Effect of Microbiota-Selenoprotein on Meat Selenium Content and Meat Quality of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Extraction of Bacterial Selenium Content
2.2. Experimental Animals and Design
2.3. Breast Meat Sampling
2.4. Carcass Characteristics
2.5. Assay of Se Content in Breast Meat
2.6. Determination of Meat Quality
2.6.1. Drip Loss
2.6.2. Cooking Loss
2.6.3. Tenderness Measurement
2.6.4. Color Measurement
2.6.5. pH Measurement
2.7. Determination of Antioxidant Enzyme Activity
2.8. Statistical Analysis
3. Results
3.1. Carcass Characteristics and Internal Organs
3.2. Meat Selenium Content
3.3. Breast Meat Quality
3.4. Meat Antioxidant Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef]
- Perić, L.; Milošević, N.; Ņikić, D.; Kanački, Z.; Dņinić, N.; Nollet, L.; Spring, P. Effect of selenium sources on performance and meat characteristics of broiler chickens. J. Appl. Poult. Res. 2009, 18, 403–409. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994.
- Surai, P.F.; Fisinin, V.I. Selenium in poultry breeder nutrition: An update. Anim. Feed. Sci. Technol. 2014, 191, 1–15. [Google Scholar] [CrossRef]
- Wu, R.; Zhan, X.; Wang, Y.; Zhang, X.; Wang, M.; Yuan, D. Effect of different selemethionine forms and levels on performance of breeder hens and se distribution of tissue and egg inclusion. Biol. Trace Elem. Res. 2011, 143, 923–931. [Google Scholar] [CrossRef]
- Bakhshalinejad, R.; Hassanabadi, A.; Swick, R.A. Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Anim. Nutr. 2019, 5, 256–263. [Google Scholar] [CrossRef]
- Li, J.L.; Zhang, L.; Yang, Z.Y.; Zhang, Z.Y.; Jiang, Y.; Gao, F.; Zhou, G.H. Effects of Different Selenium Sources on Growth Performance, Antioxidant Capacity and Meat Quality of Local Chinese Subei Chickens. Biol. Trace Elem. Res. 2017, 181, 340–346. [Google Scholar] [CrossRef]
- Pusztahelyi, T.; Kovács, S.; Pócsi, I.; Prokisch, J. Selenite-stress selected mutant strains of probiotic bacteria for Se source production. J. Trace Elem. Med. Bio. 2015, 30, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Sumner, S.E.; Markley, R.L.; Kirimanjeswara, G.S. Role of Selenoproteins in Bacterial Pathogenesis. Biol. Trace Elem. Res. 2019, 192, 69–82. [Google Scholar] [CrossRef]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Jahromi, M.F.; Samsudin, A.A. Characterization and Identification of Organic Selenium-enriched Bacteria Isolated from Rumen Fluid and Hot Spring Water. Micro. Biotechnol. Lett. (MBL) 2017, 45, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Jahromi, M.F.; Samsudin, A.A. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens. BMC Vet. Res. 2017, 13, 254. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, K.; Zhang, J.; Chen, Q.; Liu, G.; Shang, N.; Qin, W.; Li, P.; Lin, F. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01. Food. Chem. 2009, 115, 727–734. [Google Scholar] [CrossRef]
- Wahlen, R.; Evans, L.; Turner, J.; Hearn, R. The Use of Collision/Reaction Cell ICP-MS for the Determination of Elements in Blood and Serum Samples. Spectroscopy 2005, 20, 84–89. [Google Scholar]
- Rasmussen, A.; Andersson, M. New method for determination of drip loss in pork muscles. In Proceedings of the in 42nd International Congress of Meat Science and Technology (ICoMST ’96), Lillehammer, Norway, 1–6 September 1996; pp. 286–287. [Google Scholar]
- Miezeliene, A.; Alencikiene, G.; Gruzauskas, R.; Barstys, T. The effect of dietary selenium supplementation on meat quality of broiler chickens. Biotechnol. Agron. Soc. Environ. 2011, 15, 61–69. [Google Scholar]
- Sazili, A.Q.; Parr, T.; Sensky, P.L.; Jones, S.W.; Bardsley, R.G.; Buttery, P.J. The relationship between slow and fast myosin heavy chain content, calpastatin and meat tenderness in different ovine skeletal muscles. Meat Sci. 2005, 69, 17–25. [Google Scholar] [CrossRef] [PubMed]
- AMSA. Meat Color Measurement Guidelines, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2012; p. 102.
- Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Asmara, S.A.; Akit, H.; Abdulla, N.R.; Foong Ooi, M. Carcass, meat and bone quality of broiler chickens fed with postbiotic and prebiotic combinations. Int. J. Probiotics Prebiotics 2015, 10, 23–30. [Google Scholar]
- Waldenstedt, L. Nutritional factors of importance for optimal leg health in broilers: A review. Anim. Feed. Sci. Technol. 2006, 126, 291–307. [Google Scholar] [CrossRef]
- Payne, R.; Southern, L. Comparison of inorganic and organic selenium sources for broilers. Poult. Sci. 2005, 84, 898–902. [Google Scholar] [CrossRef]
- Rao, S.V.; Prakash, B.; Raju, M.V.; Panda, A.K.; Poonam, S.; Murthy, O.K. Effect of supplementing organic selenium on performance, carcass traits, oxidative parameters and immune responses in commercial broiler chickens. Asian-Australas. J. Anim. Sci. 2013, 26, 247–252. [Google Scholar] [CrossRef]
- Choct, M.; Naylor, A.; Reinke, N. Selenium supplementation affects broiler growth performance, meat yield and feather coverage. Br. Poult. Sci. 2004, 45, 677–683. [Google Scholar] [CrossRef]
- Mahan, D.; Parrett, N. Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and finisher swine. J. Anim. Sci. 1996, 74, 2967–2974. [Google Scholar] [CrossRef]
- Liao, X.; Lu, L.; Li, S.; Liu, S.; Zhang, L.; Wang, G.; Li, A.; Luo, X. Effects of selenium source and level on growth performance, tissue selenium concentrations, antioxidation, and immune functions of heat-stressed broilers. Biol. Trace Elem. Res. 2012, 150, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.; Rivera, D.; Mesquita, F.; Braga, H.; Ramos, E.; Bertechini, A. Effect of different sources and levels of selenium on performance, meat quality, and tissue characteristics of broilers. J. Appl. Poult. Res. 2014, 23, 15–22. [Google Scholar] [CrossRef]
- Macit, M.; Aksakal, V.; Emsen, E.; Aksu, M.I.; Karaoglu, M.; Esenbuga, N. Effects of vitamin E supplementation on performance and meat quality traits of Morkaraman male lambs. Meat Sci. 2003, 63, 51–55. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, X.; Zhang, X.; Wu, R.; Yuan, D. Comparison of different forms of dietary selenium supplementation on growth performance, meat quality, selenium deposition, and antioxidant property in broilers. Biol. Trace Elem. Res. 2011, 143, 261–273. [Google Scholar] [CrossRef]
- Yang, Y.R.; Meng, F.C.; Wang, P.; Jiang, Y.B.; Yin, Q.Q.; Chang, J.; Zuo, R.Y.; Zheng, Q.H.; Liu, J.X. Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. Afr. J. Biotechnol. 2012, 11, 3031–3036. [Google Scholar]
- Cozzi, G.; Prevedello, P.; Stefani, A.L.; Piron, A.; Contiero, B.; Lante, A.; Gottardo, F.; Chevaux, E. Effect of dietary supplementation with different sources of selenium on growth response, selenium blood levels and meat quality of intensively finished Charolais young bulls. Animal 2011, 5, 1531–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gault, N. The relationship between water-holding capacity and cooked meat tenderness in some beef muscles as influenced by acidic conditions below the ultimate pH. Meat Sci. 1985, 15, 15–30. [Google Scholar] [CrossRef]
- Cai, S.J.; Wu, C.X.; Gong, L.M.; Song, T.; Wu, H.; Zhang, L.Y. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult. Sci. 2012, 91, 2532–2539. [Google Scholar] [CrossRef]
- Lisiak, D.; Janiszewski, P.; Blicharski, T.; Borzuta, K.; Grześkowiak, E.; Lisiak, B.; Powałowski, K.; Samardakiewicz, Ł.; Batorska, M.; Skrzymowska, K.; et al. Effect of selenium supplementation in pig feed on slaughter value and physicochemical and sensory characteristics of meat. Ann. Anim. Sci. 2014, 14, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Juniper, D.T.; Phipps, R.H.; Bertin, G. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in commercial-line turkeys. Animal 2011, 5, 1751–1760. [Google Scholar] [CrossRef]
- Del Maestro, R. Free radicals as mediators of tissue injury. In Trace Elements, Micronutrients, and Free Radicals; Ivor, E.D., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 25–51. [Google Scholar]
- Jiang, Z.; Lin, Y.; Zhou, G.; Luo, L.; Jiang, S.; Chen, F. Effects of dietary selenomethionine supplementation on growth performance, meat quality and antioxidant property in yellow broilers. J. Agric. Food. Chem. 2009, 57, 9769–9772. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Tian, J.; Wang, J.; Khan, M.A.; Wang, Y.; Zhang, L.; Wang, T. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. J. Agric. Food. Chem. 2012, 60, 7111–7120. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.; Mahmud, A.; Zahoor, I.; Javed, K. Organic and inorganic selenium in Aseel chicken diets: Effect on hatching traits. Poult. Sci. 2017, 96, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Visha, P.; Nanjappan, K.; Selvaraj, P.; Jayachandran, S.; Thavasiappan, V. Influence of dietary nanoselenium supplementation on the meat characteristics of broiler chickens. Int. J. Curr. Microbiol. Appl. Sci. 2017, 340–347. [Google Scholar] [CrossRef]
- Galano, E.; Mangiapane, E.; Bianga, J.; Palmese, A.; Pessione, E.; Szpunar, J.; Lobinski, R.; Amoresano, A. Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol. Cell. Proteomics 2013, 12, 2196–2204. [Google Scholar] [CrossRef] [Green Version]
Ingredients | Starter % | Finisher % |
---|---|---|
Corn | 52.5 | 56.250 |
Palm oil (Refine) | 5.00 | 6.00 |
Soybean meal (44% Crude Protein) | 32.50 | 30.00 |
Fish meal (58% Crude Protein)) | 5.15 | 3.25 |
L-Lysine | 0.25 | 0.25 |
DL-Methionine | 0.25 | 0.25 |
Dicalcium phosphate 18% | 1.60 | 1.85 |
Calcium carbonate | 0.60 | 0.35 |
Salt (Nacl) | 0.30 | 0.30 |
Mineral premix a | 0.15 | 0.15 |
Vitamin premix b | 0.10 | 0.10 |
Toxin binder c | 0.15 | 0.15 |
Choline chloride | 0.10 | 0.10 |
Wheat pollard | 1.35 | 1.00 |
Calculated nutrient content (g/kg DM) | ||
ME (kcal/kg) | 3081.1 | 3152.8 |
Crude protein | 22.04 | 20.09 |
Crude fat | 7.57 | 8.004 |
Calcium | 1.189 | 1.0440 |
Phosphorus | 0.786 | 0.768 |
Avail. P for poultry | 0.472 | 0.450 |
Analyzed Se (mg/kg) d | 0.079 | 0.087 |
Dietary Treatments 1 | |||||||
---|---|---|---|---|---|---|---|
Parameters | T1 | T2 | T3 | T4 | T5 | SEM | p |
Carcass characteristics | |||||||
Final body weight (g) | 2008 | 2082.1 | 2054.8 | 2075.4 | 2093.9 | 21.65 | 0.064 |
Carcass yield% | 72.39 | 72.36 | 73.44 | 75.85 | 76.57 | 1.039 | 0.141 |
Breast% | 36.02 | 35.80 | 34.45 | 34.82 | 35.87 | 0.628 | 0.927 |
Thigh% | 9.56 | 8.56 | 8.71 | 8.12 | 7.45 | 0.439 | 0.238 |
Drumstick% | 7.91 | 5.90 | 5.80 | 5.96 | 6.26 | 0.421 | 0.074 |
Abdominal Fat% | 1.296 | 1.827 | 2.482 | 2.327 | 2.554 | 0.167 | 0.060 |
Internal Organs (% of live weight) | |||||||
Liver% | 2.827 | 2.849 | 2.817 | 2.395 | 2.877 | 0.088 | 0.412 |
Spleen% | 0.164 | 0.159 | 0.173 | 0.138 | 0.154 | 0.008 | 0.788 |
Gizzard% | 3.981 | 3.312 | 3.854 | 3.284 | 3.511 | 0.142 | 0.452 |
Thymus% | 0.328 | 0.212 | 0.159 | 0.228 | 0.279 | 0.024 | 0.268 |
Bursal% | 0.067 | 0.088 | 0.099 | 0.069 | 0.068 | 0.007 | 0.657 |
Parameters | Dietary Treatments 1 | ||||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | SEM | p | |
Drip loss % | 1.96 a | 1.44 b | 1.42 b | 1.32 b | 1.49 b | 0.082 | 0.0311 |
Cooking loss % | 25.62 a | 24.07 b | 24.40 b | 23.25 b | 23.23 b | 0.290 | 0.0220 |
Shear force (kg) | 1.16 a | 0.976 ab | 0.856 b | 0.892 b | 0.915 b | 0.54 | 0.0001 |
Color | |||||||
L* | 54.65 | 55.33 | 54.41 | 53.66 | 55.05 | 0.304 | 0.539 |
a* | 5.08 | 5.61 | 4.14 | 5.75 | 5.63 | 0.407 | 0.500 |
b* | 15.05 | 15.49 | 14.67 | 15.26 | 15.12 | 0.307 | 0.061 |
pH | 6.18 | 6.01 | 6.06 | 6.03 | 6.09 | 0.029 | 0.053 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, D.A.; Sazili, A.Q.; Teck Chwen, L.; Samsudin, A.A. Effect of Microbiota-Selenoprotein on Meat Selenium Content and Meat Quality of Broiler Chickens. Animals 2020, 10, 981. https://doi.org/10.3390/ani10060981
Mohamed DA, Sazili AQ, Teck Chwen L, Samsudin AA. Effect of Microbiota-Selenoprotein on Meat Selenium Content and Meat Quality of Broiler Chickens. Animals. 2020; 10(6):981. https://doi.org/10.3390/ani10060981
Chicago/Turabian StyleMohamed, Dalia A., Awis Qurni Sazili, Loh Teck Chwen, and Anjas Asmara Samsudin. 2020. "Effect of Microbiota-Selenoprotein on Meat Selenium Content and Meat Quality of Broiler Chickens" Animals 10, no. 6: 981. https://doi.org/10.3390/ani10060981
APA StyleMohamed, D. A., Sazili, A. Q., Teck Chwen, L., & Samsudin, A. A. (2020). Effect of Microbiota-Selenoprotein on Meat Selenium Content and Meat Quality of Broiler Chickens. Animals, 10(6), 981. https://doi.org/10.3390/ani10060981