The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
3. Nutritive Value of Amaranth Leaves and Grains
Nutrient | Leaves | Grains | References |
---|---|---|---|
Moisture | 6.49 | [26] | |
6–9 | [28] | ||
72.29 | [40] | ||
79.29 | [41] | ||
86.523 | 9.643 | [27] | |
Crude protein | 16.83 | [8] | |
19.85 | [26] | ||
13–18 | [28] | ||
4.37 | [38] | ||
4.420 | 14.753 | [29] | |
3.7 | - | [40] | |
Crude fat | 10.6–16.7 | [40] | |
5.77 | [8] | ||
1.79 | [26] | ||
6–8 | [28] | ||
2.15 | [40] | ||
1.470 | 8.473 | [27] | |
Crude fiber | 2.5 | [8] | |
1.81 | [26] | ||
4–14 | [28] | ||
3.01 | [38] | ||
1.757 | 6.557 | [27] | |
Ash | 2.90 | [8] | |
2.25 | [26] | ||
3–4 | [28] | ||
1.52 | [41] | ||
2.737 | 2.373 | [27] | |
Carbohydrates | 1.337 | 51.640 | [27] |
10.19 | [41] | ||
63 | [28] | ||
77 | [26] |
4. Phenolic Compounds Present in Amaranth Species
5. Anti-Nutritional Factors Present in Amaranth
6. Processing Methods Used to Reduce Anti-Nutritional Factors (ANF’s)
6.1. Cooking
6.2. Roasting
6.3. Popping
6.4. Extrusion
6.5. Alkali Treatment
6.6. Enzyme Supplementation
7. The Use of Amaranth Leaves and Grains in Monogastric Nutrition
7.1. Amaranth Leaves
7.2. Amaranth Grains
7.3. Effect of Amaranth Grain and Leaves on Health Parameters of Monogastric Animals
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Department of Agriculture, Forestry and Fisheries (DAFF). Annual Report; Resource Centre, Directorate Agricultural Information Services: Pretoria, South Africa, 2017.
- St Clair, K. The Secret Lives of Colour; John Murray: London, UK, 2016; p. 131. ISBN 9781473630819. OCLC: 936144129. [Google Scholar]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Therapeutic uses of Amaranthus caudatus L. Trop. Biomed. 2019, 36, 1038–1053. [Google Scholar]
- Tatiya, A.U.; Surana, S.J.; Khope, S.D.; Gokhale, S.B.; Sutar, M.P. Phytochemical investigation and immunomodulatory activity of Amaranthus spinosus linn. Indian J. Pharm. Educ. 2007, 44, 337–341. [Google Scholar]
- Apolot, M.G.; Acham, H.; Ssozi, J.; Namutebi, A.; Masanza, M.; Kizito, E.; Deborah, R. Changes in sensory and quality characteristics of S. aethiopicum (L) and A. lividus (L) leafy vegetables along the supply chain. Am. J. Food Technol. 2018, 6, 161–166. [Google Scholar]
- Van Volkenburg, H.; Frédérique, C.G.; Liette, V. Impacts of Smooth Pigweed (Amaranthus hybridus) on Cover Crops in Southern Ontario. Agron. Res. 2020, 10, 529–542. [Google Scholar]
- Alemayehu, F.; Reta, M.A.; Bendevis, S.E.J. The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J. Agron. Crop Sci. 2015, 201, 321–329. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Písaříková, B.; Zralý, Z.; Kračmar, S.; Trčková, M.; Herzig, I. The use of amaranth (genus Amaranthus L.) in the diets for broiler chickens. Vet. Med. 2006, 51, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Abolaji, G.T.; Olooto, F.M.; Ogundele, D.T.; Williams, F.E. Nutritional characterization of grain amaranth grown in Nigeria for food security and healthy living. Agrosearch 2016, 17, 1. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep. 2019, 9, 1–10. [Google Scholar]
- Adewolu, M.A.; Adamson, A.A. Amaranthus spinosus leaf meal as potential dietary protein source in the practical diets for Clarias gariepinus (Burchell, 1822) Fingerlings. In. J. Zool. Res. 2011, 7, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Kraujalis, P.; Venskutonis, P.R. Supercritical carbon dioxide extraction of squalene and tocopherols from amaranth and assessment of extracts antioxidant activity. J. Supercrit. Fluids 2013, 80, 78085. [Google Scholar] [CrossRef]
- Fasuyi, A.O.; Dairo, F.A.S.; Adeniji, A.O. Protein supplementary quality of tropical vegetable (Amaranthus cruentus) leaf meal in broiler starter diets: Bio-nutritional evaluation. Int. J. Agric. Res. 2007, 2, 976–986. [Google Scholar]
- Longato, E.; Meineri, G.; Peiretti, P.G. The effect of Amaranthus caudatus supplementation to diets containing linseed oil on oxidative status, blood serum metabolites, growth performance and meat quality characteristics in broilers. Anim. Sci. Pap. Rep. 2017, 35, 71–86. [Google Scholar]
- Rouckova, J.; Trackova, M.; Herzig, I. The use of amaranth grain in diets for broiler chickens and its effect on performance and selected biochemical indicators. J. Anim. Sci. 2004, 12, 532–541. [Google Scholar]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Sánchez-Urdaneta, A. Effect of the inclusion of Amaranthus dubius in diets on carcass characteristics and meat quality of fattening rabbits. J. Appl. Anim. Res. 2018, 46, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Kambashi, B.; Picron, P.; Boudry, C.; Thewis, A.; Kiatoko, H.; Bindelle, J. Nutritive value of tropical forage plants fed to pigs in the Western provinces of the Democratic Republic of the Congo. Anim. Feed Sci. Technol. 2014, 191, 47–56. [Google Scholar] [CrossRef]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Suitability of Amaranthus species for alleviating human dietary deficiencies. S. Afr. J. Bot. 2018, 115, 65–73. [Google Scholar] [CrossRef]
- Neelesh, K.M.; Pratibha, A. Amaranthus grain nutritional benefits: A review. J. Pharmacogn. Phytochem. 2018, 7, 2258–2262. [Google Scholar]
- Soriano-García, M.; Arias-Olguín, I.I.; Montes, J.P.C. Nutritional functional value and therapeutic utilization of Amaranth. J Anal. Pharm. Res. 2018, 7, 596–600. [Google Scholar] [CrossRef] [Green Version]
- Kelly, G.; Brien, O.; Martin, L. Amaranth Grain and Vegetable Types. ECHO Tech. Notes. North Fort Myers, FL, USA, 2008; pp. 1–9. Available online: https://www.el-pan-alegre.org/Amaranth_Grain-and-Vegetable_Types.pdf (accessed on 13 May 2020).
- Arendt, E.; Zannini, E. Cereal Grains for the Food and Beverage Industries; Woodhead Publishing, Elsevier: Cambridge, UK, 2013. [Google Scholar]
- Caselato-Sousa, V.M.; Amaya-Farfan, J. Concise Reviews in Food Science State of Knowledge on Amaranth Grain: A Comprehensive Review. J. Food Sci. 2012, 77, 93–104. [Google Scholar] [CrossRef]
- Becker, R.; Wheeler, E.L.; Lorenz, K.; Stafford, A.E.; Grosjean, O.K.; Betschart, A.A.; Saunders, R.M. A Compositional Study of Amaranth Grain. J. Food Sci. 1981, 46, 1175–1180. [Google Scholar] [CrossRef]
- Edelman, M.; Colt, M. Nutrient Value of Leaf vs. Seed. Front. Chem. 2016, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abugre, C. Assessment of Some Traditional Leafy Vegetables of Upper East Region and Influence of Stage of Harvest and Drying Method on Nutrients Content of Spider Flower. Master’s Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2011, unpublished. [Google Scholar]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Tech. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr. 2009, 6, 240–257. [Google Scholar] [CrossRef]
- Andini, R.; Yoshida, S.; Ohsawa, R. Variation in Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths. Agronomy 2013, 3, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Nicodemas, D. Nutrient and Anti-Nutrient Contents of Selected Varieties of Grain and Leafy Amaranths in Tanzania. Master’s Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2013. [Google Scholar]
- Edoardo, C. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar]
- Jha, R.; Berrocoso, J.D. Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Emebu, P.K.; Anyika, J.U. Proximate and Mineral Composition of Kale (Brassica oleracea) Grown in Delta State, Nigeria. Pak. J. Nutr. 2011, 10, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Peiretti, P.G.; Meineri, G.; Longato, E.; Tassone, S. Chemical composition, in vitro digestibility and fatty acid profile of Amaranthus caudatus herbage during its growth cycle. Anim. Nutr. Feed Technol. 2018, 18, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Peiretti, P.G. Amaranth in animal nutrition: A review. Livest. Res. Rural Dev. 2018, 30, 88. [Google Scholar]
- Okpara, S.U.; Onyegbule, C.N.; Nwanguma, E.I.; Ibekwe, H.N.; Ngbede, S.O.; Uwalaka, A. Effect of different fertilizer forms on the growth and yield of amaranths (Amaranthus cruentus) in Okwigwe, Southeastern Nigeria. In Proceedings of the 31st Annual Conference of the Horticultural Society of Nigeria (HORTSON), Abuja, Nigeria, 22–26 September 2013. [Google Scholar]
- Neudeck, L.; Avelino, L.; Bareetseng, P.; Ngwenya, B.N.; Demel, T.; Motsholapheko, M.R. The contribution of edible wild plants to food security, dietary, diversity and income of households in Shorobe village, Northern Botswana. Ethnobot. Res. Appl. 2012, 10, 449–462. [Google Scholar]
- Chakrabarty, T.; Sarker, U.; Hasan, M.; Rahman, M.M. Variability in mineral compositions, yield, and yield contributing traits of stem amaranth (Amaranthus lividus). Genetika 2018, 50, 995–1010. [Google Scholar] [CrossRef] [Green Version]
- Fasuyi, A.O. Nutritional potentials of some tropical vegetable meals. Chemical characterization and functional properties. Afr. J. Biotechnol. 2006, 5, 49–53. [Google Scholar]
- Peiretti, P.G.; Meineri, G.; Gai, F.; Longato, E.; Amarowicz, R. Antioxidative activity and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Nat. Prod. Res. 2017, 31, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Steffensen, S.K.; Åsmund, R.; Mortensen, A.G.; Laursen, B.; de Troiani, R.M.; Noellemeyer, E.J.; Janovska, D.; Dusek, K.; Délano-Frier, J.; Taberner, A.; et al. Variations in the polyphenol content of seeds of field grown Amaranthus genotypes. Food Chem. 2011, 129, 131–138. [Google Scholar] [CrossRef]
- Jimenez-Aguilar, D.M.; Grusak, M.A. Minerals, vitamin C, phenolic, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food Compos. Anal. 2017, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS ONE 2019. [Google Scholar] [CrossRef] [Green Version]
- Kalinova, J.; Dadakova, E. Rutin and total quercetin content in amaranth (Amaranthus spp.). Plant Foods Hum. Nutr. 2009, 64, 68. [Google Scholar] [CrossRef] [PubMed]
- Paucar-Menacho, M.; Dueñas, M.; Peñas, E.; Frias, J.; Martínez-Villaluenga, C. Effect of dry heat puffing on nutritional composition, fatty acid, amino acid and phenolic profiles of pseudocereals grains. Pol. J. Food Nutr. Sci. 2018, 68, 289–297. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Kammerer, D.; Schieber, A.; Adama, H.; Nacoulma, O.G.; Carle, R. Betacyanins and phenolic compounds from Amaranthus spinosus L. and Boerhavia erecta L. Z Naturforsch C J Biosci. 2004, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Statti, G.; Loizzo, M.R.; Sacchetti, G.; Poli, F.; Menichini, F. In vitro antioxidant effect and inhibition of α-amylase of two varieties of Amaranthus caudatus seeds. Biol. Pharm. Bull. 2005, 28, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Soetan, K.O.; Oyewole, O.E. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods an animal feeds: A review. Afr. J. Food Sci. 2009, 3, 223–232. [Google Scholar]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Hassanpour, S.; Naser, M.; Behrad, E.; Mehmandar, F.B. Plants and secondary metabolites (Tannins): A Review. Int. J. For. Soil Eros. 2011, 1, 47–53. [Google Scholar]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Hugo, A.; Strydom, P.E.; Muchenje, V. Fatty acid composition of beef from Nguni steers supplemented with Acacia karroo leaf-meal. J. Food Compos. Anal. 2011, 24, 523–528. [Google Scholar] [CrossRef]
- Agbaire, P.O. Levels of anti-nutritional factors in some common leafy edible vegetables of southern Nigeria. Afr. J. Food Sci. Technol. 2012, 3, 99–101. [Google Scholar]
- Muramoto, K. Lectins as bioactive proteins in foods and feeds. Food Sci. Technol. Res. 2017, 23, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, G.; Singhal, P.; Chaturvedi, S. Food processing for increasing consumption: The case of legumes. In Food Processing for Increased Quality and Consumption; Academic Press: Cambridge, MA, USA, 2018; Volume 18, pp. 1–28. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2. [Google Scholar] [CrossRef]
- Joye, I. Protein digestibility of cereal products. Foods 2019, 8, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nørgaard, J.V.; Malla, N.; Dionisio, G.; Madsen, C.K.; Pettersson, D.; Lærke, H.N. Exogenous xylanase or protease for pigs fed barley cultivars with high or low enzyme inhibitors. Anim. Feed Sci. Tech. 2019, 248, 59–66. [Google Scholar] [CrossRef]
- Salas, C.E.; Dittz, D.; Torres, M.J. Plant proteolytic enzymes: Their role as natural pharmacophores. In Biotechnological Applications of Plant Proteolytic Enzymes; Springer: Cham, Switzerland, 2018; pp. 107–127. [Google Scholar]
- Ercan, P.; El, S.N. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem. 2016, 205, 163–169. [Google Scholar] [CrossRef]
- Addisu, S.; Assefa, A. Role of plants containing saponins on livestock production, a review. Adv. Biol. Res. 2016, 10, 309–314. [Google Scholar]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M. Saponin-based, biological-active surfactants from plants. In Application and Characterization of Surfactants; IntechOpen: London, UK, 2017; pp. 183–205. [Google Scholar]
- Nyonje, A.W. Nutrients, Anti-Nutrients and Phytochemical Evaluation of Ten Vegetable Amaranth (Amaranthus spp.) Varieties at Two Stages of Growth. Master’s Thesis, Jomo Kenyatta University of Agriculture and Technology, Central Kenya, Kenya, 2015. [Google Scholar]
- Sinha, K.; Khare, V. Review on: Anti-nutritional factors in vegetable crops. J. Pharm. Innov. 2017, 6, 353–358. [Google Scholar]
- Jacob, J. Including Amaranth in Organic Poultry Diets. eOrganic the Organic Agriculture Community of eXtension. University of Kentucky. 2013. Available online: https://eorganic.org/node/8100 (accessed on 15 May 2020).
- Mamiro, P.S.; Mwanri, A.W.; Mongi, R.J.; Chivaghula, T.J.; Nyagaya, M.; Ntwenya, J. Effect of cooking on tannin and phytate content in different bean (Phaseolus vulgaris) varieties grown in Tanzania. Afr. J. Biotech. 2017, 16, 1186–1191. [Google Scholar] [CrossRef]
- Ilelaboye, N.O.A.; Amoo, I.A.; Pikuda, O.O. Effect of cooking methods on mineral and anti-nutrient composition of some green leafy vegetables. Arch. Appl. Sci. Res. 2013, 5, 254–260. [Google Scholar]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on anti-nutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Wu, G.; Johnson, S.K.; Bornman, J.F.; Bennett, S.J.; Singh, V.; Simic, A.; Fang, Z. Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains. PLoS ONE 2016, 11, e0148712. [Google Scholar] [CrossRef] [Green Version]
- Yagoub, A.A.; Mohamed, E.B.; Ahmed, A.H.R.; El Tinay, A.H. Study on fururndu, a Traditional Sudanese fermented roselle (Hibiscus sabdariffa L.) seed: Effect on in vitro protein digestibility, chemical composition and functional properties of the total proteins. J. Agric. Food Chem. 2004, 52, 6143–6150. [Google Scholar] [CrossRef] [PubMed]
- Chemeda, A.S.; Bussa, N.F. Effect of Processing Methods on Nutritional and Anti-nutritional Value of Amaranth Grain; and Potential Future Application of Amaranth Grain in Injera Making. Int. J. Fermented Food. 2018, 7, 11–20. [Google Scholar] [CrossRef]
- Agume, A.S.; Njintang, N.Y.; Mbofung, C.M. Effect of Soaking and Roasting on the Physicochemical and Pasting Properties of Soybean Flour. Foods 2017, 6, 1–12. [Google Scholar]
- Makinde, F.M.; Oladunni, S.S. Effects of processing treatments on nutritional quality of raw almond (Terminalia catappa Linn.) kernels. Adv. Appl. Sci. Res. 2016, 7, 1–7. [Google Scholar]
- Amare, E.; Mouquet-Rivier, C.; Rochette, I.; Adish, A.; Haki, G.D. Effect of popping and fermentation on proximate composition, minerals and absorption inhibitors, and mineral bioavailability of Amaranthus caudatus grain cultivated in Ethiopia. J. Food Sci. Technol. 2016, 53, 2987–2994. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, E.; Sarita, S. Effects of Processing (Germination and Popping) on the Nutritional and Anti-Nutritional Properties of Finger Millet (Eleusine Coracana). Curr. Res. Nutr. Food Sci. 2018, 6, 566–572. [Google Scholar] [CrossRef]
- Weerasooriya, D.K.; Bean, S.R.; Nugusu, Y.; Ioerger, B.P.; Tesso, T.T. The effect of genotype and traditional food processing methods on in-vitro protein digestibility and micronutrient profile of sorghum cooked products. PLoS ONE 2018, 13, e0203005. [Google Scholar] [CrossRef] [Green Version]
- Muyonga, J.H.; Andabati, B.; Ssepuuya, G. Effect of heat processing on selected grain amaranth physicochemical properties. Food Sci. Nutr. 2014, 2, 9–16. [Google Scholar] [CrossRef]
- Písaříková, B.; Kráčmar, S.; Herzig, I. Amino acid contents and biological value of protein in various amaranth species. Czech J. Anim. Sci. 2005, 50, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Juzl, M.; Simeonovova, J.; Pisarikova, B. Sensory analysis of meat of cockerels and pullets fed diets containing Amaranth or fishmeal. Acta Univ. Agric. Silvic. Mendel. Brun. 2005, 5, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Nooshin, N.; Sze, Y.L.; Mohamed, K.; Zhenzhou, Z.; Francisco, J.B.; Ralf, G.; Indrawati, O.; Shahin, R. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control 2017, 7, 62–73. [Google Scholar]
- Rathod, R.P.; Annapure, U.S. Effect of extrusion process on anti-nutritional factors and protein and starch digestibility of lentil splits. Food Sci. Technol. 2016, 66, 114–123. [Google Scholar]
- Kumar, A.; Mani, I.; Aradwad, P.; Samuel, D.V.K.; Jha, S.; Sahoo, P.K.; Sinha, J.P.; Kar, A. Effect of extrusion technique on anti-nutritional factors of sorghum-soya blends. Indian J. Agric. Sci. 2018, 88, 81–89. [Google Scholar]
- Popiela, E.; Króliczewska, B.; Zawadzki, W.; Opaliński, S.; Skiba, T. Effect of extruded amaranth grains on performance, egg traits, fatty acids composition, and selected blood characteristics of laying hens. Livest. Sci. 2013, 155, 308–315. [Google Scholar] [CrossRef]
- Jakubowska, M.; Gardzielewska, J.; Tarasewicz, Z.; Szczerbinska, D.; Karamucki, T.; Rybak, K.; Polawska, E.; Garczewska, J. The effect of amaranth seed added to the standard diet upon selected meat quality traits in the quail. Anim. Sci. Rep. 2013, 31, 355–362. [Google Scholar]
- Sokňl, J.L.; Bobel, B.K.; Fabijanska, M.; Bekta, M. Preliminary results on the influence of amaranth seeds on carcass and meat quality of fatteners. J. Anim. Feed Sci. 2001, 10, 203–208. [Google Scholar]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecó, A.R. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Li, Y.; Qu, H. Removing tannins from medicinal plant extracts using an alkaline ethanol precipitation process: A Case Study of Danshen Injection. Molecules 2014, 19, 18705–18720. [Google Scholar]
- Tshabalala, T.; Sikosana, J.L.N.; Chivandi, E. Nutrient intake, digestibility and nitrogen retention in indigenous goats fed on Acacia nilotica fruits treated for condensed tannins. S. Afr. J. Anim. Sci. 2013, 43, 457–463. [Google Scholar] [CrossRef]
- Yisehak, K.; De-Boever, J.; Janssens, G.P.J. The effect of supplementing leaves of four tannin-rich plant species with polyethylene glycol on digestibility and zootechnical performance of zebu bulls (Bos indicus). J. Anim. Physiol. Anim. Nutr. 2013, 98, 417–423. [Google Scholar]
- Ben Salem, H.; Saghrouni, L.; Nefzaoui, A. Attempts to deactivate tannins in fodder shrubs with physical and chemical treatments. Feed Sci. Technol. 2005, 122, 109–121. [Google Scholar] [CrossRef]
- Kyarissiima, C.C.; Okot, M.W.; Svihus, S. Use of wood ash in the treatment of high tannin sorghum for poultry feeding. S. Afr. J. Anim. Sci. 2004, 34, 110–115. [Google Scholar] [CrossRef]
- Embaby, H.E. Effect of heat treatments on certain anti-nutrients and in vitro protein digestibility of peanut and sesame seeds. Food Sci. Technol. Res. 2011, 17, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Choct, M. Enzymes for the feed industry: Past, present and future. World Poult. Sci. J. 2006, 62, 5–15. [Google Scholar] [CrossRef]
- Fasuyi, A.O.; Akindahunsi, A.O. Nutritional evaluation of Amaranthus cruentus leaf meal-based broiler diets supplemented with cellulase/glucanase/xylanase enzymes. Am. J. Food Technol. 2009, 4, 108–118. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Chanda, K.; Kumar, B. Statistical optimization of nutritional and physical parameters for xylanase production from newly isolated Aspergillus oryzae LC1 and its application in the hydrolysis of lignocellulosic agro-residues. Bio-Resources 2017, 12, 8519–8538. [Google Scholar]
- Kumar, B.A.; Amit, K.; Alok, K.; Dharm, D. Wheat bran fermentation for the production of cellulase and xylanase by Aspergillus niger NFCCI 4113. Res. J. Biotechnol. 2018, 13, 5. [Google Scholar]
- Bi, Y.U.; Chung, T.K. Effects of multiple-enzyme mixtures on growth performance of broilers fed corn-soybean meal diets. J. Appl. Poult. Res. 2004, 13, 178–182. [Google Scholar]
- Kocher, A.; Choct, M.; Ross, G.; Broz, J.; Chung, T.K. Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. J. Appl. Poult. Res. 2003, 12, 275–283. [Google Scholar] [CrossRef]
- Montero-Quintero, K.; Moreno-Rojas, R.; Molina, E.; Sánchez-Urdaneta, A.B. Chemical composition and digestibility of Amaranthus dubius Mart. ex Thell. A promising source of nutrients. Rev. Fac. Agron. 2015, 32, 361–380. [Google Scholar]
- Ngugi, C.C.; Oyoo-Okoth, E.; Manyala, J.O.; Fitzsimmons, K.; Kimotho, A. Characterization of the nutritional quality of amaranth leaf protein concentrates and suitability of fish meal replacement in Nile tilapia feeds. Aquac. Rep. 2017, 5, 62–69. [Google Scholar] [CrossRef]
- Punita, A.; Chaturvedi, A. Effect of feeding crude red palm oil (Elaeis guineensis) and grain amaranth (Amaranthus paniculatus) to hens on total lipids, cholesterol, PUFA levels and acceptability of eggs. Plant Food Hum. Nutr. 2000, 55, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Phonekhampheng, O. On-Farm Feed Resources for Catfish (Clarias gariepinus) Production in Laos: Evaluation of Some Local Feed Resources. Ph.D. Thesis, Swedish University of Agricultural Sciences Uppsala, Umeå, Sweden, 2008. [Google Scholar]
- Adeniji, C.A.; Fakoya, K.A.; Omamohwo, V.R. Partial replacement of soybean cake with Amaranthus spinosus leaf meal in the diet of Nile tilapia, Oreochromis niloticus. Pak. J. Sci. Ind. Res. 2007, 50, 335–338. [Google Scholar]
- Bautista, E.; Barrueta, H.D.E. Bledo (Amaranthus spp.) como ingredient en dietas para conejos en crecimiento y engorde. Rev. Cient.-Fac. Cienc. Vet. 2011, 12, 1–17. [Google Scholar]
- Shilov, V.N.; Zharkovskii, A.P. Effect of using amaranth hydrolysate on efficiency of raising weaner pigs. Russ. Agric. Sci. 2012, 38, 139–142. [Google Scholar] [CrossRef]
- Zralý, Z.; Písaříková, B.; Trčková, M.; Herzig, I.; Jůzl, M.; Simeonovova, J. Effect of lupine and amaranth on growth efficiency, health, and carcass characteristics and meat quality of market pigs. Acta. Vet. Brno 2006, 75, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J. Feeding Amaranth to poultry. Cooperative extension. University of Kentucky. 2015. Available online: https://impact.extension.org/extension-articles/ (accessed on 3 May 2020).
- Ravindran, V.; Hood, L.; Gill, R.; Kneale, R.; Bryden, C. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed Sci. Technol. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Niewiadomski, P.; Gomułka, P.; Poczyczynski, P.; Wozniak, M.; Szmyt, M. Dietary effect of supplementation with amaranth meal on growth performance and apparent digestibility of rainbow trout oncorhynchus myskiss. Pol. J. Nat. Sci. 2016, 31, 459–469. [Google Scholar]
- Orczewska-Dudek, S.; Pietras, M.; Nowak, J. The Effect of Amaranth Seeds, Sea Buckthorn Pomace and Black Chokeberry Pomace in Feed Mixtures for Broiler Chickens on Productive Performance, Carcass Characteristics and Selected Indicators of Meat Quality. Ann. Anim. Sci. 2018, 18, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Caselato-Sousa, V.M.; Ozaki, M.R.; de Almeida, E.A.; Amaya-Farfan, J. Intake of heat-expanded amaranth grain reverses endothelial dysfunction in hypercholesterolemic rabbits. Food Funct. 2014, 5, 3281–3286. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Gremaud, R.; Baumgartner, M.; Rein, D.; Monnard, I.; Kratky, E.; Geiger, W.; Burri, J.; Dionisi, F.; Allan, M.; et al. Cholesterol-lowering properties of amaranth grain and oil in hamsters. Int. J. Vitam. Nutr. Res. 2003, 73, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Chhay, T.; Pok, S.; Borin, K.; Preston, T.R. Amaranth (Amaranthus spp.) as replacement for water spinach (Ipomoea aquatica) with or without paddy rice on growth performance of rabbits. Livest. Res. Rural Dev. 2013, 25, 1–10. [Google Scholar]
- Fasuyi, A.O. Amaranthus cruentus leaf meal as a protein supplement in broiler finisher diets part 2. haematological responses, carcass characteristics and relative organ weights. Afr. J. Food Agric. Nutr. Dev. 2007, 7, 6. [Google Scholar]
- Czerwińska, J.; Bartnikowska, E.; Leontowicz, H.; Lange, E.; Leontowicz, M.; Katrich, E.; Trakhtenberg, S.; Gorinstein, S. Oat (Avena sativa L.) and amaranth (Amaranthus hypochondricus) meals positively affect plasma lipid profile In rats fed cholesterol-containing diets. J. Nutr. Biochem. 2004, 15, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Szczerbińska, D.; Pyka, B.; Szabelska, E.; Ligocki, M.; Majewska, D.; Romaniszyn, K.; Sulik, M. The effect of diet amaranth (Amaranthus cruentus) seeds on Japanese quail performance, somatic development hatching results and selected blood biochemical parameters. Vet. Med. Zootech. 2015, 70, 67–72. [Google Scholar]
Amaranth Species | Origin | Leafy or Grain | Uses | References |
---|---|---|---|---|
A. cruentus | America | Grain and leafy vegetable | Food, medicine, ornamental | [19] |
A. thunbergh | Africa | Leafy vegetable | Medicine, fodder for livestock | [2,20] |
A. spinosus | America | Leafy | Medicine, food | [20] |
A. graecizans | Africa | Leafy | Food | [20] |
A. hypochondriacus | America | Grain and leafy vegetable | Ornamental, medicine | [20,21] |
A. dubius | America | Leafy vegetable | Medicine | [2,20] |
A. tricolor | America | Grain and leafy vegetable | Medicine, ornamental | [2,20] |
A. blitum | Africa | Leafy vegetable | Medicine | [2,20] |
A. hybridus | America | Leafy vegetable | Food, medicine | [6] |
A. lividus | America | Leafy vegetable | Food | [5] |
A. caudatus | America | Grain and leafy vegetable | Medicine, ornamental | [3,19] |
ANFs | Adverse Effect | References |
---|---|---|
Phytic acids | Affects bioavailability of calcium and other micronutrients, such as iron, copper, and zinc | [57,58,59] |
Tannins | Form complexes with proteins that in turn cause inactivation of many digestive enzymes and decrease protein digestibility | [59,60] |
Oxalates | Limit food mineral bioavailability | [58,59] |
Enzyme inhibitors | Reduce protein digestibility and retard growth | [59,61,62,63] |
Saponins | Inhibitory activities of digestive enzymes, such as amylase, glucosidase, trypsin, chymotrypsin, and lipase, which can cause indigestion-related health disorders, result in reduced intestinal absorption of many nutrients | [63,64,65] |
Nitrates | Weaknesses and rapid pulse | [66,67] |
Monogastric Animal | Inclusion Level | Findings | Authors |
---|---|---|---|
Poultry | 5–10% | Reduces the cholesterol content of the eggs, lowers growth performance, cholesterol, triglyceride, and serum lipid peroxidation levels | [15] |
10–20% | Improved performance characteristics and nitrogen utilization | [14] | |
Improved egg weights | |||
8% | No adverse effect on live weight, feed conversion, carcass characteristics, and meat quality | [15] | |
Fish | 80% | No adverse effect on performance | [103] |
75% | Reduced growth rate | [106] | |
5% | Improved growth rate | [12,105] | |
Rabbits | 20–30% | Reduced feed intake | [107] |
32% | Low growth rate | [15] | |
Pigs | 10% | Increased digestibility, the degree of assimilation of nitrogen, and the productivity of weaners | [108,109] |
Monogastric Animal | Inclusion Level | Findings | Authors |
---|---|---|---|
Poultry | 10% | Reduced the cholesterol content of the eggs, lower growth performance, cholesterol, triglyceride, and serum lipid peroxidation levels | [15,104] |
8% | Reduced body weight, increased FCR | [9,113] | |
8% | No adverse effect observed on body weight and growth performance | [16] | |
5% | Greater egg production and lower feed conversion ratio | [86] | |
Fish | 5% | Improved growth rate | [112] |
Rabbits | 20% | Lower tissue and blood cholesterol oxidation | [114,115] |
32% | Increased protein and fat contents | [17] | |
25% | Negative effects on the growth rate and DM feed conversion ratio | [116] | |
Pigs | 25% | No adverse effect on the chemical composition, physical-chemical, or sensory properties of the meat | [88] |
10% | No adverse effect on health or metabolism | [109] | |
2.5–10% | Increased digestibility | [18,108] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manyelo, T.G.; Sebola, N.A.; van Rensburg, E.J.; Mabelebele, M. The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals. Animals 2020, 10, 1504. https://doi.org/10.3390/ani10091504
Manyelo TG, Sebola NA, van Rensburg EJ, Mabelebele M. The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals. Animals. 2020; 10(9):1504. https://doi.org/10.3390/ani10091504
Chicago/Turabian StyleManyelo, Tlou Grace, Nthabiseng Amenda Sebola, Elsabe Janse van Rensburg, and Monnye Mabelebele. 2020. "The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals" Animals 10, no. 9: 1504. https://doi.org/10.3390/ani10091504
APA StyleManyelo, T. G., Sebola, N. A., van Rensburg, E. J., & Mabelebele, M. (2020). The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals. Animals, 10(9), 1504. https://doi.org/10.3390/ani10091504