Cultivation of Hair Matrix Cells from Cashmere Goat Skins and Exemplified Applications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Main Chemicals, Reagents, and Animals
2.2. HMCs’ and DPCs’ Cultivation
2.3. Observation of HMCs’ Morphology and Proliferation in Different Culture Media
2.4. Observation of HMCs’ Attachment and Morphology on Various Coating Substrates
2.5. Growth Curve of HMCs
2.6. Treatment of HMCs with Different Concentrations of Calcium
2.7. Treatment of HMCs with ATRA
2.8. Quantitative Real-Time PCR (qRT-PCR)
2.9. Immunoblotting
2.10. Cell Cycle Analysis
2.11. EdU Test
2.12. Data Analysis
3. Results
3.1. Outgrowth of HMCs from Isolated Hair Bulb Explants
3.2. Optimization of Culture Condition for Goat HMCs
3.3. Growth Curve of Goat HMCs in RPMI 1640
3.4. Morphological and Molecular Identifications of Goat HMCs
3.5. Effects of Calcium on HMCs’ Proliferation and Differentiation
3.6. Stimulatory Role of ATRA on HMCs Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FBP1 | fructose-bisphosphatase 1 |
ALDH1A3 | aldehyde dehydrogenase 1 family member A3 |
CRYM | crystallin mu |
HOXC13 | homeobox C13 |
OVOL1 | OVO homolog-like-1 |
SOX21 | SRY-box transcription factor 21 |
KRT23 | keratin 23 |
KRT10 | keratin 10 |
KRT1 | keratin 1 |
LOR | loricrin |
IVL | involucrin |
CRABP1/2 | Cellular retinoic acid-binding protein 1/2 |
FABP5 | fatty acid-binding protein 5 |
RARA/B/G | retinoic acid receptor alpha/beta/gamma |
RXRA/B/G | retinoid X receptor alpha/beta/gamma |
PPARD | peroxisome proliferator activated receptor delta |
FMN1 | formin-1 |
PCOLCE | procollagen C-endopeptidase enhancer 2 |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
References
- Galbraith, H. Fundamental hair follicle biology and fine fibre production in animals. Animal 2010, 4, 1490–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Wang, X.; Geng, R.; He, X.; Qu, L.; Chen, Y. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genom. 2013, 14, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Wang, Y.; Zhou, G.; Ding, Y.; Yang, Y.; Wang, X.; Zhang, E.; Chen, Y. Synchronous profiling and analysis of mRNAs and ncRNAs in the dermal papilla cells from cashmere goats. BMC Genom. 2019, 20, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Yang, F.; Zhao, M.; Ma, L.; Li, H.; Xie, Y.; Nai, R.; Che, T.; Su, R.; Zhang, Y.; et al. The intragenic mRNA-microRNA regulatory network during telogen-anagen hair follicle transition in the cashmere goat. Sci. Rep. 2018, 8, 1–13. [Google Scholar]
- Zhou, G.; Kang, D.; Ma, S.; Wang, X.; Gao, Y.; Yang, Y.; Wang, X.; Chen, Y. Integrative analysis reveals ncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goats. BMC Genom. 2018, 19, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Li, Y.; Zhou, G.; Gao, Y.; Ma, S.; Chen, Y.; Song, J.; Wang, X. Whole-genome bisulfite sequencing of goat skins identifies signatures associated with hair cycling. BMC Genom. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Guo, D.; Zhang, X.; Guo, S.; Hui, T.; Yue, C.; Sun, J.; Guo, S.; Bai, Z.; et al. m6A methylation analysis of differentially expressed genes in skin tissues of coarse and fine type liaoning cashmere goats. Front. Genet. 2020, 10, 1318. [Google Scholar] [CrossRef]
- Stenn, K.S.; Paus, R. Controls of hair follicle cycling. Physiol. Rev. 2001, 81, 449–494. [Google Scholar] [CrossRef]
- Millar, S.E. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 2002, 118, 216–225. [Google Scholar] [CrossRef]
- Yang, C.C.; Cotsarelis, G. Review of hair follicle dermal cells. J. Dermatol. Sci. 2010, 57, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Lim, X.; Tan, S.H.; Yu, K.L.; Lim, S.B.H.; Nusse, R. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA 2016, 113, E1498–E1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Xu, M.; Yang, Y.; Yang, K.; Wickett, R.R.; Andl, T.; Millar, S.E.; Zhang, Y. Activation of β-Catenin signaling in CD133-positive dermal papilla cells drives postnatal hair growth. PLoS ONE 2016, 11, e0160425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namekata, M.; Yamamoto, M.; Goitsuka, R. Nuclear localization of Meis1 in dermal papilla promotes hair matrix cell proliferation in the anagen phase of hair cycle. Biochem. Biophys. Res. Commun. 2019, 519, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Hao, F.; Xu, T.; Zhu, B.; Ren, L.Q.; Han, X.Y.; Liu, D.J. Thymosin β4 Identified by transcriptomic analysis from HF anagen to telogen promotes proliferation of SHF-DPCs in albas cashmere goat. Int. J. Mol. Sci. 2020, 21, 2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Gao, Y.; Ding, Q.; Liu, J.; Li, Y.; Jin, M.; Xu, H.; Ma, S.; Wang, X.; Zeng, W.; et al. Exosomal micro RNAs derived from dermal papilla cells mediate hair follicle stem cell proliferation and differentiation. Int. J. Biol. Sci. 2019, 15, 1368–1382. [Google Scholar] [CrossRef] [Green Version]
- Kwack, M.H.; Ahn, J.S.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. J. Invest. Dermatol. 2012, 132, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Roh, C.; Tao, Q.; Photopoulos, C.; Lyle, S. In vitro differences between keratinocyte stem cells and transit-amplifying cells of the human hair follicle. J. Invest. Dermatol. 2005, 125, 1099–1105. [Google Scholar] [CrossRef] [Green Version]
- Bates, E.J.; Penno, N.M.; Hynd, P.I. Wool follicle matrix cells: Culture conditions and keratin expression in vitro. Br. J. Dermatol. 1999, 140, 216–225. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, G.; Chen, Y. Effects of all-trans retinoic acid on goat dermal papilla cells cultured in vitro. Electron. J. Biotechnol. 2018, 34, 43–50. [Google Scholar] [CrossRef]
- Luo, X.; Lammers, K.M.; Oltmanns, M.L. Methods for Culturing Hair Follicle Epithelial Matrix Cells. US Patent Application No. 08/162,516, 5 November 1996. [Google Scholar]
- Hennings, H.; Michael, D.; Cheng, C.; Steinert, P.; Holbrook, K.; Yuspa, S.H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 1980, 19, 245–254. [Google Scholar] [CrossRef]
- Everts, H.B.; Sundberg, J.P.; King, L.E.; Ong, D.E. Immunolocalization of enzymes, binding proteins, and receptors sufficient for retinoic acid synthesis and signaling during the hair cycle. J. Invest. Dermatol. 2007, 127, 1593–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendl, M.; Lewis, L.; Fuchs, E. Molecular dissection of mesenchymal–epithelial interactions in the hair follicle. PLoS Biol. 2005, 3, e331. [Google Scholar] [CrossRef] [PubMed]
- Donet, E.; Bayo, P.; Calvo, E.; Labrie, F.; Pérez, P. Identification of novel glucocorticoid receptor-regulated genes involved in epidermal homeostasis and hair follicle differentiation. J. Steroid Biochem. Mol. Biol. 2008, 108, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Schonbaum, C.; Degenstein, L.; Bai, W.; Mahowald, A.; Fuchs, E. The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev. 1998, 12, 3452–3463. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.S.; Peterson, R.L.; Barth, J.L.; Pruett, N.D.; Jacobs, D.F.; Kern, M.J.; Argraves, W.S.; Sundberg, J.P.; Awgulewitsch, A. Evidence that the satin hair mutant gene Foxq1 is among multiple and functionally diverse regulatory targets for Hoxc13 during hair follicle differentiation. J. Biol. Chem. 2006, 281, 29245–29255. [Google Scholar] [CrossRef] [Green Version]
- Kiso, M.; Tanaka, S.; Saba, R.; Matsuda, S.; Shimizu, A.; Ohyama, M.; Okano, H.J.; Shiroishi, T.; Okano, H.; Saga, Y.; et al. The disruption of Sox21-mediated hair shaft cuticle differentiation causes cyclic alopecia in mice. Proc. Natl. Acad. Sci. USA 2009, 106, 9292–9297. [Google Scholar] [CrossRef] [Green Version]
- Elsholz, F.; Harteneck, C.; Muller, W.; Friedland, K. Calcium-a central regulator of keratinocyte differentiation in health and disease. Eur. J. Dermatol. 2014, 650–661. [Google Scholar] [CrossRef] [Green Version]
- Bikle, D.D.; Ng, D.; Tu, C.L.; Oda, Y.; Xie, Z. Calcium- and vitamin D-regulated keratinocyte differentiation. Mol. Cell. Endocrinol. 2001, 177, 161–171. [Google Scholar] [CrossRef]
- Lee, D.D.; Stojadinovic, O.; Krzyzanowska, A.; Vouthounis, C.; Blumenberg, M.; Tomic-Canic, M. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J. Cell. Physiol. 2009, 220, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Alonso, L. The hair cycle. J. Cell Sci. 2006, 119, 391–393. [Google Scholar] [CrossRef]
- Micallef, L.; Belaubre, F.; Pinon, A.; Jayat-Vignoles, C.; Delage, C.; Charveron, M.; Simon, A. Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal human keratinocytes. Exp. Dermatol. 2009, 18, 143–151. [Google Scholar] [CrossRef]
- Kurata, S.; Itami, S.; Sonoda, T.; Takayasu, S. Culture and differentiation of human hair matrix cells in vitro. J. Dermatol. Sci. 1991, 2, 247. [Google Scholar] [CrossRef]
- Mesler, A.L.; Veniaminova, N.A.; Lull, M.V.; Wong, S.Y. Hair follicle terminal differentiation is orchestrated by distinct early and late matrix progenitors. Cell Rep. 2017, 19, 809–821. [Google Scholar] [CrossRef]
- Liu, S.; Trapnell, C. Single-cell transcriptome sequencing: Recent advances and remaining challenges. F1000 Res. 2016, 5, 182. [Google Scholar] [CrossRef]
- Philpott, M.P.; Sanders, D.; Kealey, T. Cultured human hair follicles and growth factors. J. Invest. Dermatol. 1995, 104, 44–45. [Google Scholar] [CrossRef] [Green Version]
- Mady, L.J.; Ajibade, D.V.; Hsaio, C.; Teichert, A.; Fong, C.; Wang, Y.; Christakos, S.; Bikle, D.D. The transient role for calcium and vitamin D during the developmental hair follicle cycle. J. Invest. Dermatol. 2016, 136, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Kizawa, K.; Tsuchimoto, S.; Hashimoto, K.; Uchiwa, H. Gene Expression of mouse S100A3, a cysteine-rich calcium-binding protein, in developing hair follicle. J. Invest. Dermatol. 1998, 111, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Chapellier, B. Physiological and retinoid-induced proliferations of epidermis basal keratinocytes are differently controlled. EMBO J. 2002, 21, 3402–3413. [Google Scholar] [CrossRef] [Green Version]
- Shih, M.Y.S.; Kane, M.A.; Zhou, P.; Yen, C.L.E.; Streeper, R.S.; Napoli, J.L.; Farese, R.V. Retinol esterification by DGAT1 is essential for retinoid homeostasis in murine skin. J. Biol. Chem. 2009, 284, 4292–4299. [Google Scholar] [CrossRef] [Green Version]
- Foitzik, K.; Spexard, T.; Nakamura, M.; Halsner, U.; Paus, R. Towards dissecting the pathogenesis of retinoid-induced hair loss: All-trans retinoic acid induces premature hair Follicle regression (catagen) by upregulation of transforming growth factor-β2 in the dermal papilla. J. Invest. Dermatol. 2005, 124, 1119–1126. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Wang, L.; Zong, B.; Wang, Y.; Wang, X.; Shi, Y.; Yang, Y.; Chen, Y. Cultivation of Hair Matrix Cells from Cashmere Goat Skins and Exemplified Applications. Animals 2020, 10, 1400. https://doi.org/10.3390/ani10081400
Ma S, Wang L, Zong B, Wang Y, Wang X, Shi Y, Yang Y, Chen Y. Cultivation of Hair Matrix Cells from Cashmere Goat Skins and Exemplified Applications. Animals. 2020; 10(8):1400. https://doi.org/10.3390/ani10081400
Chicago/Turabian StyleMa, Sen, Lamei Wang, Bo Zong, Ying Wang, Xiaolong Wang, Yinghua Shi, Yuxin Yang, and Yulin Chen. 2020. "Cultivation of Hair Matrix Cells from Cashmere Goat Skins and Exemplified Applications" Animals 10, no. 8: 1400. https://doi.org/10.3390/ani10081400
APA StyleMa, S., Wang, L., Zong, B., Wang, Y., Wang, X., Shi, Y., Yang, Y., & Chen, Y. (2020). Cultivation of Hair Matrix Cells from Cashmere Goat Skins and Exemplified Applications. Animals, 10(8), 1400. https://doi.org/10.3390/ani10081400