Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sheep and Feeding
2.2. Cauliflower and Romanesco Wastes
2.3. Experiment 1. In Vitro Ruminal Fermentation and Intestinal Digestibility of Cauliflower and Romanesco Wastes
2.4. Experiment 2. In Vitro Fermentation of Diets with Increased Amounts of Dried Coliflower
2.5. Chemical Analyses, Calculations and Statistical Analyses
3. Results and Discussion
3.1. Experiment 1. In Vitro Ruminal Fermentation and Intestinal Digestibility of Cauliflower and Romanesco Wastes
3.2. Experiment 2. In Vitro Fermentation of Diets Including Dried Cauliflower
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NFU Horticulture & Potatoes Board. Fit for the Future. Helping Consumers Eat More Fruit and Vegetables. April 2016. Available online: https://www.nudge-it.eu/images/Fit-for-the-Future__NFU_April-20162.pdf (accessed on 26 June 2020).
- Howard Wilsher, S.; Fearne, A.; Panagiotaki, G. That is an Awful Lot of Fruit and Veg to Be Eating. Focus Group Study on Motivations for the Consumption of 5 a Day in British Young Men. Nutrients 2019, 11, 1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahgoub, O.; Kadim, I.T.; Eltahir, Y.; Al-Lawatia, S.; Al-Ismaili, A.M. Nutritional Value of Vegetable Wastes as Livestock Feed. Sultan Qaboos Univ. J. Sci. 2018, 23, 78–84. [Google Scholar] [CrossRef]
- Bakshi, M.P.S.; Wadhwa, M.; Rana, K.K.; Ameir, A. Nutritional value of ensiled fruit and vegetable wastes. In Improving Animal Productivity by Supplementary Feeding of Multi-Nutrient Blocks, Controlling Internal Parasites and Enhancing Utilization of Alternate Feed Resources; IAEA-TECDOC—1495, Ed.; International Atomic Energy Agency (IAEA): Vienna, Austria, 2006; pp. 191–196. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/015/38015736.pdf?r=1 (accessed on 7 June 2020).
- Monllor, P.; Romero, G.; Muelas, R.; Sandoval-Castro, C.A.; Sendra, E.; Díaz, J.R. Ensiling Process in Commercial Bales of Horticultural By-products from Artichoke and Broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef] [PubMed]
- de Evan, T.; Cabezas, A.; de la Fuente, J.; Carro, M.D. Feeding agroindustrial by-products to light lambs: Influence on growth performance, diet digestibility, nitrogen balance, ruminal fermentation and plasma metabolites. Animals 2020, 1, 600. [Google Scholar] [CrossRef] [Green Version]
- Romero-Huelva, M.; Ramos-Morales, E.; Molina-Alcaide, E. Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. J. Dairy Sci. 2012, 95, 6015–6026. [Google Scholar] [CrossRef] [Green Version]
- Ngu, N.T.; Ledin, I. Effects of feeding wastes from Brassica species on growth of goats and pesticide/insecticide residues in goat meat. Asian-Aust. J. Anim. Sci. 2005, 18, 197–202. [Google Scholar] [CrossRef]
- Wadhwa, M.; Bakshi, M.P.S. Utilization of Fruit and Vegetable Wastes as Livestock Feed and as Substrates for Generation of Other Value-Added Products; Makkar, H.P.S., Ed.; FAO: Rome, Italy, 2013. [Google Scholar]
- Marino, C.T.; Hector, B.; Rodrigues, P.M.; Borgatti, L.O.; Meyer, P.M.; Alves da Silva, E.J.; Ørskov, E.R. Characterization of vegetables and fruits potential as ruminant feed by in vitro gas production technique. Livest. Res. Rural. Dev. 2010, 22, 168. [Google Scholar]
- Davis, C.; Wiggins, L.; Hersom, M. Utilization of Cull Vegetables as Feedstuffs for Cattle; Document AN280; Series of the Animal Sciences Department, UF/IFAS Extension; University of Florida: Gainesville, FL, USA, 2012; Available online: https://edis.ifa.ufl.edu/an280 (accessed on 12 December 2019).
- Wadhwa, M.; Kaushal, S.; Bakshi, M.P.S. Nutritive evaluation of vegetable wastes as complete feed for goat bucks. Small Rum. Res. 2006, 64, 279–284. [Google Scholar] [CrossRef]
- Das, N.G.; Huque, K.S.; Amanullah, S.M.; Makkar, H.P.S. Feeding of processed vegetable wastes to bulls and its potential environmental benefit. Anim. Nutr. 2019, 5, 87–94. [Google Scholar] [CrossRef]
- Potshangbam, C.; Singh, M.; Sahoo, S.; Singh, A.; Gyanendra, G.; Patel, B.H.M.; Sunil, J. Effect of Feeding Cauliflower (Brassica oleracea) Leaves on The Growth Performances and Carcass Characters of Crossbred Barrows (Landrace × Desi). Int. J. Livest. Res. 2018, 8, 184–196. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Grassi, G.; Gambacorta, E. Effect of a cauliflower (Brassica oleraceae var. Botrytis) leaf powder-enriched diet on performance, carcass and meat characteristics of growing rabbit. Meat Sci. 2019, 149, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Fact, M.R. Romanesco Broccoli Market Forecast, Trend Analysis & Competition Tracking—Global Market Insights 2018 to 2026. 2018. Available online: https://www.factmr.com/report/2547/romanesco-broccoli-market (accessed on 7 June 2020).
- Neugart, S.; Baldermann, S.; Hanschen, F.S.; Klopsch, R.; Wiesner-Reinhold, M.; Schreiner, M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2018, 233, 460–478. [Google Scholar] [CrossRef]
- Mateos, I.; Ranilla, M.J.; Tejido, M.L.; Saro, C.; Kamel, C.; Carro, M.D. The influence of diet on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Anim. Prod. Sci. 2013, 53, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Soto, E.C.; Khelil, H.; Yáñez-Rúiz, D.R.; Carro, M.D.; Molina-Alcaide, E. Use of tomato and cucumber horticulture by-products in goat diets: Effects on rumen fermentation and microbial communities in batch and continuous cultures. J. Sci. Food Agric. 2015, 153, 343–352. [Google Scholar]
- de Evan, T.; Vintimilla, A.; Marcos, C.N.; Ranilla, M.J.; Carro, M.D. Evaluation of Brassica Vegetables as Potential Feed for Ruminants. Animals 2019, 9, 588. [Google Scholar] [CrossRef] [Green Version]
- Goering, M.K.; Van Soest, P.J. Agricultural Handbook; Agriculture Handbook Nº 379; Agricultural Research Services: Washington, DC, USA, 1970; Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). [Google Scholar]
- Gargallo, S.; Calsamiglia, S.; Ferret, A. Technical note: A modified three-step in vitro procedure to determine intestinal digestion of proteins. J. Anim. Sci. 2006, 84, 2163–2167. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 123–142. [Google Scholar]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Animals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage concentrate ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Ramos, S.; Carro, M.D. The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim. Feed Sci. Technol. 2010, 158, 126–135. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® Users Guide, version 9.3; SAS Institute Inc.: Cary, NC, USA, 2017.
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A comparative study on rumen fermentation of energy supplements in vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- Ranilla, M.J.; López, S.; Giráldez, F.J.; Valdés, C.; Carro, M.D. Comparative digestibility and digesta flow kinetics in two breeds of sheep. Anim. Sci. 1998, 66, 389–396. [Google Scholar] [CrossRef]
- Demeyer, D. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen Microbial Metabolism and Ruminant Digestion; Jouany, J.P., Ed.; INRA Editions: Paris, France, 1991; pp. 217–237. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of energetic feed value obtained from chemical analysis and in vitro gas production. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Wadhwa, M.; Bakshi, M.P.S. Vegetable wastes—A potential source of nutrients for ruminants. Indian J. Anim. Nutr. 2005, 22, 70–76. [Google Scholar]
- Lamba, J.S.; Wadhwa, M.; Bakshi, M.P.S. Methane Production Potential of Fruit and Vegetable Wastes in Vitro. Anim. Nutr. Feed Technol. 2016, 16, 363–372. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- FEDNA (Federación Española para el Desarrollo de la Nutrición Animal). Available online: http://www.fundacionfedna.org/ (accessed on 12 June 2020).
- Cone, J.W.; Van Gelder, A.H. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Jentsch, W.; Schweigel, M.; Weissbach, F.; Scholze, H.; Pittroff, W.; Derno, M. Methane production in cattle calculated by the nutrient composition of the diet. Arch. Anim. Nutr. 2007, 61, 10–19. [Google Scholar] [CrossRef]
- Oba, M. Effects of feeding sugars on productivity of lactating dairy cows. Can. J. Anim. Sci. 2011, 91, 37–46. [Google Scholar] [CrossRef]
- Wallace, R.J.; Cotta, M.A. Metabolism of nitrogen-containing compounds. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Elsevier Applied Science: London, UK, 1988. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Arias, L.; Contreras, J.; Losada, H.; Grande, D.; Soriano, R.; Vieyra, J.; Cortés, J.; Rivera, J. A note on the chemical composition and in vitro digestibility of common vegetables utilised in urban dairy systems of the east of Mexico City. Livest. Res. Rural. Dev. 2003, 15, 21. [Google Scholar]
- FAOSTAT. Production/Crops, Quantities by Country for Cauliflowers and Broccoli for 2018. Food and Agricultural Organization of the United Nations, Statistics Division (FAOSTAT). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 June 2020).
- de la Moneda, A.; Carro, M.D.; Weisbjerg, M.R.; Roleda, M.Y.; Lind, V.; Novoa-Garrido, M.; Molina-Alcaide, E. Variability and Potential of Seaweeds as Ingredients of Ruminant Diets: An In Vitro study. Animals 2019, 9, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamel, C.; Greathead, H.M.R.; Tejido, M.L.; Ranilla, M.J.; Carro, M.D. Effect of allicin and diallyl disulfide on in vitro rumen fermentation of a mixed diet. Anim. Feed Sci. Technol. 2008, 145, 351–363. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Lowman, R.S.; Davies, Z.S.; Cuddeford, D.; Owen, E. Principles of techniques that rely on gas measurement in ruminant nutrition. In Vitro Techniques for Measuring Nutrient Supply to Ruminants; Deaville, E.R., Owen, E., Adesogan, A.T., Rymer, C., Huntington, J.A., Lawrence, T.L.J., Eds.; British Society of Animal Science: London, UK, 1998; pp. 55–63. [Google Scholar]
Item | Cauliflower | Romanesco | SEM 1 | p | Reference Feeds | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stems | Sprouts | Leaves | Stems | Sprouts | Vegetable | Fraction | Vegetable × Fraction | Sugar Beet Pulp | Wheat DDGS | ||
Proportion (% of fresh matter) | 29.9 a | 21.8 a | 48.3 b | 45.8 b | 23.1 a | 31.1 a | 3.13 | 0.999 | <0.001 | <0.001 | - | - |
Chemical composition 2 | ||||||||||||
Dry matter (%) | 6.86 | 5.85 | 6.58 | 6.74 a | 7.63 a | 9.65 b | 0.403 | <0.001 | 0.008 | 0.007 | 89.1 | 92.2 |
Organic matter | 85.4 a | 88.3 b | 88.0 b | 84.6 a | 88.2 b | 90.6 b | 0.56 | 0.210 | <0.001 | 0.025 | 94.9 | 95.5 |
Crude protein (CP) | 21.9 | 19.9 | 25.0 | 21.5 a | 23.5 a | 33.0 b | 1.26 | 0.004 | <0.001 | 0.020 | 9.44 | 32.9 |
Ether extract | 3.62 a | 3.91 a | 5.50 b | 3.08 a | 3.37 a | 5.47 b | 0.278 | 0.129 | <0.001 | 0.574 | 0.80 | 4.61 |
Sugars | 25.5 | 28.7 | 23.2 | 16.3 a | 28.3 b | 18.9 a | 2.36 | 0.034 | 0.011 | 0.220 | 13.5 | 6.97 |
Neutral detergent fiber (NDF) | 32.3 b | 30.4 b | 24.7 a | 30.3 b | 21.6 a | 23.8 a | 1.16 | 0.002 | 0.001 | 0.011 | 48.0 | 29.5 |
Hemicellulose | 11.9 | 12.1 | 10.7 | 9.68 | 7.08 | 11.9 | 0.83 | 0.012 | 0.154 | 0.009 | 23.8 | 18.3 |
Acid detergent fiber | 20.4 b | 18.3 b | 14.0 a | 20.6 b | 14.5 a | 11.9 a | 0.64 | 0.004 | <0.001 | 0.031 | 24.2 | 11.2 |
Cellulose | 18.0 b | 15.5 b | 13.2 a | 17.3 b | 10.5 a | 11.0 a | 0.81 | 0.002 | <0.001 | 0.058 | 22.0 | 7.87 |
Lignin | 2.42 b | 2.77 b | 0.78 a | 3.29 b | 4.03 b | 0.86 a | 0.568 | 0.137 | 0.002 | 0.589 | 2.16 | 3.33 |
Lignin (% of NDF) | 7.47 | 8.98 | 3.17 | 10.9 b | 19.1 c | 3.67 a | 2.751 | 0.060 | 0.008 | 0.243 | 4.49 | 11.2 |
NDICP (% CP) 3 | 13.1 | 20.0 | 18.2 | 18.8 | 10.3 | 18.4 | 2.47 | 0.545 | 0.427 | 0.028 | NA 4 | NA 4 |
Item | Cauliflower | Romanesco | SEM 2 | p | Reference Feeds | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stems | Sprouts | Leaves | Stems | Sprouts | Vegetable | Fraction | Vegetable × Fraction | Sugar Beet Pulp | Wheat DDGS | ||
A 1 (mL/g dry matter) | 227 a | 252 b | 233 a | 227 a | 242 b | 221 a | 3.89 | 0.018 | <0.001 | 0.320 | 329 | 185 |
c (%/h) | 5.00 | 5.34 | 5.07 | 4.38 a | 5.59 b | 4.60 a | 0.155 | 0.033 | <0.001 | 0.016 | 5.21 | 4.15 |
lag (h) | 4.61 b | 3.52 a | 3.04 a | 4.54 b | 2.68 a | 2.71 a | 0.243 | 0.039 | <0.001 | 0.284 | 3.83 | 0.00 |
AGPR (mL/h) | 6.16 a | 7.70 b | 6.98 b | 5.60 a | 8.06 b | 6.17 a | 0.258 | 0.119 | <0.001 | 0.065 | 9.52 | 2.55 |
DMED (%) | 38.3 a | 44.8 b | 44.9 b | 35.8 a | 49.3 c | 43.5 b | 0.70 | 0.225 | <0.001 | < 0.001 | 38.0 | 30.1 |
ME (MJ/kg DM) 3 | 9.03 a | 10.0 ab | 10.5 b | 9.57 a | 10.1 ab | 11.0 b | 0.217 | 0.830 | <0.001 | 0.930 | 9.63 | 9.73 |
Item 1 | Cauliflower | Romanesco | SEM 2 | p | Reference Feeds | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stems | Sprouts | Leaves | Stems | Sprouts | Vegetable | Fraction | Vegetable × Fraction | Sugar Beet Pulp | Wheat DDGS | ||
Gas (mL) | 31.5 a | 36.5 b | 35.0 b | 33.6 | 36.1 | 34.5 | 0.49 | 0.626 | 0.008 | 0.330 | 43.9 | 26.3 |
pH | 6.67 c | 6.58 b | 6.54 a | 6.60 a | 6.61 a | 6.73 b | 0.011 | 0.531 | 0.003 | 0.011 | 6.56 | 6.73 |
Total volatile fatty acids (VFA; µmol/vial) | 1417a | 1531b | 1522 b | 1487 a | 1607 b | 1501 a | 17.2 | 0.162 | 0.017 | 0.323 | 1700 | 1311 |
Molar proportions of individual VFA (mol/100 mol) | ||||||||||||
Acetate (Ac) | 66.7 b | 62.5 a | 61.4 a | 65.0 b | 61.3 a | 60.7 a | 0.40 | 0.090 | <0.001 | 0.836 | 65.5 | 53.4 |
Propionate (Pr) | 21.8 a | 25.7 b | 25.3 b | 22.3 a | 25.6 b | 24.1 b | 0.38 | 0.618 | 0.001 | 0.511 | 25.2 | 33.3 |
Butyrate | 8.18 | 8.35 | 8.48 | 8.46 a | 9.07 b | 9.09 b | 0.057 | <0.001 | 0.003 | 0.173 | 6.93 | 6.34 |
Minor VFA | 3.29 a | 3.42 a | 4.74 b | 4.22 a | 4.03 a | 6.13 b | 0.144 | 0.001 | <0.001 | 0.420 | 2.31 | 6.96 |
Ac/Pr (mol/mol) | 3.07 b | 2.44 a | 2.43 a | 2.94 b | 2.40 a | 2.54 a | 0.061 | 0.853 | <0.001 | 0.608 | 2.60 | 1.61 |
NH3-N (mg/L) | 267 | 233 | 288 | 297 a | 293 a | 380 b | 11.7 | 0.008 | 0.028 | 0.443 | 108 | 276 |
Item | Cauliflower | Romanesco | SEM 1 | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stems | Sprouts | Leaves | Stems | Sprouts | Vegetable | Fraction | Vegetable × Fraction | ||
In situ rumen degradability (%) | ||||||||||
DM | 78.7 a | 88.1 b | 91.4 b | 84.0 a | 91.7 b | 86.4 a | 1.60 | 0.310 | <0.001 | 0.019 |
CP | 85.5 | 87.9 | 88.5 | 87.3 b | 90.3 b | 80.9 a | 1.64 | 0.421 | 0.032 | 0.005 |
In vitro intestinal digestibility (%) | ||||||||||
DM | 54.8 | 65.8 | 64.4 | 52.6 a | 57.1 a | 73.3 b | 2.44 | 0.859 | 0.022 | 0.170 |
CP | 85.7 | 91.1 | 90.2 | 86.5 a | 88.9 ab | 93.2 b | 1.01 | 0.727 | 0.001 | 0.375 |
Item | Diet | |||
---|---|---|---|---|
Control | CAU8 | CAU16 | CAU24 | |
Concentrate ingredients (g/100 g fresh matter) | ||||
Dried cauliflower | - | 8.0 | 16.0 | 24.0 |
Corn | 32.0 | 32.0 | 32.0 | 32.0 |
Barley | 30.0 | 30.0 | 30.0 | 30.0 |
Wheat | 15.0 | 11.0 | 7.5 | 4.0 |
Soybean meal 46% | 14.0 | 12.0 | 10.0 | 8.0 |
Wheat bran | 7.0 | 5.0 | 2.5 | 0.0 |
Others 2 | 2.0 | 2.0 | 2.0 | 2.0 |
Chemical composition (g/100 g dry matter unless otherwise stated) 3 | ||||
Dry matter (g/100 g) | 89.7 | 89.7 | 89.7 | 89.7 |
Organic matter | 93.0 | 92.2 | 91.2 | 90.3 |
Crude protein | 16.1 | 16.1 | 16.1 | 16.1 |
Ether extract | 4.18 | 4.28 | 4.37 | 4.46 |
Neutral detergent fiber | 31.5 | 31.7 | 31.7 | 31.8 |
Acid detergent fiber | 15.9 | 16.4 | 17.0 | 17.6 |
Item | Diet | SEM 2 | p | ||||
---|---|---|---|---|---|---|---|
Control | CAU8 | CAU16 | CAU24 | Lineal | Quadratic | ||
Gas production parameters 1 | |||||||
A (mL/g DM) | 280 a | 287 b | 290 b | 283 a | 2.50 | 0.376 | 0.017 |
c (%/h) | 3.90 | 3.80 | 3.39 | 3.90 | 0.001 | 0.493 | 0.514 |
lag (h) | 1.10 b | 0.89 ab | 0.91 ab | 0.76 a | 0.09 | 0.043 | 0.725 |
AGPR (mL/h) | 7.40 | 7.58 | 7.77 | 7.75 | 0.19 | 0.195 | 0.616 |
DMED (%) | 40.5 | 40.9 | 41.3 | 41.7 | 0.48 | 0.100 | 0.900 |
Fermentation parameters (8 h) | |||||||
Total volatile fatty acids (VFA; µmol) | 1284 a | 1354 ab | 1396 b | 1406 b | 30.4 | 0.015 | 0.340 |
Individual VFA (mol/100 mol) | |||||||
Acetate (Ac) | 61.1 a | 61.8 b | 62.5 c | 63.0 c | 0.18 | <0.001 | 0.759 |
Propionate (Pr) | 22.9 b | 22.6 b | 22.0 ab | 21.7 a | 0.18 | <0.001 | 0.797 |
Butyrate | 12.8 b | 12.6 b | 12.5 ab | 12.3 a | 0.11 | 0.004 | 0.876 |
Minor VFA 3 | 3.11 | 2.99 | 3.05 | 2.98 | 0.08 | 0.408 | 0.742 |
Ac/Pr (mol/mol) | 2.69 a | 2.77 a | 2.87 b | 2.92 b | 0.03 | <0.001 | 0.721 |
NH3-N (mg/L) | 143 | 157 | 149 | 141 | 5.1 | 0.581 | 0.057 |
CH4 (mL) | 6.90 | 7.41 | 7.68 | 7.28 | 0.24 | 0.213 | 0.087 |
CH4/VFA (mL/mmol) | 5.40 | 5.52 | 5.52 | 5.21 | 0.23 | 0.577 | 0.372 |
AFOM (mg/vial) 4 | 114 a | 120 ab | 124 b | 125 b | 2.69 | 0.018 | 0.323 |
Fermentation parameters (24 h) | |||||||
pH | 6.79 | 6.79 | 6.79 | 6.78 | 0.01 | 0.827 | 0.745 |
Total VFA (µmol) | 2446 a | 2603 b | 2618 b | 2631 b | 25.7 | <0.001 | 0.045 |
Individual VFA (mol/100 mol) | |||||||
Acetate (Ac) | 61.5 a | 61.9 ab | 62.5 b | 62.8 b | 0.29 | 0.030 | 0.598 |
Propionate (Pr) | 18.7 b | 18.7 b | 18.3 ab | 17.9 a | 0.16 | 0.042 | 0.712 |
Butyrate | 15.5 | 15.2 | 15.0 | 15.1 | 0.18 | 0.100 | 0.414 |
Minor VFA 3 | 4.27 | 4.15 | 4.16 | 4.24 | 0.08 | 0.828 | 0.308 |
Ac/Pr (mol/mol) | 3.31 a | 3.35 ab | 3.43 b | 3.53 b | 0.04 | 0.021 | 0.843 |
NH3-N (mg/L) | 189 | 199 | 198 | 205 | 4.5 | 0.142 | 0.332 |
CH4 (mL) | 14.9 | 15.6 | 15.0 | 15.4 | 0.36 | 0.793 | 0.513 |
CH4/VFA (mL/mmol) | 6.10 | 5.99 | 5.74 | 5.85 | 0.12 | 0.105 | 0.479 |
AFOM (mg/vial) 4 | 220 a | 234 b | 235 b | 236 b | 2.35 | 0.026 | 0.264 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Evan, T.; Vintimilla, A.; Molina-Alcaide, E.; Ranilla, M.J.; Carro, M.D. Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies. Animals 2020, 10, 1247. https://doi.org/10.3390/ani10081247
de Evan T, Vintimilla A, Molina-Alcaide E, Ranilla MJ, Carro MD. Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies. Animals. 2020; 10(8):1247. https://doi.org/10.3390/ani10081247
Chicago/Turabian Stylede Evan, Trinidad, Andrea Vintimilla, Eduarda Molina-Alcaide, María José Ranilla, and María Dolores Carro. 2020. "Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies" Animals 10, no. 8: 1247. https://doi.org/10.3390/ani10081247
APA Stylede Evan, T., Vintimilla, A., Molina-Alcaide, E., Ranilla, M. J., & Carro, M. D. (2020). Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies. Animals, 10(8), 1247. https://doi.org/10.3390/ani10081247