UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Zebrafish Keeping and Ethics
2.2. Zebrafish UVB Irradiation
2.3. Histology
2.4. Acridine Orange Staining
2.5. ROS Detection
2.6. Whole-Mount Immunostaining
2.7. Quantitative Real-Time-PCR
2.8. Image Acquisition, Quantification, and Statistics
2.9. Microarray Analysis
2.10. Statistical Analysis
3. Results
3.1. Optimization of UVB-Induced Zebrafish Model
3.2. DNA Damage Induction, ROS Release, and Inflammatory Response after UVB Irradiation
3.3. Screening on Novel UVB-Inducible Markers by Microarray Analysis
3.4. Temporal and Spatial Expression Patterns of UVB-Inducible Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maverakis, E.; Miyamura, Y.; Bowen, M.P.; Correa, G.; Ono, Y.; Goodarzi, H. Light, including ultraviolet. J. Autoimmun. 2010, 34, J247–J257. [Google Scholar] [CrossRef]
- Diaz, S.; Camilion, C.; Deferrari, G.; Fuenzalida, H.; Armstrong, R.; Booth, C.; Paladini, A.; Cabrera, S.; Casiccia, C.; Lovengreen, C.; et al. Ozone and uv radiation over southern south america: Climatology and anomalies. Photochem. Photobiol. 2006, 82, 834–843. [Google Scholar] [CrossRef]
- El-Nouby, A.M. Effect of stratospheric ozone in uvb solar radiation reaching the earth’s surface at qena, egypt. Atmos. Pollut. Res. 2010, 1, 155–160. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight, uv-radiation, vitamin d and skin cancer: How much sunlight do we need? Adv. Exp. Med. Biol. 2008, 624, 1–15. [Google Scholar]
- Uchida, Y.; Morimoto, Y.; Uchiike, T.; Kamamoto, T.; Hayashi, T.; Arai, I.; Nishikubo, T.; Takahashi, Y. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the gunn rat model. Early Hum. Dev. 2015, 91, 381–385. [Google Scholar] [CrossRef]
- Rajakumar, K.; Greenspan, S.L.; Thomas, S.B.; Holick, M.F. Solar ultraviolet radiation and vitamin d: A historical perspective. Am. J. Public Health 2007, 97, 1746–1754. [Google Scholar] [CrossRef]
- Flament, F.; Bazin, R.; Laquieze, S.; Rubert, V.; Simonpietri, E.; Piot, B. Effect of the sun on visible clinical signs of aging in caucasian skin. Clin. Cosmet. Investig. Dermatol. 2013, 6, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.; Little, E.; Quan, H.; Qin, Z.; Voorhees, J.J.; Fisher, G.J. Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: Impact of altered extracellular matrix microenvironment on dermal fibroblast function. J. Investig. Dermatol. 2013, 133, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Slominski, A.T. Sun-derived infrared a and ultraviolet b radiation: Allies or enemies in melanomagenesis? Exp. Dermatol. 2016, 25, 760–762. [Google Scholar] [CrossRef] [PubMed]
- Noonan, F.P.; Zaidi, M.R.; Wolnicka-Glubisz, A.; Anver, M.R.; Bahn, J.; Wielgus, A.; Cadet, J.; Douki, T.; Mouret, S.; Tucker, M.A.; et al. Melanoma induction by ultraviolet a but not ultraviolet b radiation requires melanin pigment. Nat. Commun. 2012, 3, 884. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Semak, I.; Zbytek, B.; Pisarchik, A.; Li, W.; Zjawiony, J.; Tuckey, R.C. Cytochromes p450 and skin cancer: Role of local endocrine pathways. Anticancer Agents Med. Chem. 2014, 14, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Cooke, A.; Johnson, B.E. Dose response, wavelength dependence and rate of excision of ultraviolet radiation-induced pyrimidine dimers in mouse skin DNA. Biochim. Biophys. Acta 1978, 517, 24–30. [Google Scholar] [CrossRef]
- Ikehata, H.; Mori, T.; Kamei, Y.; Douki, T.; Cadet, J.; Yamamoto, M. Wavelength-and tissue-dependent variations in the mutagenicity of cyclobutane pyrimidine dimers in mouse skin. Photochem. Photobiol. 2020, 96, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Hader, D.P. Uv-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 2002, 1, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Skobowiat, C.; Zbytek, B.; Slominski, R.M.; Steketee, J.D. Sensing the environment: Regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 2012, 212, 1–115. [Google Scholar]
- Skobowiat, C.; Slominski, A.T. Uvb activates hypothalamic-pituitary-adrenal axis in c57bl/6 mice. J. Investig. Dermatol. 2015, 135, 1638–1648. [Google Scholar] [CrossRef]
- Grandjean-Laquerriere, A.; Le Naour, R.; Gangloff, S.C.; Guenounou, M. Differential regulation of tnf-alpha, il-6 and il-10 in uvb-irradiated human keratinocytes via cyclic amp/protein kinase a pathway. Cytokine 2003, 23, 138–149. [Google Scholar] [CrossRef]
- Bald, T.; Quast, T.; Landsberg, J.; Rogava, M.; Glodde, N.; Lopez-Ramos, D.; Kohlmeyer, J.; Riesenberg, S.; van den Boorn-Konijnenberg, D.; Homig-Holzel, C.; et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014, 507, 109–113. [Google Scholar] [CrossRef]
- Banerjee, S.; Leptin, M. Systemic response to ultraviolet radiation involves induction of leukocytic il-1beta and inflammation in zebrafish. J. Immunol. 2014, 193, 1408–1415. [Google Scholar] [CrossRef]
- Kennedy Crispin, M.; Fuentes-Duculan, J.; Gulati, N.; Johnson-Huang, L.M.; Lentini, T.; Sullivan-Whalen, M.; Gilleaudeau, P.; Cueto, I.; Suarez-Farinas, M.; Lowes, M.A.; et al. Gene profiling of narrowband uvb-induced skin injury defines cellular and molecular innate immune responses. J. Investig. Dermatol. 2013, 133, 692–701. [Google Scholar] [CrossRef]
- Skobowiat, C.; Sayre, R.M.; Dowdy, J.C.; Slominski, A.T. Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. Br. J. Dermatol. 2013, 168, 595–601. [Google Scholar] [CrossRef]
- Enk, C.D.; Jacob-Hirsch, J.; Gal, H.; Verbovetski, I.; Amariglio, N.; Mevorach, D.; Ingber, A.; Givol, D.; Rechavi, G.; Hochberg, M. The uvb-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes. Oncogene 2006, 25, 2601–2614. [Google Scholar] [CrossRef]
- Li, Q.; Frank, M.; Thisse, C.I.; Thisse, B.V.; Uitto, J. Zebrafish: A model system to study heritable skin diseases. J. Investig. Dermatol. 2011, 131, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Sire, J.Y.; Akimenko, M.A. Scale development in fish: A review, with description of sonic hedgehog (shh) expression in the zebrafish (danio rerio). Int. J. Dev. Biol. 2004, 48, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xie, G.; Fan, Q.; Xie, J. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 2010, 29, 469–481. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, K.E.; de Miera, E.V.; Segura, M.F.; Friedman, E.; Poliseno, L.; Han, S.W.; Zhong, J.; Zavadil, J.; Pavlick, A.; Hernando, E.; et al. Hedgehog pathway blockade inhibits melanoma cell growth in vitro and in vivo. Pharmaceuticals 2013, 6, 1429–1450. [Google Scholar] [CrossRef] [PubMed]
- Aksakal, F.I.; Ciltas, A.; Sciences, P. The impact of ultraviolet b (uv-b) radiation in combination with different temperatures in the early life stage of zebrafish (danio rerio). Photochem. Photobiol. Sci. 2018, 17, 35–41. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wen, C.-C.; Lin, C.-Y.; Chou, C.-Y.; Yang, Z.-S.; Wang, Y.-H. Uv-induced fin damage in zebrafish as a system for evaluating the chemopreventive potential of broccoli and cauliflower extracts. Toxicol. Mech. Methods 2011, 21, 63–69. [Google Scholar] [CrossRef]
- Storer, N.Y.; Zon, L.I. Zebrafish models of p53 functions. Cold Spring Harb. Perspect. Biol. 2010, 2, a001123. [Google Scholar] [CrossRef]
- Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 2008, 7, 979–987. [Google Scholar] [CrossRef]
- Tyrrell, R.M. Ultraviolet radiation and free radical damage to skin. Biochem. Soc. Symp. 1995, 61, 47–53. [Google Scholar]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, Y.; Zhao, F.; Ruan, H.; Huang, H.; Luo, L.; Li, L. Acetylcholine serves as a derepressor in loperamide-induced opioid-induced bowel dysfunction (oibd) in zebrafish. Sci. Rep. 2014, 4, 5602. [Google Scholar] [CrossRef] [PubMed]
- Bernard, J.J.; Cowing-Zitron, C.; Nakatsuji, T.; Muehleisen, B.; Muto, J.; Borkowski, A.W.; Martinez, L.; Greidinger, E.L.; Yu, B.D.; Gallo, R.L. Ultraviolet radiation damages self noncoding rna and is detected by tlr3. Nat. Med. 2012, 18, 1286. [Google Scholar] [CrossRef]
- Renshaw, S.A.; Loynes, C.A.; Trushell, D.M.; Elworthy, S.; Ingham, P.W.; Whyte, M.K. A transgenic zebrafish model of neutrophilic inflammation. Blood 2006, 108, 3976–3978. [Google Scholar] [CrossRef]
- Waster, P.; Orfanidis, K.; Eriksson, I.; Rosdahl, I.; Seifert, O.; Ollinger, K. Uv radiation promotes melanoma dissemination mediated by the sequential reaction axis of cathepsins-tgf-beta1-fap-alpha. Br. J. Cancer 2017, 117, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Pal, A.S.; Hsu, A.Y.; Gurol, T.; Zhu, X.; Wirbisky-Hershberger, S.E.; Freeman, J.L.; Kasinski, A.L.; Deng, Q. Microrna-223 suppresses the canonical nf-kappab pathway in basal keratinocytes to dampen neutrophilic inflammation. Cell Rep. 2018, 22, 1810–1823. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Villegas, J.; Montalban-Arques, A.; Liarte, S.; de Oliveira, S.; Pardo-Pastor, C.; Rubio-Moscardo, F.; Meseguer, J.; Valverde, M.A.; Mulero, V. Trpv4-mediated detection of hyposmotic stress by skin keratinocytes activates developmental immunity. J. Immunol. 2016, 196, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Berghmans, S.; Murphey, R.D.; Wienholds, E.; Neuberg, D.; Kutok, J.L.; Fletcher, C.D.; Morris, J.P.; Liu, T.X.; Schulte-Merker, S.; Kanki, J.P.; et al. Tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 407–412. [Google Scholar] [CrossRef]
- Assefa, Z.; Van Laethem, A.; Garmyn, M.; Agostinis, P. Ultraviolet radiation-induced apoptosis in keratinocytes: On the role of cytosolic factors. Biochim. Biophys. Acta 2005, 1755, 90–106. [Google Scholar] [CrossRef]
- Skobowiat, C.; Dowdy, J.C.; Sayre, R.M.; Tuckey, R.C.; Slominski, A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: Regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E484–E493. [Google Scholar] [CrossRef] [PubMed]
- Noonan, F.P.; Dudek, J.; Merlino, G.; De Fabo, E.C. Animal models of melanoma: An hgf/sf transgenic mouse model may facilitate experimental access to uv initiating events. Pigment. Cell Res. 2003, 16, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Slominski, A.T. Ultraviolet b stimulates proopiomelanocortin signalling in the arcuate nucleus of the hypothalamus in mice. Exp. Dermatol. 2016, 25, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Postlethwaite, A.E.; Slominski, A.T. Skin exposure to ultraviolet b rapidly activates systemic neuroendocrine and immunosuppressive responses. Photochem. Photobiol. 2016, 93, 1008–1015. [Google Scholar] [CrossRef]
- Yang, H.M.; Ham, Y.M.; Yoon, W.J.; Roh, S.W.; Jeon, Y.J.; Oda, T.; Kang, S.M.; Kang, M.C.; Kim, E.A.; Kim, D.; et al. Quercitrin protects against ultraviolet b-induced cell death in vitro and in an in vivo zebrafish model. J. Photochem. Photobiol. B 2012, 114, 126–131. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wen, C.C.; Yang, Z.S.; Cheng, C.C.; Tsai, J.N.; Ku, C.C.; Wu, H.J.; Chen, Y.H. Development of a whole-organism model to screen new compounds for sun protection. Mar. Biotechnol. N. Y. 2009, 11, 419–429. [Google Scholar] [CrossRef]
- Tsai, I.T.; Yang, Z.S.; Lin, Z.Y.; Wen, C.C.; Cheng, C.C.; Chen, Y.H. Flavone is efficient to protect zebrafish fins from uv-induced damage. Drug Chem. Toxicol. 2012, 35, 341–346. [Google Scholar] [CrossRef]
- Zeng, Z.; Richardson, J.; Verduzco, D.; Mitchell, D.L.; Patton, E.E. Zebrafish have a competent p53-dependent nucleotide excision repair pathway to resolve ultraviolet b-induced DNA damage in the skin. Zebrafish 2009, 6, 405–415. [Google Scholar] [CrossRef]
- Siegenthaler, B.; Defila, C.; Muzumdar, S.; Beer, H.D.; Meyer, M.; Tanner, S.; Bloch, W.; Blank, V.; Schafer, M.; Werner, S. Nrf3 promotes uv-induced keratinocyte apoptosis through suppression of cell adhesion. Cell Death Differ. 2018, 25, 1749–1765. [Google Scholar] [CrossRef]
- Williams, L.M.; Timme-Laragy, A.R.; Goldstone, J.V.; McArthur, A.G.; Stegeman, J.J.; Smolowitz, R.M.; Hahn, M.E. Developmental expression of the nfe2-related factor (nrf) transcription factor family in the zebrafish, danio rerio. PLoS ONE 2013, 8, e79574. [Google Scholar] [CrossRef]
- Latonen, L.; Laiho, M. Cellular uv damage responses--functions of tumor suppressor p53. Biochim. Biophys Acta 2005, 1755, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, J.Z.; Trindade, G.S.; Nery, L.E.; Marins, L.F. Time-course expression of DNA repair-related genes in hepatocytes of zebrafish (danio rerio) after uv-b exposure. Photochem. Photobiol. 2009, 85, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Koivukangas, V.; Kallioinen, M.; Autio-Harmainen, H.; Oikarinen, A. Uv irradiation induces the expression of gelatinases in human skin in vivo. Acta Derm. Venereol. 1994, 74, 279–282. [Google Scholar] [PubMed]
- Chatterjee, R.; Benzinger, M.J.; Ritter, J.L.; Bissett, D.L. Chronic ultraviolet b radiation-induced biochemical changes in the skin of hairless mice. Photochem. Photobiol. 1990, 51, 91–97. [Google Scholar] [CrossRef]
- Brenneisen, P.; Wenk, J.; Klotz, L.O.; Wlaschek, M.; Briviba, K.; Krieg, T.; Sies, H.; Scharffetter-Kochanek, K. Central role of ferrous/ferric iron in the ultraviolet b irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloprotease (mmp)-1) and stromelysin-1 (mmp-3) mrna levels in cultured human dermal fibroblasts. J. Biol. Chem. 1998, 273, 5279–5287. [Google Scholar]
- Vincenti, M.P.; Brinckerhoff, C.E. Transcriptional regulation of collagenase (mmp-1, mmp-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002, 4, 157–164. [Google Scholar] [CrossRef]
- Mignatti, P.; Rifkin, D.B. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 1993, 73, 161–195. [Google Scholar] [CrossRef]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef]
- Ishida, T.; Nakajima, T.; Kudo, A.; Kawakami, A. Phosphorylation of junb family proteins by the jun n-terminal kinase supports tissue regeneration in zebrafish. Dev. Biol. 2010, 340, 468–479. [Google Scholar] [CrossRef]
- Piechaczyk, M.; Farras, R. Regulation and Function of Junb in Cell Proliferation; Portland Press Ltd.: London, UK, 2008. [Google Scholar]
- Passegué, E.; Jochum, W.; Behrens, A.; Ricci, R.; Wagner, E.F. Junb can substitute for jun in mouse development and cell proliferation. Nat. Genet. 2002, 30, 158–166. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.-Y.; Lin, C.-J.; Liang, S.-T.; Villalobos, O.; Villaflores, O.B.; Lou, B.; Lai, Y.-H.; Hsiao, C.-D. UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish. Animals 2020, 10, 1096. https://doi.org/10.3390/ani10061096
Chen R-Y, Lin C-J, Liang S-T, Villalobos O, Villaflores OB, Lou B, Lai Y-H, Hsiao C-D. UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish. Animals. 2020; 10(6):1096. https://doi.org/10.3390/ani10061096
Chicago/Turabian StyleChen, Rui-Yi, Chun-Ju Lin, Sung-Tzu Liang, Omar Villalobos, Oliver B. Villaflores, Bao Lou, Yu-Heng Lai, and Chung-Der Hsiao. 2020. "UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish" Animals 10, no. 6: 1096. https://doi.org/10.3390/ani10061096
APA StyleChen, R.-Y., Lin, C.-J., Liang, S.-T., Villalobos, O., Villaflores, O. B., Lou, B., Lai, Y.-H., & Hsiao, C.-D. (2020). UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish. Animals, 10(6), 1096. https://doi.org/10.3390/ani10061096