Virtual Fencing Technology Excludes Beef Cattle from an Environmentally Sensitive Area
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. eShepherd® Neckbands
2.3. Animals, Site, and Experimental Protocol
2.4. Pasture Assessments
2.5. Data and Statistical Analyses
3. Results
3.1. Animals
3.2. Pasture
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, C. An Apparatus and Method for the Virtual Fencing of An Animal. International Patent Application PCT/AUT2005/001056, 26 January 2006. [Google Scholar]
- Lee, C.; Prayaga, K.; Reed, M.; Henshall, J. Methods of training cattle to avoid a location using electrical cues. Appl. Anim. Behav. Sci. 2007, 108, 229–238. [Google Scholar] [CrossRef]
- Lee, C.; Reed, M.T.; Wark, T.; Crossman, C.; Valencia, P. A Control Device, and Method, for Controlling the Location of An Animal. International Patent Application PCT/AU2009/000943, 28 January 2010. [Google Scholar]
- Lee, C.; Henshall, J.M.; Wark, T.J.; Crossman, C.C.; Reed, M.T.; Brewer, H.G.; O’Grady, J.; Fisher, A.D. Associative learning by cattle to enable effective and ethical virtual fences. Appl. Anim. Behav. Sci. 2009, 119, 15–22. [Google Scholar] [CrossRef]
- Lee, C.; Colditz, I.G.; Campbell, D.L.M. A framework to assess the impact of new animal management technologies on welfare: A case study of virtual fencing. Front. Vet. Sci. 2018, 5, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, D.L.M.; Lea, J.M.; Farrer, W.J.; Haynes, S.J.; Lee, C. Tech-savvy beef cattle? How heifers respond to moving virtual fence lines. Animals 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, D.L.M.; Lea, J.M.; Haynes, S.J.; Farrer, W.J.; Leigh-Lancaster, C.J.; Lee, C. Virtual fencing of cattle using an automated collar in a feed attractant trial. Appl. Anim. Behav. Sci. 2018, 200, 71–77. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Haynes, S.J.; Lea, J.M.; Farrer, W.J.; Lee, C. Temporary exclusion of cattle from a riparian zone using virtual fencing technology. Animals 2019, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.L.M.; Lea, J.M.; Keshavarzi, H.; Lee, C. Virtual fencing is comparable to electric tape fencing for cattle behavior and welfare. Front. Vet. Sci. 2019, 6, 445. [Google Scholar] [CrossRef] [Green Version]
- Lomax, S.; Colusso, P.; Clark, C.E.F. Does virtual fencing work for grazing dairy cattle? Animals 2019, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Lunt, I.D.; Eldridge, D.J.; Morgan, J.W.; Witt, G.B. A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust. J. Bot. 2007, 55, 401–415. [Google Scholar] [CrossRef]
- Humphrey, J.W.; Patterson, G.S. Effects of late summer cattle grazing on the diversity of riparian pasture vegetation in an upland conifer forest. J. Appl. Ethol. 2002, 37, 986–996. [Google Scholar] [CrossRef]
- Jansen, A.; Robertson, A.I. Riparian bird communities in relation to land management practices in floodplain woodlands of south-eastern Australia. Biol. Conserv. 2002, 100, 173–185. [Google Scholar] [CrossRef]
- Jansen, A.; Robertson, A.I. Relationships between livestock management and the ecological condition of riparian habitats along an Australian floodplain river. J. Appl. Ethol. 2001, 38, 63–75. [Google Scholar]
- Jansen, A.; Healey, M. Frog communities and wetland condition: Relationships with grazing by domestic livestock along an Australian floodplain river. Biol. Conserv. 2003, 109, 207–219. [Google Scholar] [CrossRef]
- Pykälä, J. Plant species responses to cattle grazing in mesic semi-natural grassland. Agric. Ecosyst. Environ. 2005, 108, 109–117. [Google Scholar] [CrossRef]
- Marini, D.; Llewellyn, R.; Belson, S.; Lee, C. Controlling within-field sheep movement using virtual fencing. Animals 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, H.C.; Hulm, E.; Humphries, A.W.; Hughes, S.J.; Vercoe, P.E. Broad near-infrared spectroscopy calibrations can predict the nutritional value of >100 forage species within the Australian feedbase. Anim. Prod. Sci. 2020. [Google Scholar] [CrossRef]
- Sweeney, R.A.; Rexroad, P.R. Comparison of LECO FP-228 “nitrogen determinator” with AOAC copper catalyst Kjeldahl method for crude protein. J. Assoc. Off. Anal. Chem. 1987, 70, 1028–1030. [Google Scholar] [CrossRef]
- Clarke, P.C.; Flinn, P.; McGowan, A.A. Low-cost pepsin-cellulase assays for prediction of digestibility of herbage. Grass Forage Sci. 1982, 37, 147–150. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Williams, S.K. A Protocol for the Construction of Yield Maps from Data Collected Using Commercially Available Grape Yield Monitors; Cooperative Research Centre for Viticulture: Adelaide, Australia, 2001; Available online: http://hdl.handle.net/102.100.100/200547?index=1 (accessed on 13 April 2020).
- McKillop, I.G.; Sibly, R.M. Animal behaviour at electric fences and the implications for management. Mammal Rev. 1988, 18, 91–103. [Google Scholar] [CrossRef]
- Ito, K.; Weary, D.M.; von Keyserlingk, M.A.G. Lying behaviour: Assessing within- and between-herd variation in free-stall-housed dairy cows. J. Dairy Sci. 2009, 92, 4412–4420. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, R.J. In pursuit of ‘normal’: A review of the behaviour of cattle at pasture. Appl. Anim. Behav. Sci. 2012, 138, 1–11. [Google Scholar] [CrossRef]
- Tucker, C.B.; Rogers, A.R.; Schütz, K.E. Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Appl. Anim. Behav. Sci. 2008, 109, 141–154. [Google Scholar] [CrossRef]
- Robért, B.D.; White, B.J.; Renter, D.G.; Larson, R.L. Determination of lying behaviour patterns in healthy beef cattle by use of wireless accelerometers. Am. J. Vet. Res. 2011, 72, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.D.; Verkerk, G.A.; Morrow, C.J.; Matthews, L.R. The effects of feed restriction and lying deprivation on pituitary-adrenal axis regulation in lactating cows. Livest. Prod. Sci. 2002, 73, 255–263. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, D.L.M.; Ouzman, J.; Mowat, D.; Lea, J.M.; Lee, C.; Llewellyn, R.S. Virtual Fencing Technology Excludes Beef Cattle from an Environmentally Sensitive Area. Animals 2020, 10, 1069. https://doi.org/10.3390/ani10061069
Campbell DLM, Ouzman J, Mowat D, Lea JM, Lee C, Llewellyn RS. Virtual Fencing Technology Excludes Beef Cattle from an Environmentally Sensitive Area. Animals. 2020; 10(6):1069. https://doi.org/10.3390/ani10061069
Chicago/Turabian StyleCampbell, Dana L. M., Jackie Ouzman, Damian Mowat, Jim M. Lea, Caroline Lee, and Rick S. Llewellyn. 2020. "Virtual Fencing Technology Excludes Beef Cattle from an Environmentally Sensitive Area" Animals 10, no. 6: 1069. https://doi.org/10.3390/ani10061069
APA StyleCampbell, D. L. M., Ouzman, J., Mowat, D., Lea, J. M., Lee, C., & Llewellyn, R. S. (2020). Virtual Fencing Technology Excludes Beef Cattle from an Environmentally Sensitive Area. Animals, 10(6), 1069. https://doi.org/10.3390/ani10061069