Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feeding
2.2. Experimental Diets
2.3. Rusitec Trial
2.4. DNA Extraction, Automated Ribosomal Intergenic Spacer Analysis (ARISA), and Quantitative Polymerase Chain Reaction Analyses (qPCR)
2.5. Analytical Procedures
2.6. Calculations and Statistical Analyses
3. Results
3.1. Diet Disappearance and Rumen Fermentation Parameters
3.2. Microbial Protein Synthesis (MPS)
3.3. Bacterial Diversity and Microbial Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Izquierdo, L.; Sendra, J.M. Composition and Characterization. In Encyclopedia of Food Sciences and Nutrition; Caballero, B., Trugo, L., Finglas, P.M., Eds.; Academic Press: San Diego, CA, USA, 2003; pp. 1335–1341. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Citrus Fruit—Fresh and Processed Statistical Bulletin 2016; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i8092e.pdf (accessed on 13 May 2020).
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 10 May 2020).
- Ministerio de Agricultura, Pesca y Alimentación de España (MAPA). Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2019-Avance/avance/AvAE19.pdf (accessed on 28 April 2020).
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Grasser, L.A.; Fadel, J.G.; Garnett, I.; De Peters, E.J. Quantity and economic importance of nine selected by-products used in California dairy rations. J. Dairy Sci. 1995, 78, 962–971. [Google Scholar] [CrossRef]
- Volanis, M.; Zoiopoulos, P.; Tzerakis, K. Effects of feeding ensiled sliced oranges to lactating dairy sheep. Small Rumin. Res. 2004, 53, 15–21. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Citrus by-products for animal feed. In Ruminant Nutrition: Selected Articles from the WORLD ANIMAL REVIEW; Gohl, B.I., Ed.; FAO: Rome, Italy, 1978; Available online: http://www.fao.org/3/X6512E/X6512E08.htm (accessed on 29 April 2020).
- Ladaniya, M.S. Preharvest factors affecting fruit quality and postharvest life. In Citrus Fruit. Biology, Technology and Evaluation; Academic Press: San Diego, CA, USA, 2008; pp. 79–97. [Google Scholar]
- Piquer, O.; Ródenas, L.; Casado, C.; Blas, E.; Pascual, J.J. Whole citrus fruits as an alternative to wheat grain or citrus pulp in sheep diet: Effect on the evolution of ruminal parameters. Small Rumin. Res. 2009, 83, 14–21. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Sadeghzadeh, M.K. Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. J. Biodivers. Environ. Sci. 2013, 3, 8–16. [Google Scholar]
- Durand, M.; Dumay, C.; Beaumatin, P.; Morel, M.T. Use of the rumen simulation technique (RUSITEC) to compare microbial digestion of various by-products. Anim. Feed Sci. Technol. 1988, 21, 197–204. [Google Scholar] [CrossRef]
- Hernández, J.; Rojo, R.; Salem, A.Z.M.; Mirzaei, F.; Gonzalez, A.; Vázquez, J.F.; Montañez, O.D.; Lucero, F.A. Influence of different levels of dried citrus pulp on in vitro ruminal fermentation kinetics of total mixed ration in goat rumen inocula. J. Anim. Feed Sci. 2012, 21, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Amanzougarene, Z.; Yuste, S.; de Vega, A.; Fondevila, M. In vitro fermentation pattern and acidification potential of different sources of carbohydrates for ruminants given high concentrate diets. Span. J. Agric. Res. 2017, 15, e0602. [Google Scholar] [CrossRef]
- Bueno, M.; Ferrari, E.; Bianchini, D.; Leinz, F.; Rodrigues, C.F. Effect of replacing corn with dehydrated citrus pulp in diets of growing kids. Small Rumin. Res. 2002, 46, 179–185. [Google Scholar] [CrossRef]
- Deaville, E.R.; Moss, A.R.; Givens, D.I. The nutritive value and chemical composition of energy-rich by-products for ruminants. Anim. Feed Sci. Technol. 1994, 49, 261–276. [Google Scholar] [CrossRef]
- Shdaifat, M.M.; Al-Barakah, F.S.; Kanan, A.Q.; Obeidat, B.S. The effect of feeding agricultural by-products on performance of lactating Awassi ewes. Small Rumin. Res. 2013, 113, 11–14. [Google Scholar] [CrossRef]
- Ben-Ghedalia, D.; Yosef, E.; Miron, J.; Est, Y. The effects of starch- and pectin-rich diets on quantitative aspects of digestion in sheep. Anim. Feed Sci. Technol. 1989, 24, 289–298. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Naserian, A.A. The effects of replacing dried citrus pulp with barley grain on the performance of Iranian Saanen kids. J. Anim. Vet. Adv. 2010, 9, 2053–2056. [Google Scholar]
- Barrios-Urdaneta, A.; Fondevila, M.; Castrillo, C. Effect of supplementation with different proportions of barley grain or citrus pulp on the digestive utilization of ammonia-treated straw by sheep. Anim. Sci. 2003, 76, 309–317. [Google Scholar] [CrossRef]
- Ariza, P.; Bach, A.; Stern, M.D.; Hall, M.B. Effects of carbohydrates from citrus pulp and hominy feed on microbial fermentation in continuous culture. J. Anim. Sci. 2001, 79, 2713–2718. [Google Scholar] [CrossRef]
- Tadayon, Z.; Rouzbehan, Y.; Rezaei, J. Effects of feeding different levels of dried orange pulp and recycled poultry bedding on the performance of fattening lambs. J. Anim. Sci. 2017, 95, 1751–1765. [Google Scholar] [CrossRef]
- Oltramari, C.E.; Nápoles, G.G.O.; De Paula, M.R.; Silva, J.T.; Gallo, M.P.C.; Soares, M.C.; Bittar, C.M.M. Performance and metabolism of dairy calves fed starter feed containing citrus pulp as a replacement for corn. Anim. Prod. Sci. 2016, 58, 561–567. [Google Scholar] [CrossRef]
- Fegeros, K.; Zervas, G.; Stamouli, S.; Apostolaki, E. Nutritive value of dried citrus pulp and its effect on milk yield and milk composition of lactating ewes. J. Dairy Sci. 1995, 78, 1116–1121. [Google Scholar] [CrossRef]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Ramos, S.; Carro, M.D. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth. J. Dairy Sci. 2010, 93, 3684–3698. [Google Scholar] [CrossRef]
- McDougall, E.I. Studies on ruminant saliva I. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Ranilla, M.J.; Carro, M.D.; Valdés, C.; Giráldez, F.J.; López, S. A comparative study of ruminal activity in Churra and Merino sheep offered alfalfa hay. Anim. Sci. 1997, 65, 121–128. [Google Scholar] [CrossRef]
- Ranilla, M.J.; López, S.; Giráldez, F.J.; Valdés, C.; Carro, M.D. Comparative digestibility and digesta flow kinetics in two breeds of sheep. Anim. Sci. 1998, 66, 389–396. [Google Scholar] [CrossRef]
- Carro, M.D.; Miller, E.L. Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). Br. J. Nutr. 1999, 82, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef]
- Saro, C.; Ranilla, M.J.; Carro, M.D. Postprandial changes of fiber-degrading microbes in the rumen of sheep fed diets varying in type of forage as monitored by real-time PCR and automated ribosomal intergenic spacer analysis. J. Anim. Sci. 2012, 90, 4487–4494. [Google Scholar] [CrossRef] [Green Version]
- Danovaro, R.; Luna, G.M.; Dell’Anno, A.; Pietrangeli, B. Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Appl. Environ. Microbiol. 2006, 72, 5982–5989. [Google Scholar] [CrossRef] [Green Version]
- Saro, C.; Ranilla, M.J.; Cifuentes, A.; Rosselló-Mora, R.; Carro, M.D. Technical note: Comparison of automated ribosomal intergenic spacer analysis (ARISA) and denaturing gradient gel electrophoresis (DGGE) to assess bacterial diversity in the rumen of sheep. J. Anim. Sci. 2014, 92, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package; 2019; R package version 2.5-5. [Google Scholar]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef] [Green Version]
- Denman, S.E.; Tomkins, N.W.; McSweeney, C.S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 2007, 62, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Martínez, M.E.; Ranilla, M.J.; Ramos, S.; Tejido, M.L.; Carro, M.D. Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters. J. Dairy Sci. 2009, 92, 3930–3938. [Google Scholar] [CrossRef] [PubMed]
- Demeyer, D.I. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen Microbial Metabolism and Ruminant Digestion; Jouany, J.P., Ed.; INRA Editions: Paris, France, 1991; pp. 217–237. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Miron, J.; Yosef, E.; Ben-Ghedalia, D. Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. J. Agric. Food Chem. 2001, 49, 2322–2326. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Chemical composition, in vitro digestibility and rumen fermentation kinetics of agro-industrial by-products. Animals 2019, 9, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Chung, J.; Jiang, Q.; Sun, R.; Zhang, J.; Zhong, Y.; Ren, N. Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Adv. 2017, 7, 40303–40310. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.S. Factors affecting the cellulolytic activity of rumen contents. Appl. Environ. Microbiol. 1977, 33, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Arthington, J.D.; Kunkle, W.E.; Martin, A.M. Citrus pulp for cattle. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 317–326. [Google Scholar] [CrossRef]
- Hall, M.B.; Pell, A.N.; Chase, L.E. Characteristics of neutral detergent-soluble fiber fermentation by mixed ruminal microbes. Anim. Feed Sci. Technol. 1998, 70, 23–39. [Google Scholar] [CrossRef]
- Zhao, X.H.; Gong, J.M.; Zhou, S.; Fu, C.B.; Liu, C.J.; Xu, L.J.; Pan, K.; Qu, M.R. Effects of degradable protein and non-fibre carbohydrates on microbial growth and fermentation in the rumen simulating fermenter (Rusitec). Ital. J. Anim. Sci. 2015, 14, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, M.; Cochran, R.C.; Rojas-Bourrillón, A.; Murillo, O.; Muñoz, H.; Poore, M. Effect of supplementation with pelleted citrus pulp on digestibility and intake in beef cattle fed a tropical grass-based diet (Cynodon nlemfuensis). Anim. Feed Sci. Technol. 2006, 125, 163–173. [Google Scholar] [CrossRef]
- Steyn, L.; Meeske, R.; Cruywagen, C.W. Replacing maize grain with dried citrus pulp in a concentrate feed for Jersey cows grazing ryegrass pasture. S. Afr. J. Anim. Sci. 2017, 47, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Homem, A.C., Jr.; Ezequiel, J.M.B.; Fávaro, V.R.; Almeida, M.T.C.; Paschoaloto, J.R.; D’Áurea, A.P.; Carvalho, V.B.d.; Nocera, B.F.; Cremasco, L.F. Methane production by in vitro ruminal fermentation of feed ingredients. Semin. Ciências Agrárias 2017, 38, 877. [Google Scholar] [CrossRef]
- Joch, M.; Cermak, L.; Hakl, J.; Hucko, B.; Duskova, D.; Marounek, M. In vitro screening of essential oil active compounds for manipulation of rumen fermentation and methane mitigation. Asian Australas. J. Anim. Sci. 2016, 29, 952–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, W.H. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 1986, 69, 2755–2766. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Saro, C.; Carro, M.D. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities. J. Dairy Sci. 2010, 93, 3699–3712. [Google Scholar] [CrossRef] [Green Version]
- Mateos, I.; Ranilla, M.J.; Saro, C.; Carro, M.D. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA). Animal 2017, 11, 1939–1948. [Google Scholar] [CrossRef] [Green Version]
- Akin, D.E.; Borneman, W.S. Role of rumen fungi in fiber degradation. J. Dairy Sci. 1990, 73, 3023–3032. [Google Scholar] [CrossRef]
- Ishaq, S.L.; AlZahal, O.; Walker, N.; McBride, B. An investigation into rumen fungal and protozoal diversity in three rumen fractions, during high-fiber or grain-induced sub-acute ruminal acidosis conditions, with or without active dry yeast supplementation. Front. Microbiol. 2017, 8, 1943. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Martin, C.; Jouany, J.P.; Ranilla, M.J. Rumen protozoa and methanogenesis: Not a simple cause-effect relationship. Br. J. Nutr. 2012, 107, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Danielsson, R.; Schnurer, A.; Arthurson, V.; Bertilsson, J. Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Appl. Environ. Microbiol. 2012, 78, 6172–6179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Ranilla, M.J.; Saro, C.; Tejido, M.L.; Pérez-Quintana, M.; Carro, M.D. Influence of a yeast hydrolyzate obtained from sugarcane processing on in vitro rumen fermentation and bacterial diversity in batch cultures and Rusitec fermenters. Anim. Feed Sci. Technol. 2017, 232, 129–138. [Google Scholar] [CrossRef] [Green Version]
Diet | |
---|---|
Ingredients (g/kg DM 1) | |
Alfalfa hay | 300 |
Maize silage | 240 |
Maize | 275 |
Soybean meal | 125 |
Cottonseed meal | 42 |
Mineral/vitamin premix 2 | 10 |
Calcium soap of fatty acids | 8 |
Chemical composition (g/kg DM 1) | |
Organic matter | 935 |
Crude protein | 186 |
Neutral detergent fiber | 394 |
Acid detergent fiber | 179 |
Diet | ||
---|---|---|
EM 1 | DCP 2 | |
Ingredients (g/kg DM 3) | ||
Alfalfa hay | 500 | 500 |
Barley | 123 | 116 |
Dried citrus pulp | - | 200 |
Extruded maize | 200 | - |
Soybean meal | 158 | 165 |
Mineral/vitamin premix 4 | 10 | 10 |
Calcium soap of fatty acids | 9 | 9 |
Chemical composition (g/kg DM 3) | ||
Organic matter | 944 | 900 |
Crude protein | 160 | 160 |
Neutral detergent fiber 2 | 301 | 344 |
Acid detergent fiber 2 | 158 | 186 |
Item | Diet | SEM 1 | p-Value | |
---|---|---|---|---|
EM | DCP | |||
Diet disappearance (g/g) | ||||
Dry matter | 0.726 | 0.740 | 0.0136 | 0.11 |
Organic matter | 0.717 | 0.726 | 0.0112 | 0.31 |
Neutral detergent fiber | 0.342 | 0.426 | 0.0130 | <0.001 |
Acid detergent fiber | 0.200 | 0.352 | 0.0174 | <0.001 |
pH | 6.10 | 6.42 | 0.067 | <0.001 |
NH3-N 2 (mg/d) | 163 | 194 | 11.1 | 0.11 |
Total VFA 3 (mmol/d) | 91 | 89 | 4.5 | 0.41 |
Molar proportions (mol/100 mol) | ||||
Acetate | 47.3 | 46.6 | 0.45 | 0.04 |
Propionate | 17.0 | 19.5 | 0.55 | <0.001 |
Butyrate | 19.8 | 21.2 | 0.43 | <0.001 |
Isobutyrate | 0.70 | 0.91 | 0.152 | 0.06 |
Isovalerate | 2.75 | 2.07 | 0.159 | <0.001 |
Valerate | 6.06 | 6.53 | 0.186 | 0.01 |
Caproate | 6.64 | 3.27 | 0.278 | <0.001 |
Acetate/propionate (mol/mol) | 2.80 | 2.40 | 0.091 | <0.001 |
Methane (mmol/d) | 25.1 | 23.3 | 1.09 | 0.03 |
Methane/Total VFA (mol/mol) | 0.269 | 0.262 | 0.0036 | 0.03 |
Item | Diet | SEM 1 | p-Value | |
---|---|---|---|---|
EM | DCP | |||
Microbial protein synthesis (mg N/d) | ||||
SOL | 180 | 200 | 7.7 | 0.14 |
LIQ | 137 | 116 | 7.9 | 0.14 |
Total | 317 | 316 | 6.5 | 0.92 |
Efficiency of microbial growth 2 | 34.9 | 34.7 | 1.46 | 0.91 |
Phase | Item | Diet | SEM 1 | p-Value | |
---|---|---|---|---|---|
EM | DCP | ||||
SOL | Bacterial diversity (ARISA) | ||||
Number of peaks | 28.5 | 27.5 | 0.64 | 0.70 | |
Shannon index | 3.35 | 3.31 | 0.044 | 0.66 | |
Microbial populations (qPCR) | |||||
Total bacteria 2 | 131 | 118 | 14.8 | 0.77 | |
Total protozoa 2 | 0.0014 | 0.0018 | 0.00017 | 0.45 | |
Fungi 3 | 0.004 | 8.799 | 0.5429 | <0.001 | |
Archaea 3 | 0.030 | 0.032 | 0.0020 | 0.77 | |
LIQ | Bacterial diversity (ARISA) | ||||
Number of peaks | 30.8 | 34.8 | 1.73 | 0.57 | |
Shannon index | 3.35 | 3.54 | 0.068 | 0.46 | |
Microbial populations (qPCR) | |||||
Total bacteria 2 | 1.12 | 2.91 | 0.443 | 0.098 | |
Total protozoa 2 | 0.0001 | 0.0004 | 0.00004 | 0.06 | |
Fungi 3 | 0.004 | 0.039 | 0.0073 | 0.17 | |
Archaea 3 | 0.007 | 1.739 | 0.1426 | 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rodríguez, J.; Saro, C.; Mateos, I.; González, J.S.; Carro, M.D.; Ranilla, M.J. Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters. Animals 2020, 10, 1316. https://doi.org/10.3390/ani10081316
García-Rodríguez J, Saro C, Mateos I, González JS, Carro MD, Ranilla MJ. Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters. Animals. 2020; 10(8):1316. https://doi.org/10.3390/ani10081316
Chicago/Turabian StyleGarcía-Rodríguez, Jairo, Cristina Saro, Iván Mateos, Jesús S. González, María Dolores Carro, and María José Ranilla. 2020. "Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters" Animals 10, no. 8: 1316. https://doi.org/10.3390/ani10081316
APA StyleGarcía-Rodríguez, J., Saro, C., Mateos, I., González, J. S., Carro, M. D., & Ranilla, M. J. (2020). Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters. Animals, 10(8), 1316. https://doi.org/10.3390/ani10081316