Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Formation of NEB in Dairy Cows
3. The Effects of NEB in Dairy Cows
3.1. Increasing the Incidence of Metabolic Diseases
3.2. Decreasing the Milk Productivity Performance of Dairy Cows
3.3. Decreasing the Reproductive Performance
3.4. Inducing Immunosuppression
4. The Anti-Ketogenic Properties of PG and the Mechanism of Inhibiting NEB
5. Effects of PG on Alleviating NEB in Dairy Cows
5.1. The Effects of PG on DMI and Rumen Fermentation
5.2. The Effect of PG on Metabolic Index
5.3. The Effects of PG on Milk Production
5.4. The Effects of PG on Reproductive Performance
5.5. The Effects of PG on Immune Performance
6. The Toxicity and Side Effects of PG
7. The Feeding Level and Method of PG
8. The Research of Combination Therapy
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Macrae, A.I.; Burrough, E.; Forrest, J.; Corbishley, A.; Russell, G.; Shaw, D.J. Prevalence of excessive negative energy balance in commercial united kingdom dairy herds. Vet. J. 2019, 248, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M.; DeVries, T.J. Effect of diet-induced negative energy balance on the feeding behavior of dairy cows. J. Dairy Sci. 2020, 103, 7288–7301. [Google Scholar] [CrossRef]
- Lean, I.J. Non-infectious disease: Ketosis. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Rousing, T.; Holm, J.R.; Krogh, M.A.; Ostergaard, S.; Gplus, E.C. Expert-based development of a generic haccp-based risk management system to prevent critical negative energy balance in dairy herds. Prev. Vet. Med. 2020, 175, 104849. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.L.; LeBlanc, S.J.; Duffield, T.F. Ketosis treatment in lactating dairy cattle. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Chibisa, G.E.; Gozho, G.N.; Van Kessel, A.G.; Olkowski, A.A.; Mutsvangwa, T. Effects of peripartum propylene glycol supplementation on nitrogen metabolism, body composition, and gene expression for the major protein degradation pathways in skeletal muscle in dairy cows. J. Dairy Sci. 2008, 91, 3512–3527. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.I.; Ingvartsen, K.L. Propylene glycol for dairy cows—A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Anim. Feed Sci. Technol. 2004, 115, 191–213. [Google Scholar] [CrossRef]
- Johnson, R.B. The treatment of ketosis with glycerol and propylene glycol. Cornell Vet. 1954, 44, 6–21. [Google Scholar]
- Lomander, H.; Frossling, J.; Ingvartsen, K.L.; Gustafsson, H.; Svensson, C. Supplemental feeding with glycerol or propylene glycol of dairy cows in early lactation-effects on metabolic status, body condition, and milk yield. J. Dairy Sci. 2012, 95, 2397–2408. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, G.; Trevisi, E.; Lombardelli, R. Some new aspects of nutrition, health conditions and fertility of intensively reared dairy cows. Ital. J. Anim. Sci. 2009, 8, 491–518. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.F.; Cao, Y.C.; Cai, C.J.; Yu, C.; Li, S.X.; Yao, J.H. Temporal dynamics of nutrient balance, plasma biochemical and immune traits, and liver function in transition dairy cows. J. Integr. Agric. 2020, 19, 820–837. [Google Scholar] [CrossRef]
- Pickett, M.M.; Piepenbrink, M.S.; Overton, T.R. Effects of propylene glycol or fat drench on plasma metabolites, liver composition, and production of dairy cows during the periparturient period1. J. Dairy Sci. 2003, 86, 2113–2121. [Google Scholar] [CrossRef]
- Rukkwamsuk, T.; Rungruang, S.; Choothesa, A.; Wensing, T. Effect of propylene glycol on fatty liver development and hepatic fructose 1,6 bisphosphatase activity in periparturient dairy cows. Livest. Prod. Sci. 2005, 95, 95–102. [Google Scholar] [CrossRef]
- Harder, I.; Stamer, E.; Junge, W.; Thaller, G. Lactation curves and model evaluation for feed intake and energy balance in dairy cows. J. Dairy Sci. 2019, 102, 7204–7216. [Google Scholar] [CrossRef] [PubMed]
- Grummer, R.R.; Rastani, R.R. When should lactating dairy cows reach positive energy balance? Prof. Anim. Sci. 2003, 19, 197–203. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef]
- Tatone, E.H.; Duffield, T.F.; Capel, M.B.; DeVries, T.J.; LeBlanc, S.J.; Gordon, J.L. A randomized controlled trial of dexamethasone as an adjunctive therapy to propylene glycol for treatment of hyperketonemia in postpartum dairy cattle. J. Dairy Sci. 2016, 99, 8991–9000. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Epidemiology of subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 2012, 95, 5056–5066. [Google Scholar] [CrossRef] [Green Version]
- Raboisson, D.; Mounié, M.; Maigné, E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J. Dairy Sci. 2014, 97, 7547–7563. [Google Scholar] [CrossRef]
- Bobe, G.; Young, J.W.; Beitz, D.C. Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 2004, 87, 3105–3124. [Google Scholar] [CrossRef] [Green Version]
- Fiore, E.; Piccione, G.; Perillo, L.; Barberio, A.; Manuali, E.; Morgante, M.; Gianesella, M. Hepatic lipidosis in high-yielding dairy cows during the transition period: Haematochemical and histopathological findings. Anim. Prod. Sci. 2017, 57, 74–80. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Loor, J.J.; Bucktrout, R.; Shu, X.; Jia, H.; Dong, J.; Zuo, R.; Liu, G.; Li, X.; et al. High expression of cell death-inducing dffa-like effector a (cidea) promotes milk fat content in dairy cows with clinical ketosis. J. Dairy Sci. 2019, 102, 1682–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steensels, M.; Maltz, E.; Bahr, C.; Berckmans, D.; Antler, A.; Halachmi, I. Towards practical application of sensors for monitoring animal health; design and validation of a model to detect ketosis. J. Dairy Res. 2017, 84, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Koeck, A.; Miglior, F.; Jamrozik, J.; Kelton, D.F.; Schenkel, F.S. Genetic associations of ketosis and displaced abomasum with milk production traits in early first lactation of canadian holsteins. J. Dairy Sci. 2013, 96, 4688–4696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duričić, D.; Ljubić, B.B.; Vince, S.; Turk, R.; Valpotić, H.; Žaja, I.Ž.; Maćešić, N.; Benić, M.; Getz, I.; Samardžija, M. Effects of dietary clinoptilolite supplementation on β-hydroxybutirate serum level and milk fat to protein ratio during early lactation in holstein-friesian cows. Microporous Mesoporous Mater. 2020, 292, 109766. [Google Scholar] [CrossRef]
- Tamminga, S. The effect of the supply of rumen degradable protein and metabolisable protein on negative energy balance and fertility in dairy cows. Anim. Reprod. Sci. 2006, 96, 227–239. [Google Scholar] [CrossRef]
- Albaaj, A.; Foucras, G.; Raboisson, D. Changes in milk urea around insemination are negatively associated with conception success in dairy cows. J. Dairy Sci. 2017, 100, 3257–3265. [Google Scholar] [CrossRef] [Green Version]
- Jorritsma, R.; Wensing, T.; Kruip, T.A.M.; Vos, P.L.A.M.; Noordhuizen, J.P.T.M. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet. Res. 2003, 34, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, A.J.; Oikonomou, G.; Smith, R.F. The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle. J. Dairy Sci. 2016, 99, 4808–4815. [Google Scholar] [CrossRef] [Green Version]
- Albaaj, A.; Jattiot, M.; Manciaux, L.; Saille, S.; Julien, C.; Foucras, G.; Raboisson, D. Hyperketolactia occurrence before or after artificial insemination is associated with a decreased pregnancy per artificial insemination in dairy cows. J. Dairy Sci. 2019, 102, 8527–8536. [Google Scholar] [CrossRef]
- Najm, N.-A.; Zimmermann, L.; Dietrich, O.; Rieger, A.; Martin, R.; Zerbe, H. Associations between motion activity, ketosis risk and estrus behavior in dairy cattle. Prev. Vet. Med. 2020, 175, 104857. [Google Scholar] [CrossRef] [PubMed]
- Pascottini, O.B.; LeBlanc, S.J. Modulation of immune function in the bovine uterus peripartum. Theriogenology 2020, 150, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J.; Grossen-Rösti, L.; Wall, S.K.; Wellnitz, O.; Bruckmaier, R.M. Metabolic status is associated with the recovery of milk somatic cell count and milk secretion after lipopolysaccharide-induced mastitis in dairy cows. J. Dairy Sci. 2020, 103, 5604–5615. [Google Scholar] [CrossRef]
- Mann, S.; Sipka, A.; Leal Yepes, F.A.; Nydam, D.V.; Overton, T.R.; Wakshlag, J.J. Nutrient-sensing kinase signaling in bovine immune cells is altered during the postpartum nutrient deficit: A possible role in transition cow inflammatory response. J. Dairy Sci. 2018, 101, 9360–9370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sordillo, L.M.; Contreras, G.A.; Aitken, S.L. Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim. Health Res. Rev. 2009, 10, 53–63. [Google Scholar] [CrossRef]
- Abuajamieh, M.; Kvidera, S.K.; Fernandez, M.V.S.; Nayeri, A.; Upah, N.C.; Nolan, E.A.; Lei, S.M.; DeFrain, J.M.; Green, H.B.; Schoenberg, K.M.; et al. Inflammatory biomarkers are associated with ketosis in periparturient holstein cows. Res. Vet. Sci. 2016, 109, 81–85. [Google Scholar] [CrossRef]
- Lacasse, P.; Vanacker, N.; Ollier, S.; Ster, C. Innovative dairy cow management to improve resistance to metabolic and infectious diseases during the transition period. Res. Vet. Sci. 2018, 116, 40–46. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 2008, 91, 3300–3310. [Google Scholar] [CrossRef] [Green Version]
- Burvenich, C.; Bannerman, D.D.; Lippolis, J.D.; Peelman, L.; Nonnecke, B.J.; Kehrli, M.E.; Paape, M.J. Cumulative physiological events influence the inflammatory response of the bovine udder to escherichia coli infections during the transition period1. J. Dairy Sci. 2007, 90, E39–E54. [Google Scholar] [CrossRef] [Green Version]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Fernandez, M.V.S.; Baumgard, L.H. Glucose requirements of an activated immune system in lactating holstein cows. J. Dairy Sci. 2017, 100, 2360–2374. [Google Scholar] [CrossRef] [Green Version]
- Ingvartsen, K.L.; Moyes, K.M. Factors contributing to immunosuppression in the dairy cow during the periparturient period. Jpn. J. Vet. Res. 2015, 63, S15–S24. [Google Scholar] [PubMed]
- Shen, T.; Li, X.; Loor, J.J.; Zhu, Y.; Du, X.; Wang, X.; Xing, D.; Shi, Z.; Fang, Z.; Li, X.; et al. Hepatic nuclear factor kappa b signaling pathway and nlr family pyrin domain containing 3 inflammasome is over-activated in ketotic dairy cows. J. Dairy Sci. 2019, 102, 10554–10563. [Google Scholar] [CrossRef] [PubMed]
- Van Straten, M.; Friger, M.; Shpigel, N.Y. Events of elevated somatic cell counts in high-producing dairy cows are associated with daily body weight loss in early lactation. J. Dairy Sci. 2009, 92, 4386–4394. [Google Scholar] [CrossRef] [Green Version]
- Giuliodori, M.J.; Magnasco, R.P.; Becu-Villalobos, D.; Lacau-Mengido, I.M.; Risco, C.A.; de la Sota, R.L. Metritis in dairy cows: Risk factors and reproductive performance. J. Dairy Sci. 2013, 96, 3621–3631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, E.; Perillo, L.; Piccione, G.; Gianesella, M.; Bedin, S.; Armato, L.; Giudice, E.; Morgante, M. Effect of combined acetylmethionine, cyanocobalamin and alpha-lipoic acid on hepatic metabolism in high-yielding dairy cow. J. Dairy Res. 2016, 83, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.J.; Erfle, J.D.; Lodge, G.A.; Sauer, F.D. Effects of propylene glycol or glycerol supplementation of the diet of dairy cows on feed intake, milk yield and composition, and incidence of ketosis. Can. J. Anim. Sci. 1973, 53, 289–296. [Google Scholar] [CrossRef]
- Butler, S.T.; Pelton, S.H.; Butler, W.R. Energy balance, metabolic status, and the first postpartum ovarian follicle wave in cows administered propylene glycol. J. Dairy Sci. 2006, 89, 2938–2951. [Google Scholar] [CrossRef] [Green Version]
- Piantoni, P.; Allen, M.S. Evaluation of propylene glycol and glycerol infusions as treatments for ketosis in dairy cows. J. Dairy Sci. 2015, 98, 5429–5439. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, S.; Pate, J.L.; Palmquist, D.L. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. Anim. Reprod. Sci. 2001, 68, 29–43. [Google Scholar] [CrossRef]
- Studer, V.A.; Grummer, R.R.; Bertics, S.J.; Reynolds, C.K. Effect of prepartum propylene glycol administration on periparturient fatty liver in dairy cows. J. Dairy Sci. 1993, 76, 2931–2939. [Google Scholar] [CrossRef]
- Ferraro, S.M.; Mendoza, G.D.; Miranda, L.A.; Gutiérrez, C.G. In Vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed Sci. Technol. 2009, 154, 112–118. [Google Scholar] [CrossRef]
- Rizos, D.; Kenny, D.A.; Griffin, W.; Quinn, K.M.; Duffy, P.; Mulligan, F.J.; Roche, J.F.; Boland, M.P.; Lonergan, P. The effect of feeding propylene glycol to dairy cows during the early postpartum period on follicular dynamics and on metabolic parameters related to fertility. Theriogenology 2008, 69, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, N.B.; Raun, B.M. Ruminal and intermediary metabolism of propylene glycol in lactating holstein cows. J. Dairy Sci. 2007, 90, 4707–4717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjerre-Harpøth, V.; Storm, A.C.; Eslamizad, M.; Kuhla, B.; Larsen, M. Effect of propylene glycol on adipose tissue mobilization in postpartum over-conditioned holstein cows. J. Dairy Sci. 2015, 98, 8581–8596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamarra, G.; Ponsart, C.; Lacaze, S.; Le Guienne, B.; Deloche, M.C.; Monniaux, D.; Ponter, A.A. Short term dietary propylene glycol supplementation affects circulating metabolic hormones, progesterone concentrations and follicular growth in dairy heifers. Livest. Sci. 2014, 162, 240–251. [Google Scholar] [CrossRef]
- De Koster, J.D.; Opsomer, G. Insulin resistance in dairy cows. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 299–322. [Google Scholar] [CrossRef]
- Rico, J.E.; Bandaru, V.V.; Dorskind, J.M.; Haughey, N.J.; McFadden, J.W. Plasma ceramides are elevated in overweight holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation. J. Dairy Sci. 2015, 98, 7757–7770. [Google Scholar] [CrossRef] [Green Version]
- Chalmeh, A.; Pourjafar, M.; Badiei, K.; Jalali, M.; Sebdani, M.M. The comparative effects of dietary monensin and propylene glycol on insulin resistance of transition dairy cows. Trop. Anim. Health Prod. 2020, 52, 1573–1582. [Google Scholar] [CrossRef]
- Moallem, U.; Katz, M.; Arieli, A.; Lehrer, H. Effects of peripartum propylene glycol or fats differing in fatty acid profiles on feed intake, production, and plasma metabolites in dairy cows. J. Dairy Sci. 2007, 90, 3846–3856. [Google Scholar] [CrossRef]
- Jeong, J.-K.; Choi, I.-S.; Moon, S.-H.; Lee, S.-C.; Kang, H.-G.; Jung, Y.-H.; Park, S.-B.; Kim, I.-H. Effect of two treatment protocols for ketosis on the resolution, postpartum health, milk yield, and reproductive outcomes of dairy cows. Theriogenology 2018, 106, 53–59. [Google Scholar] [CrossRef]
- Chung, Y.H.; Martinez, C.M.; Brown, N.E.; Cassidy, T.W.; Varga, G.A. Ruminal and blood responses to propylene glycol during frequent feeding. J. Dairy Sci. 2009, 92, 4555–4564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urrutia, N.; Bomberger, R.; Matamoros, C.; Harvatine, K.J. Effect of dietary supplementation of sodium acetate and calcium butyrate on milk fat synthesis in lactating dairy cows. J. Dairy Sci. 2019, 102, 5172–5181. [Google Scholar] [CrossRef] [PubMed]
- Juchem, S.O.; Santos, F.A.P.; Imaizumi, H.; Pires, A.V.; Barnabé, E.C. Production and blood parameters of holstein cows treated prepartum with sodium monensin or propylene glycol1. J. Dairy Sci. 2004, 87, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Adamski, M.; Kupczynski, R.; Chladek, G.; Falta, D. Influence of propylene glycol and glycerin in simmental cows in periparturient period on milk yield and metabolic changes. Arch. Tierz. 2011, 54, 238–248. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. A field trial on the effect of propylene glycol on displaced abomasum, removal from herd, and reproduction in fresh cows diagnosed with subclinical ketosis. J. Dairy Sci. 2012, 95, 2505–2512. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, F.D.; Muino, R.; Pereira, V.; Campos, R.; Benedito, J.L. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet. Sci. 2011, 12, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.A.; Abdel-Raheem, S.M.; Abd-Allah, M.; Senosy, W. Effects of propylene glycol on the metabolic status and milk production of dairy buffaloes. Tierärztliche Prax. Großtiere 2015, 43, 25–34. [Google Scholar]
- Stokes, S.R.; Goff, J.P. Evaluation of calcium propionate and propylene glycol administered into the esophagus of dairy cattle at calving11supported in part by a gift from kemin industries, inc., des moines, ia 50301-0070. Prof. Anim. Sci. 2001, 17, 115–122. [Google Scholar] [CrossRef]
- McArt, J.A.A.; Nydam, D.V.; Ospina, P.A.; Oetzel, G.R. A field trial on the effect of propylene glycol on milk yield and resolution of ketosis in fresh cows diagnosed with subclinical ketosis. J. Dairy Sci. 2011, 94, 6011–6020. [Google Scholar] [CrossRef] [Green Version]
- Østergaard, S.; Krogh, M.A.; Oliveira, V.H.S.; Larsen, T.; Otten, N.D. Only few benefits from propylene glycol drench in early lactation for cows identified as physiologically imbalanced based on milk spectra analyses. J. Dairy Sci. 2020, 103, 1831–1842. [Google Scholar] [CrossRef]
- Madoz, L.V.; Rabaglino, M.B.; Migliorisi, A.L.; Jaureguiberry, M.; Perez Wallace, S.; Lorenti, N.; Domínguez, G.; Giuliodori, M.J.; de la Sota, R.L. Association between progesterone concentration and endometrial gene expression in dairy cows. Domest. Anim. Endocrinol. 2020, 74, 106481. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Gutiérrez, E.; Pelton, S.H.; Gilbert, R.O.; Butler, W.R. Effect of peripartum dietary energy supplementation of dairy cows on metabolites, liver function and reproductive variables. Anim. Reprod. Sci. 2009, 112, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Trevisi, E.; Ji, P.; Drackley, J.K.; Luchini, D.; Bertoni, G.; Loor, J.J. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with smartamine m or metasmart. J. Dairy Sci. 2014, 97, 7437–7450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formigoni, A.; Cornil, M.C.; Prandi, A.; Mordenti, A.; Rossi, A.; Portetelle, D.; Renaville, R. Effect of propylene glycol supplementation around parturition on milk yield, reproduction performance and some hormonal and metabolic characteristics in dairy cows. J. Dairy Res. 1996, 63, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Trabue, S.; Scoggin, K.; Tjandrakusuma, S.; Rasmussen, M.A.; Reilly, P.J. Ruminal fermentation of propylene glycol and glycerol. J. Agric. Food Chem. 2007, 55, 7043–7051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertram, H.C.; Petersen, B.O.; Duus, J.O.; Larsen, M.; Raun, B.M.L.; Kristensen, N.B. Proton nuclear magnetic resonance spectroscopy based investigation on propylene glycol toxicosis in a holstein cow. Acta Vet. Scand. 2009, 51, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Macrae, A.I.; Burrough, E.; Forrest, J.; Corbishley, A.; Russell, G.; Shaw, D.J. Risk factors associated with excessive negative energy balance in commercial united kingdom dairy herds. Vet. J. 2019, 250, 15–23. [Google Scholar] [CrossRef]
- Chung, Y.H.; Brown, N.E.; Martinez, C.M.; Cassidy, T.W.; Varga, G.A. Effects of rumen-protected choline and dry propylene glycol on feed intake and blood parameters for holstein dairy cows in early lactation. J. Dairy Sci. 2009, 92, 2729–2736. [Google Scholar] [CrossRef]
- Gordon, J.L.; LeBlanc, S.J.; Kelton, D.F.; Herdt, T.H.; Neuder, L.; Duffield, T.F. Randomized clinical field trial on the effects of butaphosphan-cyanocobalamin and propylene glycol on ketosis resolution and milk production. J. Dairy Sci. 2017, 100, 3912–3921. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.; Nydam, D.V.; Oetzel, G.R.; Guard, C.L. An economic analysis of hyperketonemia testing and propylene glycol treatment strategies in early lactation dairy cattle. Prev. Vet. Med. 2014, 117, 170–179. [Google Scholar] [CrossRef]
- El-Kasrawy, N.I.; Swelum, A.A.; Abdel-Latif, M.A.; Alsenosy, A.E.A.; Beder, N.A.; Alkahtani, S.; Abdel-Daim, M.M.; Abd El-Aziz, A.H. Efficacy of different drenching regimens of gluconeogenic precursors during transition period on body condition score, production, reproductive performance, subclinical ketosis and economics of dairy cows. Animals 2020, 10, 937. [Google Scholar] [CrossRef] [PubMed]
- Van der Drift, S.G.A.; Houweling, M.; Bouman, M.; Koets, A.P.; Tielens, A.G.M.; Nielen, M.; Jorritsma, R. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis. Vet. J. 2015, 204, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Yepes, F.A.L.; Behling-Kelly, E.; McArt, J.A.A. The effect of different treatments for early-lactation hyperketonemia on blood β-hydroxybutyrate, plasma nonesterified fatty acids, glucose, insulin, and glucagon in dairy cattle. J. Dairy Sci. 2017, 100, 6470–6482. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Nan, X.; Wang, H.; Zhao, Y.; Guo, Y.; Xiong, B. Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows. Animals 2020, 10, 1526. https://doi.org/10.3390/ani10091526
Zhang F, Nan X, Wang H, Zhao Y, Guo Y, Xiong B. Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows. Animals. 2020; 10(9):1526. https://doi.org/10.3390/ani10091526
Chicago/Turabian StyleZhang, Fan, Xuemei Nan, Hui Wang, Yiguang Zhao, Yuming Guo, and Benhai Xiong. 2020. "Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows" Animals 10, no. 9: 1526. https://doi.org/10.3390/ani10091526
APA StyleZhang, F., Nan, X., Wang, H., Zhao, Y., Guo, Y., & Xiong, B. (2020). Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows. Animals, 10(9), 1526. https://doi.org/10.3390/ani10091526