood corticosterone level is correlated with susceptibility to chronic restraint stress in mice. Neurosci. Lett. 2013, 555, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Formenti, N.; Viganó, R.; Fraquelli, C.; Trogu, T.; Bonfanti, M.; Lanfranchi, P.; Palme, R.; Ferrari, N. Increased hormonal stress response of Apennine chamois induced by interspecific interactions and anthropogenic disturbance. Eur. J. Wildl. Res. 2018, 64, 68. [Google Scholar] [CrossRef]
- Zwijacz-Kozica, T.; Selva, N.; Barja, I.; Silván, G.; Martínez-Fernández, L.; Illera, J.C.; Jodlowski, M. Concentration of fecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriol. 2013, 58, 215–222. [Google Scholar] [CrossRef]
- Huber, S.; Palme, R.; Arnold, W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen. Comp. Endocrinol. 2003, 130, 48–54. [Google Scholar] [CrossRef]
- Macbeth, B.J.; Cattet, M.R.L.; Stenhouse, G.B.; Gibeau, M.L.; Janz, D.M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): Considerations with implications for other wildlife. Can. J. Zool. 2010, 88, 935–949. [Google Scholar] [CrossRef]
- Potratz, E.J.B.J.S.; Gallo, T.; Anchor, C.; Santymire, R.M. Effects of demography and urbanization on stress and body condition in urban white-tailed deer. Urban. Ecosyst. 2019, 22, 807–816. [Google Scholar] [CrossRef]
- Dulude-de Broin, F.; Côté, S.D.; Whiteside, D.P.; Mastromonaco, G.F. Faecal metabolites and hair cortisol as biological markers of HPA-axis activity in the Rocky mountain goat. Gen. Comp. Endocrinol. 2019, 199, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Heimbürge, S.; Kanitz, E.; Otten, W. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 2019, 270, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Kalliokoski, O.; Jellestad, F.K.; Murison, R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep. 2019, 9, 11997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateson, P.; Bradshaw, E.L. Physiological effects of hunting red deer (Cervus elaphus). Proc. Biol. Sci. 1997, 264, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Gentsch, R.P.; Kjellander, P.; Röken, B.O. Cortisol response of wild ungulates to trauma situations: Hunting is not necessarily the worst stressor. Eur. J. Wildl. Res. 2018, 64, 11. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Alves, J.A. Ecological Assessment of the Red Deer Population in the Lous Lousã Mountain. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2013. [Google Scholar]
- Torres-Porras, J.; Carranza, J.; Pérez-González, J. Selective culling of Iberian red deer stags (Cervus elaphus hispanicus) by selective montería in Spain European. Eur. J. Wildl. Res. 2009, 55, 117–123. [Google Scholar] [CrossRef]
- Darimont, C.T.; Carlson, S.M.; Kinnison, M.T.; Paquet, P.C.; Reimchen, T.E.; Wilmers, C.C. Human predators outpace other agents of trait change in the wild. Proc. Natl. Acad. Sci. USA 2009, 106, 952–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allendorf, F.W.; England, P.R.; Luikart, G.; Ritchie, P.A.; Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 2008, 23, 237. [Google Scholar] [CrossRef] [PubMed]
- Milner, J.M.; Bonenfant, C.; Mysterud, A.; Gaillard, J.M.; Csányi, S.; Stenseth, N.C. Temporal and spatial development of red deer harvesting in Europe: Biological and cultural factors. J. Appl. Ecol. 2006, 43, 721–734. [Google Scholar] [CrossRef]
- Coltman, D.W.; O’Donoghue, P.; Jorgenson, J.T.; Hogg, J.T.; Strobeck, C.; Festa-Bianchet, M. Undesirable evolutionary consequences of trophy hunting. Nature 2003, 426, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.G.; Carranza, J.; Fernández-García, J.L.; Sánchez-Prieto, C.B. Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J. Wildl. Manag. 2002, 66, 1273–1282. [Google Scholar] [CrossRef]
- Harris, R.B.; Wall, W.A.; Allendorf, F.W. Genetic consequences of hunting: What do we know and what should we do? Wildl. Soc. Bull. 2002, 30, 634–643. [Google Scholar]
- Archibold, O.W. Ecology of World Vegetation; Chapman & Hall: London, UK, 1995. [Google Scholar]
- Alves, J.; da Silva, A.A.; Soares, A.M.; Fonseca, C. Sexual segregation in red deer: Is social behaviour more important than habitat preferences? Anim. Behav. 2013, 85, 501–509. [Google Scholar] [CrossRef]
- Alves, J.; da Silva, A.A.; Soares, A.M.; Fonseca, C. Spatial and temporal habitat use and selection by red deer: The use of direct and indirect methods. Mamm. Biol. 2014, 79, 338–348. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Guinness, F.E.; Albon, S.D. Red Deer: Behavior and Ecology of Two Sexes; University of Chicago Press: Chicago, IL, USA, 1982. [Google Scholar]
- Palme, R.; Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Z. Saugetierkd. 1997, 62, 192–197. [Google Scholar]
- Palme, R.; Touma, C.; Arias, N.; Dominchin, M.F.; Lepschy, M. Steroid extraction: Get the best out of faecal samples. Wien. Tierarztl. Monatsschr. Vet. Med. Austria 2013, 100, 238–246. [Google Scholar]
- Möstl, E.; Maggs, J.L.; Schrötter, G.; Besenfelder, U.; Palme, R. Measurement of cortisol metabolites in faeces of ruminants. Vet. Res. Commun. 2002, 26, 127–139. [Google Scholar] [CrossRef]
- Huber, S.; Palme, R.; Zenker, W.; Möstl, E. Non-invasive monitoring of the adrenocortical response in red deer. J. Wildl. Manag. 2003, 67, 258–266. [Google Scholar] [CrossRef]
- Stubsjøen, S.M.; Bohlin, J.; Dahl, E.; Knappe-Poindecker, M.; Fjeldaas, T.; Lepschy, M.; Palme, R.; Langbein, J.; Ropstad, E. Assessment of chronic stress in sheep (part I): The use of cortisol and cortisone in hair as non-invasive biological markers. Small Rumin. Res. 2015, 132, 25–31. [Google Scholar] [CrossRef]
- Neiland, K.A. Weight of dried marrow as indicator of fat in caribou femurs. J. Wildl. Manag. 1970, 34, 904–907. [Google Scholar] [CrossRef]
- Mendes, J.; Gonçalves, A.C.; Alves, R.; Jorge, J.; Pires, A.; Ribeiro, A.; Sarmento-Ribeiro, A.B. L744, 832 and Everolimus Induce Cytotoxic and Cytostatic Effects in Non-Hodgkin Lymphoma. Pathol. Oncol. Res. 2015, 22, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.; Bhadauria, H. Classification of white blood cells based on morphological features. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), New Delhi, India, 24–27 September 2014; pp. 2363–2368. [Google Scholar]
- Warton, D.I.; Hui, F.K. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Wang, W.X.; Li, L.H.; Liu, B.Q.; Liu, G.; Liu, S.Q.; Qi, L.; Hu, D.F. Effects of crowding and sex on fecal cortisol levels of captive forest musk deer. Biol. Res. 2014, 47, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munerato, M.S.; Marques, J.A.; Caulkett, N.A.; Tomás, W.; Zanetti, E.S.; Trovati, R.G.; Pereira, G.T.; Palme, R. Hormonal and behavioural stress responses to capture and radio-collar fitting in free-ranging pampas deer (Ozotoceros bezoarticus). Anim. Welf. 2015, 24, 437–446. [Google Scholar] [CrossRef]
- Mooring, M.S.; Patton, M.L.; Lance, V.A.; Hall, B.M.; Schaad, E.W.; Fetter, G.A.; Fortin, S.S.; McPeak, K.M. Glucocorticoids of bison bulls in relation to social status. Horm. Behav. 2006, 49, 369–375. [Google Scholar] [CrossRef]
- Pavitt, A.T.; Pemberton, J.M.; Kruuk, L.E.; Walling, C.A. Testosterone and cortisol concentrations vary with reproductive status in wild female red deer. Ecol. Evol. 2016, 6, 1163–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubenik, G.A.; Schams, D.; White, R.G.; Rowell, J.; Blake, J.; Bartos, L. Seasonal levels of metabolic hormones and substrates in male and female reindeer (Rangifer tarandus). Comp. Biochem. Phys. 1998, 120, 307–315. [Google Scholar] [CrossRef]
- Franceschini, M.D.; Rubenstein, D.I.; Low, B.; Romero, L.M. Fecal glucocorticoid metabolite analysis as an indicator of stress during translocation and acclimation in an endangered large mammal, the Grevy’s zebra. Anim. Conserv. 2008, 11, 263–269. [Google Scholar] [CrossRef]
- Walker, B.G.; Boersma, P.D.; Wingfield, J.C. Habituation of adult Magellanic penguins to human visitation as expressed through behavior and corticosterone secretion. Conserv. Biol. 2006, 20, 146–154. [Google Scholar] [CrossRef]
- Catanese, F.; Obelar, M.; Villalba, J.J.; Distel, R.A. The importance of diet choice on stress-related responses by lambs. Appl. Anim. Behav. Sci. 2013, 148, 37–45. [Google Scholar] [CrossRef]
- Irvine, C.H.G.; Alexander, S.L. Factors affecting the circadian rhythm in plasma cortisol concentrations in the horse. Domest. Anim. Endocrinol. 1994, 11, 227–238. [Google Scholar] [CrossRef]
- Wingfield, J.C. Ecological processes and the ecology of stress: The impacts of abiotic environmental factors. Funct. Ecol. 2013, 27, 37–44. [Google Scholar] [CrossRef]
- Dhabhar, F.S.; McEwen, B.S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav. Immun. 1997, 11, 286–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhabhar, F. Stress-induced changes in immune cell distribution and trafficking: Implications for immunoprotection versus immunopathology. In Neural and Neuroendocrine Mechanisms in Host Defense and Autoimmunity; Welsh, C.J., Meagher, M., Sternberg, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 7–25. [Google Scholar]
- Dhabhar, F.S. Stress-induced augmentation of immune function—The role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav. Immun. 2002, 16, 785–798. [Google Scholar] [CrossRef]
- Saltz, D.; White, G.C. Urinary cortisol and urea nitrogen responses to winter stress in mule deer. J. Wildl. Manag. 1991, 55, 1–16. [Google Scholar] [CrossRef]
- Bugalho, M.N.; Milne, J.A. The composition of the diet of red deer (Cervus elaphus) in a Mediterranean environment: A case of summer nutritional constraint? For. Ecol. Manag. 2003, 181, 23–29. [Google Scholar] [CrossRef]
- Minder, I. Local and seasonal variations of roe deer diet in relation to food resource availability in a Mediterranean environment. Eur. J. Wildl. Res. 2012, 58, 215–225. [Google Scholar] [CrossRef]
- Ryder, M.L.; Kay, R. Structure of and seasonal change in the coat of red deer (Cervus elaphus). J. Zool. 1973, 170, 69–77. [Google Scholar] [CrossRef]
- Loudon, A.; Milne, J.; Curlewis, J.; McNeilly, A. A comparison of the seasonal hormone changes and patterns of growth, voluntary food intake and reproduction in juvenile and adult red deer (Cervus elaphus) and Père David’s deer (Elaphurus davidianus) hinds. J. Endocrinol. 1989, 122, 733–745. [Google Scholar] [CrossRef]
- Caslini, C.; Comin, A.; Peric, T.; Prandi, A.; Pedrotti, L.; Mattiello, S. Use of hair cortisol analysis for comparing population status in wild red deer (Cervus elaphus) living in areas with different characteristics. Eur J. Wildl Res. 2016, 62, 713–723. [Google Scholar] [CrossRef]
- Bryan, H.M.; Jeg, S.; Koren, L.; Paquet, P.C.; Wynne-Edwards, K.E.; Musiani, M. Heavily hunted wolves have higher stress and reproductive steroids than wolves with lower hunting pressure. Funct. Ecol. 2015, 29, 347–356. [Google Scholar] [CrossRef]
- Ventrella, D.; Elmi, A.; Barone, F.; Carnevali, G.; Govoni, N.; Bacci, M.L. Hair Testosterone and Cortisol Concentrations in Pre- and Post-Rut Roe Deer Bucks: Correlations with Blood Levels and Testicular Morphometric Parameters. Animals 2018, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Ventrella, D.; Elmi, A.; Bertocchi, M.; Aniballi, C.; Parmeggiani, A.; Govoni, N.; Bacci, M.L. Progesterone and Cortisol Levels in Blood and Hair of Wild Pregnant Red Deer (Cervus elaphus) Hinds. Animals 2020, 10, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macbeth, B.J.; Cattet, M.R.; Obbard, M.E.; Middel, K.; Janz, D.M. Evaluation of hair cortisol concentration as a biomarker of long.term stress in free-ranging polar bears. Wildl. Soc. Bull. 2012, 36, 747–758. [Google Scholar] [CrossRef]
- Dantzer, B.; McAdam, A.G.; Palme, R.; Humphries, M.M.; Boutin, S.; Boonstra, R. How does diet affect fecal steroid hormone metabolite concentrations? An experimental examination in red squirrels. Gen. Comp. Endocrinol. 2011, 174, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Fuller, T.K.; Coy, P.L.; Peterson, W.J. Marrow fat relationships among leg bones of white-tailed deer. Wildl. Soc. Bull. 1986, 14, 73–75. [Google Scholar]
- Keckeis, K.; Lepschy, M.; Schöpper, H.; Moser, L.; Troxler, J.; Palme, R. Hair cortisol: A parameter of chronic stress? Insights from a radiometabolism study in guinea pigs. J. Comp. Physiol. B 2012, 182, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Salaberger, T.; Millard, M.; El Makarem, S.E.; Möstl, E.; Grünberger, V.; Krametter-Frötscher, R.; Wittek, T.; Palme, R. Influence of external factors on hair cortisol concentrations. Gen. Comp. Endocrinol. 2016, 233, 73–78. [Google Scholar] [CrossRef]
- Slominski, A.; Wortsman, J.; Tuckey, R.C.; Paus, R. Differential expression of HPA axis homolog in the skin. Mol. Cell. Endocrinol. 2007, 265, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Koren, L.; Bryan, H.; Matas, D.; Tinman, S.; Fahlman, Å.; Whiteside, D.; Smits, J.; Wynne-Edwards, K. Towards the validation of endogenous steroid testing in wildlife hair. J. Appl. Ecol. 2019, 56, 547–561. [Google Scholar] [CrossRef]
- Jewgenow, K.; Azevedo, A.; Albrecht, M.; Kirschbaum, C.; Dehnhard, M. Hair cortisol analyses in different mammal species: Choosing the wrong assay may lead to erroneous results. Conserv. Physiol. 2020, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servello, F.A.; Hellgren, E.C.; McWilliams, S.R. Techniques for wildlife nutritional ecology. In Techniques for Wildlife Investigations and Management; Braun, C., Ed.; The Wildlife Society: Bethesda, MD, USA, 2005; pp. 554–590. [Google Scholar]
- Cabezas, S.; Blas, J.; Marchant, T.A.; Moreno, S. Physiological stress levels predict survival probabilities in wild rabbits. Horm. Behav. 2007, 51, 313–320. [Google Scholar] [CrossRef] [PubMed]
Feces (n = 74) | Hair (n = 76) | |
---|---|---|
Plasma (n = 50) | r = −0.152 | r = −0.085 |
p = 0.307 | p = 0.561 | |
Feces (n = 74) | - | r = −0.217 |
p = 0.071 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilela, S.; Alves da Silva, A.; Palme, R.; Ruckstuhl, K.E.; Sousa, J.P.; Alves, J. Physiological Stress Reactions in Red Deer Induced by Hunting Activities. Animals 2020, 10, 1003. https://doi.org/10.3390/ani10061003
Vilela S, Alves da Silva A, Palme R, Ruckstuhl KE, Sousa JP, Alves J. Physiological Stress Reactions in Red Deer Induced by Hunting Activities. Animals. 2020; 10(6):1003. https://doi.org/10.3390/ani10061003
Chicago/Turabian StyleVilela, Sofia, António Alves da Silva, Rupert Palme, Kathreen E. Ruckstuhl, José Paulo Sousa, and Joana Alves. 2020. "Physiological Stress Reactions in Red Deer Induced by Hunting Activities" Animals 10, no. 6: 1003. https://doi.org/10.3390/ani10061003
APA StyleVilela, S., Alves da Silva, A., Palme, R., Ruckstuhl, K. E., Sousa, J. P., & Alves, J. (2020). Physiological Stress Reactions in Red Deer Induced by Hunting Activities. Animals, 10(6), 1003. https://doi.org/10.3390/ani10061003