Spatial Aspects of Gardens Drive Ranging in Urban Foxes (Vulpes vulpes): The Resource Dispersion Hypothesis Revisited
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Methods
2.3. Data Handling and Home Range Analysis
2.4. Landscape Metrics and GIS
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Santini, L.; Gonzalez-Suarez, M.; Russo, D.; Gonzalez-Voyer, A.; von Hardenberg, A.; Ancillotto, L. One strategy does not fit all: Determinants of urban adaptation in mammals. Ecol. Lett. 2019, 22, 365–376. [Google Scholar] [PubMed] [Green Version]
- Soulsbury, C.D.; Baker, P.J.; Iossa, G.; Harris, S. Red foxes (Vulpes vulpes). In Urban Carnivores. Ecology, Conflict, and Conservation; Gehrt, S.D., Riley, S.P.D., Cypher, B.L., Eds.; John Hopkins University Press: Baltimore, MD, USA, 2010; pp. 63–75. [Google Scholar]
- Salek, M. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mammal. Rev. 2015, 45, 1–14. [Google Scholar] [CrossRef]
- Soulsbury, C.D.; White, P.C.L. Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 2015, 42, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Baker, P.J.; Harris, S. Urban mammals: What does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mammal Rev. 2007, 37, 297–315. [Google Scholar] [CrossRef]
- Cassidy, A.; Mills, B. ‘‘Fox tots attack shock’’: Urban foxes, mass media and boundary-breaching. Environ. Commun. 2011, 6, 494–511. [Google Scholar] [CrossRef] [Green Version]
- Plumer, L.; Davison, J.; Saarma, U. Rapid urbanization of red foxes in Estonia: Distribution, behaviour, attacks on domestic animals, and health-risks related to zoonotic diseases. PLoS ONE 2014, 9, e115124. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.S.; Gato, R.G.; Learmount, J.; Aziz, N.A.; Montgomery, C.; Rose, H.; Coulthwaite, C.L.; McGarry, J.W.; Forman, D.W.; Allen, S.; et al. Increased prevalence and geographic spread of the cardiopulmonary nematode Angiostrongylus vasorum in fox populations in Great Britain. Parasitology 2015, 142, 1190–1195. [Google Scholar] [CrossRef]
- Singer, A.; Smith, G.C. Emergency rabies control in a community of high-density hosts. BMC Vet. Res. 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.; Freuling, C.M.; Wysocki, P.; Roumiantzeff, M.; Freney, J.; Mettenleiter, T.C.; Vos, A. Terrestrial rabies control in the European Union: Historical achievements and challenges ahead. Vet. J. 2015, 203, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Brochier, B.; De Blander, H.; Hanosset, R.; Berkvens, D.; Losson, B.; Saegerman, C. Echinococcus multilocularis and Toxocara canis in urban red foxes (Vulpes vulpes) in Brussels, Belgium. Prev. Vet. Med. 2007, 80, 65–73. [Google Scholar] [CrossRef]
- Baker, P.J.; Funk, S.M.; Harris, S.; White, P.C.L. Flexible social organisation of red foxes (Vulpes vulpes) before and during an outbreak of sarcoptic mange. Anim. Behav. 2000, 59, 127–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloor, S.; Bontadina, F.; Hegglin, D.; Deplazes, P.; Breitenmoser, U. The rise of urban fox populations in Switzerland. Mamm. Biol. 2001, 66, 155–164. [Google Scholar]
- Newman, T.J.; Baker, P.J.; Simcock, E.; Saunders, G.; White PC, L.; Harris, S. Changes in red fox habitat preference and rest site fidelity following a disease-induced population decline. Acta Theriol. 2003, 48, 79–91. [Google Scholar] [CrossRef]
- Walter, T.; Zink, R.; Laaha, G.; Zaller, J.G.; Heigl, F. Fox sightings in a city are related to certain land-use classes; sociodemographics: Results from a citizen science project. BMC Ecol. 2018, 18, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, D.M.; Berg, M.J.; Tolhurst, B.A.; Chauvenet, A.L.M.; Smith, G.C.; Neaves, K.; Lochhead, J.; Baker, P.J. Changes in the distribution of red foxes (Vulpes vulpes) in urban areas in Great Britain: Findings and limitations of a media-driven nationwide survey. PLoS ONE 2014, 9, e99059. [Google Scholar] [CrossRef] [Green Version]
- White, P.C.L.; Saunders, G.; Harris, S. Spatio-temporal patterns of home range use by foxes (Vulpes vulpes) in urban environments. J. Anim. Ecol. 1996, 65, 121–125. [Google Scholar] [CrossRef]
- Doncaster, C.P.; Macdonald, D.W. Activity patterns and interactions of red foxes (Vulpes vulpes) in Oxford city. J. Zool. 1997, 241, 73–87. [Google Scholar] [CrossRef]
- Potts, J.; Harris, S.; Giuggioli, L. Quantifying behavioral changes in territorial animals caused by sudden population declines. Am. Nat. 2013, 182, E73–E82. [Google Scholar] [CrossRef] [Green Version]
- Tolhurst, B.A.; Grogan, A.; Hughes, H.; Scott, D.M. Effects of temporary captivity on ranging behaviour in urban red foxes (Vulpes vulpes). Appl. Anim. Behav. Sci. 2016, 181, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, D.W.; Johnson, D.D.P. Patchwork planet: The resource dispersion hypothesis, society, and the ecology of life. J. Zool. 2015, 295, 75–107. [Google Scholar] [CrossRef]
- Lucherini, M.; Lovari, S. Habitat richness affects home range size in the red fox Vulpes vulpes. Behav. Processes 1996, 36, 103–106. [Google Scholar] [CrossRef]
- Bino, G.; Dolev, A.; Yosha, D.; Guter, A.; King, R.; Saltz, D.; Kark, S. Abrupt spatial and numerical responses of overabundant foxes to a reduction in anthropogenic resources. J. Appl. Ecol. 2010, 47, 1262–1271. [Google Scholar] [CrossRef]
- Duduś, L.; Zalewski, A.; Kozioł, O.; Król, N. Habitat selection by two predators in an urban area: The stone marten and red fox in Wrocław (SW Poland). Mamm. Biol. 2014, 79, 71–76. [Google Scholar] [CrossRef]
- Adkins, C.A.; Stott, P. Home ranges, movements and habitat associations of red foxes Vulpes vulpes in suburban Toronto, Ontario, Canada. J. Zool. 1998, 244, 335–346. [Google Scholar] [CrossRef]
- Saunders, G.; White, P.C.L.; Harris, S.; Rayner, J.M.V. Urban foxes (Vulpes vulpes): Food acquisition, time and energy budgeting of a generalised predator. Symp. Zoolog. Soc. Lond. 1993, 65, 215–234. [Google Scholar]
- Davies, Z.G.; Fuller, R.A.; Loram, A.; Irvine, K.N.; Sims, V.; Gaston, K.J. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 2009, 142, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Dorning, J.; Harris, S. Quantifying group size in the red fox: Impacts of definition, season and intrusion by non-residents. J. Zool. 2019, 308, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Picco, G.P.; Molteni, D.; Murphy, A.L.; Ossi, F.; Cagnacci, F.; Corrà, M.; Nicoloso, S. Geo-referenced proximity detection of wildlife with WildScope: Design and characterization. In Proceedings of the 14th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Seattle, WA, USA, 12–16 April 2015; pp. 238–249. [Google Scholar] [CrossRef]
- Ossi, F.; Focardi, S.; Picco, G.P.; Murphy, A.L.; Molteni, D.; Tolhurst, B.A.; Giannini, N.; Gaillard, J.-M.; Cagnacci, F. Understanding and georeferencing animal contacts: Proximity sensor networks integrated with GPS-based telemetry. Anim. Biotelem. 2016, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Signer, J.; Balkenhol, N. Reproducible Home Ranges (rhr): A New, user-friendly r package for analyses of wildlife telemetry data. Wildl. Soc. Bull. 2015, 39, 358–363. [Google Scholar] [CrossRef]
- Springer, J. Home range size estimates based on number of relocations. Occas. Wildl. Manag. Pap. 2003, 14, 1–12. [Google Scholar]
- Spencer, S.R.; Cameron, G.N.; Swihart, R.K. Operationally defining home range: Temporal dependence exhibited by hispid cotton rats. Ecology 1990, 71, 1817–1822. [Google Scholar] [CrossRef]
- Kie, J.G.; Matthiapoulos, J.; Fieberg, J.; Powell, R.A.; Cagnacci, F.; Mitchell, M.S.; Gaillard, J.-M.; Moorcroft, P.R. The home-range concept: Are traditional estimators still relevant with modern telemetry technology? Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2221–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getz, W.M.; Wilmers, C.C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 2004, 27, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Horne, J.S.; Garton, E.O.; Krone, S.M.; Lewis, J.S. Analyzing animal movements using Brownian bridges. Ecology 2007, 88, 2354–2363. [Google Scholar] [CrossRef]
- Worton, B.J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 1989, 70, 164–168. [Google Scholar] [CrossRef]
- Huck, M.; Davison, J.; Roper, T.J. Comparison of two sampling protocols and four home range estimators using radio-tracking data from urban badgers Meles meles. Wildl. Biol. 2008, 14, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Powell, R. Home ranges, territories, and home range estimators. In Research Techniques in Animal Ecology. Controversies and Consequences; Boitani, L., Fuller, T., Eds.; Columbia University Press: New York, NY, USA, 2000; pp. 65–110. [Google Scholar]
- Seaman, E.D.; Powell, R.A. Identifying patterns and intensity of home range use. Int. Conf. Bear Res. Manag. 1990, 8, 243–249. [Google Scholar] [CrossRef]
- Steiniger, S.; Hunter, A. A scaled line-based kernel density estimator for the retrieval of utilization distributions and home ranges from GPS movement tracks. Ecol. Inform. 2013, 13, 1–8. [Google Scholar] [CrossRef]
- Janko, C.; Schröder, W.; Linke, S.; König, A. Space use and resting site selection of red foxes (Vulpes vulpes) living near villages and small towns in Southern Germany. Acta Theriol. 2012, 57, 245–250. [Google Scholar] [CrossRef]
- Dorning, J.; Harris, S. Individual and seasonal variation in contact rate, connectivity and centrality in red fox (Vulpes vulpes) social groups. Sci. Rep. 2019, 9, 20095. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.J.; Matthews, T.J. The varied form of species–area relationships. J. Biogeogr. 2014, 41, 209–210. [Google Scholar] [CrossRef] [Green Version]
- Kukekova, A.V.; Trut, L.N.; Chase, K.; Kharlamova, A.V.; Johnson, J.L.; Temnykh, S.V.; Lark, K.G. Mapping loci for fox domestication: Deconstruction/Reconstruction of a behavioral phenotype. Behav. Genet. 2011, 41, 593–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morellet, N.; Bonenfant, C.; Borger, L.; Ossi, F.; Cagnacci, F.; Heurich, M.; Kjellander, P.; Linnell, J.D.C.; Nicoloso, S.; Sustr, P.; et al. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J. Anim. Ecol. 2013, 82, 1326–1339. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, D.W.; Doncaster, P.; Newdick, M.; Hofer, H.; Matthews, F.; Johnson, P.J. Foxes in the landscape. Ecology and sociality. In Wildlife Conservation on Farmland. Conflict in the Countryside; Oxford University Press: Oxford, UK, 2015; pp. 20–27. [Google Scholar]
- Scott, D.M.; Baker, R.; Charman, N.; Karlsson, H.; Yarnell, R.W.; Mill, A.; Smith, G.C.; Tolhurst, B.A. A citizen science-based survey method for estimating the density of urban carnivores. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
Land Use Type | Spatial Statistic (Habitat) | Inclusions | Exclusions | OSMM Selected Attributes |
---|---|---|---|---|
1. Residential Gardens | Total garden area (ha) Patch size (m2) as mean, SD and CV (garden and landscape scale) Number of patches (garden and landscape scale) ED (m per ha) (garden and landscape scale) | Gardens of residential dwellings | Walled areas around flats Church yards School grounds | Feature Code = 1005 Descript_1 = Multi Surface |
2. Public Green Space | Total area of managed grassland (ha) | Churchyards or burial grounds 1 Cemetery 1 Sports grounds 1 Public Park or Garden 1 Playing field 1 School grounds Extensive road verges/islands | Allotments 1 Hard ground fenced tennis courts | Feature Code = 1011 and make = natural + Feature Code = 1005 and make = natural |
3. Man-made Surface | Total area of man-made surface (ha) | Manmade Surfaces: Roads and verges Car parks Tennis courts Hard surfaced playgrounds | Any natural environment within these | Make = manmade, minus theme = buildings and structures |
Zone | Housing Density * | Season | Year | Fox ID | Sex | Social Status ** | Age ** | No. GPS Fixes ++ | CA (ha) |
---|---|---|---|---|---|---|---|---|---|
1 | High | Winter | 2013 | A1 | M | Subordinate | SA | 1491 | 12.54 |
1 | High | Winter | 2013 | A2 | F | Subordinate | SA | 926 | 9.95 |
1 | High | Winter | 2013 | A3 | F | Subordinate | A | 1052 * | 16.10 |
1 | High | Spring | 2014 | A4 | F | Dominant | A | 244 | 14.22 |
1 | High | Spring | 2014 | A5 | F | - | A | 253 | 18.78 |
1 | High | Spring | 2013 | A6 | M | - | A | 1339 | 40.90 |
2 | Medium | Spring | 2012 | A7 | M | Dominant | A | 1619 | 5.13 |
2 | Medium | Spring | 2012 | A8 | M | Dominant | A | 1750 | 6.19 |
2 | Medium | Spring | 2012 | A9 | F | Subordinate | SA | 311 | 63.66 |
2 | Medium | Autumn | 2013 | A10 | M | Subordinate | SA | 44 | 6.89 |
3 | Medium | Spring | 2013 | B1 | M | - | A | 2802 * | 14.51 |
3 | Medium | Autumn | 2015 | B2 | M | Dominant | A | 267 | 18.02 |
4 | Medium | Spring | 2013 | B3 | M | - | A | 2603 | 9.56 |
5 | Low | Autumn | 2013 | B4 | M | Dominant | A | 805 | 11.73 |
5 | Low | Autumn | 2013 | B5 | M | Subordinate | SA | 24 | 3.60 |
6 | Low | Spring | 2012 | B6 | F | Subordinate | A | 1002 | 25.97 |
5 | Low | Summer | 2015 | B7 | M | Dominant | A | 304 | 10.89 |
5 | Low | Summer | 2015 | B8 | M | Subordinate? | A | 622 | 6.93 |
5 | Low | Summer | 2015 | B9 | F | Subordinate? | A | 1605 | 5.13 |
5 | Low | Summer | 2015 | B10 | F | - | A | 1063 | 10.51 |
Explanatory Variable | Adjusted R | AIC * | ∆ Deviance (Residual/Total) | % Variance Random Factor (fox ID) ** |
---|---|---|---|---|
Garden size | 0.1882 | 8.4094 | 43.47 | 27.27 |
Number of patches (garden scale) | 0.7822 | −15.662 | 17.10 | |
Edge density (garden scale) | 0.1575 | 9.1518 | 44.40 | |
Patch size (landscape scale) | 0.1407 | 9.5468 | 44.87 | |
Number of patches (landscape scale) | 0.6740 | −9.8379 | 23.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolhurst, B.A.; Baker, R.J.; Cagnacci, F.; Scott, D.M. Spatial Aspects of Gardens Drive Ranging in Urban Foxes (Vulpes vulpes): The Resource Dispersion Hypothesis Revisited. Animals 2020, 10, 1167. https://doi.org/10.3390/ani10071167
Tolhurst BA, Baker RJ, Cagnacci F, Scott DM. Spatial Aspects of Gardens Drive Ranging in Urban Foxes (Vulpes vulpes): The Resource Dispersion Hypothesis Revisited. Animals. 2020; 10(7):1167. https://doi.org/10.3390/ani10071167
Chicago/Turabian StyleTolhurst, Bryony A., Rowenna J. Baker, Francesca Cagnacci, and Dawn M. Scott. 2020. "Spatial Aspects of Gardens Drive Ranging in Urban Foxes (Vulpes vulpes): The Resource Dispersion Hypothesis Revisited" Animals 10, no. 7: 1167. https://doi.org/10.3390/ani10071167
APA StyleTolhurst, B. A., Baker, R. J., Cagnacci, F., & Scott, D. M. (2020). Spatial Aspects of Gardens Drive Ranging in Urban Foxes (Vulpes vulpes): The Resource Dispersion Hypothesis Revisited. Animals, 10(7), 1167. https://doi.org/10.3390/ani10071167