Intrinsic and Extrinsic Quality Attributes of Fresh and Semi-Hard Goat Cheese from Low- and High-Input Farming Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Feeding and Housing Practices
2.2. Fatty Acids Analysis
2.3. Welfare Assessment
2.4. Statistical Analysis
2.5. Ethical Approval
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haenlein, G.F.W. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Sepe, L.; Argüello, A. Special Issue—Recent advances in dairy goat products. Asian Australas. J. Anim. Sci. 2019, 32, 1306–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albenzio, M.; Santillo, A.; Avondo, M.; Nudda, A.; Chessa, S.; Pirisi, A.; Banni, S. Nutritional properties of small ruminant food products and their role on human health. Small Rumin. Res. 2016, 135, 3–12. [Google Scholar] [CrossRef]
- Massaglia, S.; Borra, D.; Merlino, V.M. Goat dairy product assortment in different sales channels in northwestern Italy. Animals 2019, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Vicentini, A.; Liberatore, L.; Mastrocola, D. Functional Foods: Trends and Development. Ital. J. Food Sci. 2016, 28, 338–352. [Google Scholar]
- Annunziata, A.; Vecchio, R. Functional foods development in the European market: A consumer perspective. J. Funct. Foods 2011, 3, 223–228. [Google Scholar] [CrossRef]
- FAOSTAT (Food and Agriculture Organization of the United Nations). FAOSTAT Data on Livestock Processed; FAOSTAT: Rome, Italy, 2017. [Google Scholar]
- ISTAT. Indagine Annuale sul Latte e sui Prodotti Lattiero-Caseari. Consistenze degli Allevamenti. 2019. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_CONSISTENZE (accessed on 17 August 2020).
- AIA. Bollettino dei Controlli della Produttività del Latte. 2018. Available online: http://bollettino.aia.it (accessed on 17 August 2020).
- ISTAT. Indagine Annuale sul Latte e sui Prodotti Lattiero-Caseari. Latte e Prodotti Lattiero caseari: Prodotti per Tipo di Unità Produttiva. 2018. Available online: http://dati.istat.it/index.aspx?queryid=25267 (accessed on 17 August 2020).
- Manfredi, M.T.; di Cerbo, A.R.; Zanzani, S.; Stradiotto, K. Breeding management in goat farms of Lombardy, northern Italy: Risk factors connected to gastrointestinal parasites. Small Rumin. Res. 2010, 88, 113–118. [Google Scholar] [CrossRef]
- Sandrucci, A.; Bava, L.; Tamburini, A.; Gislon, G.; Zucali, M. Management practices and milk quality in dairy goat farms in Northern Italy. Ital. J. Anim. Sci. 2018, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Butler, G.; Nielsen, J.H.; Slots, T.; Seal, C.J.; Eyre, M.D.; Sanderson, R.; Leifert, C. Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: Seasonal variation. J. Sci. Food Agric. 2008, 88, 1431–1441. [Google Scholar] [CrossRef]
- Cabiddu, A.; Delgadillo-Puga, C.; Decandia, M.; Molle, G. Extensive ruminant production systems and milk quality with emphasis on unsaturated fatty acids, volatile compounds, antioxidant protection degree and phenol content. Animals 2019, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Tsiplakou, E.; Kotrotsios, V.; Hadjigeorgiou, I.; Zervas, G. Differences in sheep and goats milk fatty acid profile between conventional and organic farming systems. J. Dairy Res. 2010, 77, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Tudisco, R.; Grossi, M.; Addi, L.; Musco, N.; Cutrignelli, M.I.; Calabrò, S.; Infascelli, F. Fatty Acid Profile and CLA Content of Goat Milk: Influence of Feeding System. J. Food Res. 2014, 3, 93. [Google Scholar] [CrossRef] [Green Version]
- Goetsch, A.L.; Zeng, S.S.; Gipson, T.A. Factors affecting goat milk production and quality. Small Rumin. Res. 2011, 101, 55–63. [Google Scholar] [CrossRef]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. Int. Dairy J. 2008, 18, 976–982. [Google Scholar] [CrossRef]
- Chung, I.-M.; Kim, J.-K.; Lee, K.-J.; Son, N.-Y.; An, M.-J.; Lee, J.-H.; An, Y.-J.; Kim, S.-H. Discrimination of organic milk by stable isotope ratio, vitamin E, and fatty acid profiling combined with multivariate analysis: A case study of monthly and seasonal variation in Korea for 2016–2017. Food Chem. 2018, 261, 112–123. [Google Scholar] [CrossRef]
- Schwendel, B.; Wester, T.J.; Morel, P.; Tavendale, M.; Deadman, C.; Shadbolt, N.; Otter, D.E. Invited review: Organic and conventionally produced milk-An evaluation of factors influencing milk composition. J. Dairy Sci. 2015, 98, 721–746. [Google Scholar] [CrossRef] [Green Version]
- Malissiova, E.; Tzora, A.; Katsioulis, A.; Hatzinikou, M.; Tsakalof, A.; Arvanitoyannis, I.S.; Govaris, A.; Hadjichristodoulou, C. Relationship between production conditions and milk gross composition in ewe’s and goat’s organic and conventional farms in central Greece. Dairy Sci. Technol. 2015, 95, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; Vasconi, M.; Moretti, V.M.; Bellagamba, F. Fatty Acid Profile in Goat Milk fro High- and Low-Input Conventional and Organic Systems. Animals 2019, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Lucey, J.A. Acid Coagulation of Milk. In Advanced Dairy Chemistry. Volume 1B: Proteins: Applied Aspects; Edi, F., McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer Science+Business Media: New York, NY, USA, 2016; pp. 309–328. [Google Scholar]
- Del Prato, O.S. Latte e Formaggi Caprini-Tecniche Delle Produzioni Casearie; Edagricole: Bologna, Italy, 2013. [Google Scholar]
- Corredig, M.; Salvatore, E. Enzymatic Coagulation of Milk. In Advanced Dairy Chemistry. Volume 1B: Proteins: Applied Aspects; Edi, F., McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer Science+Business Media: New York, NY, USA, 2016; pp. 287–307. [Google Scholar]
- De Asís Ruiz Morales, F.; Genís, J.M.C.; Guerrero, Y.M. Special Issue – Current status, challenges and the way forward for dairy goat production in Europe. Asian-Australas. J. Anim. Sci. 2019, 32, 1256–1265. [Google Scholar] [CrossRef] [Green Version]
- Spigarelli, C.; Zuliani, A.; Battini, M.; Mattiello, S.; Bovolenta, S. Welfare Assessment on Pasture: A Review on Animal-Based Measures for Ruminants. Animals 2020, 10, 609. [Google Scholar] [CrossRef] [Green Version]
- Grosso, L.; Battini, M.; Wemelsfelder, F.; Barbieri, S.; Minero, M.; Dalla Costa, E.; Mattiello, S. On-famr Qualitative Behaviour Assessment of dairy goats in different housing conditions. Appl. Anim. Behav. Sci. 2016, 180, 51–57. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and European Council. REGULATION (EU) 2018/848 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, 2018, 150. [Google Scholar]
- Pulina, G.; Avondo, M.; Molle, G.; Francesconi, A.H.D.; Atzori, A.S.; Cannas, A. Models for estimating feed intake in small ruminants—Invited Review. Rev. Bras. Zootec. 2013, 42, 675–690. [Google Scholar] [CrossRef] [Green Version]
- EC. Commission Regulation (EC) No 152/2009 of 27th January 2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, 54, 1–130. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Christie, W.W. Preparation of derivatives of fatty acids. In Lipid Analysis: Isolation, Separation and Structural Analysis of Lipids; The Oily Press: Bridgwater, UK, 2003; pp. 205–225. [Google Scholar]
- Ulberth, F.; Gabernig, R.G.; Schrammel, F. Flame-Ionization Detector Response to Methyl, Ethyl, Propyl, and Butyl Esters of Fatty Acids. JAOCS J. Am. Oil Chem. Soc. 1999, 76, 263–266. [Google Scholar] [CrossRef]
- Battini, M.; Stilwell, G.; Vieira, A.; Barbieri, S.; Canali, E.; Mattiello, S. On-farm welfare assessment protocol for adult dairy goats in intensive production systems. Animals 2015, 5, 934–950. [Google Scholar] [CrossRef]
- AWIN (Animal Welfare Indicators). AWIN Welfare Assessment Protocol for Goats; Università degli Studi di Milano: Milan, Italy, 2015; p. 70. [Google Scholar]
- Battini, M.; Barbieri, S.; Vieira, A.; Can, E.; Stilwell, G.; Mattiello, S. The use of qualitative behaviour assessment for the on-farm welfare assessment of dairy goats. Animals 2018, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Battini, M.; Barbieri, S.; Fioni, L.; Mattiello, S. Feasibility and validity of animal-based indicators for on-farm welfare assessment of thermal stress in dairy goats. Int. J. Biometeorol. 2015, 60, 289–296. [Google Scholar] [CrossRef]
- Bernard, L.; Rouel, J.; Leroux, C.; Ferlay, A.; Faulconnier, Y.; Legrand, P.; Chilliard, Y. Mammary lipid metabolism and milk fatty acid secretion in alpine goats fed vegetable lipids. J. Dairy Sci. 2005, 88, 1478–1489. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Kratz, M.; Baars, T.; Guyenet, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur. J. Nutr. 2013, 52, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef]
- Piccinin, E.; Cariello, M.; De Santis, S.; Ducheix, S.; Sabbà, C.; Ntambi, J.M.; Moschetta, A. Role of oleic acid in the gut-liver axis: From diet to the regulation of its synthesis via Stearoyl-CoA desaturase 1 (SCD1). Nutrients 2019, 11, 2283. [Google Scholar] [CrossRef] [Green Version]
- Serment, A.; Schmidely, P.; Giger-Reverdin, S.; Chaputot, P.; Sauvant, D. Effects of the percentage of concentrate on rumen fermentation, nutrient digestibility, plasma metabolites, and milk composition in mid-lactaction goats. J. Dairy Sci. 2011, 94, 3960–3972. [Google Scholar] [CrossRef] [Green Version]
- Glasser, F.; Ferlay, A.; Chilliard, Y. Oilseed lipid supplements and fatty acid composition of cow milk: A meta-analysis. J. Dairy Sci. 2008, 91, 4687–4703. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Aro, A.; Willett, W.C. Health effects of trans-fatty acids: Experimental and observational evidence. Eur. J. Clin. Nutr. 2009, 63, S5–S21. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P.; Samková, E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci. 2010, 55, 521–537. [Google Scholar] [CrossRef] [Green Version]
- Mierliță, D.; Pop, I.M.; Teușdea, A.; Lup, F.; Dărăban, S.; Georgescu, B.; Boaru, A.; Rahmann, G. Effect of forage preservation method on fatty acid composition and oxidative stability of organic sheep milk. Landbauforschung 2017, 67, 43–51. [Google Scholar]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Cossignani, L.; Giua, L.; Urbani, E.; Simonetti, M.S.; Blasi, F. Fatty acid composition and CLA content in goat milk and cheese samples from Umbrian market. Eur. Food Res. Technol. 2014, 239, 905–911. [Google Scholar] [CrossRef]
- Prandini, A.; Sigolo, S.; Piva, G. A comparative study of fatty acid composition and CLA concentration in commercial cheeses. J. Food Compos. Anal. 2011, 24, 55–61. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Mountzouris, K.C.; Zervas, G. Concentration of conjugated linoleic acid in grazing sheep and goat milk fat. Livest. Sci. 2006, 103, 74–84. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Ol. Corps Gras Lipides 2010, 17, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Jiang, Z.; Lai, C. Significance of Increasing n-3 PUFA Content in Pork on Human Health. Crit. Rev. Food Sci. Nutr. 2015, 56, 858–870. [Google Scholar] [CrossRef]
- Fievez, V.; Colman, E.; Castro-Montoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd-and branched-chain fatty acids as biomarkers of rumen function-An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd-and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Li, S.; Ferguson, J.D.; Cao, Y.; Yao, J.; Sun, F.; Wang, X.; Yang, T. Effect of dietary physically effective fiber on ruminal fermentation and the fatty acid profile of milk in dairy goats. J. Dairy Sci. 2014, 97, 2281–2290. [Google Scholar] [CrossRef] [Green Version]
- Cívico, A.; Sánchez, N.N.; Gómez-Cortés, P.; De La Fuente, M.A.; Blanco, F.P.; Juárez, M.; Schiavone, A.; Marín, A.L.M. Odd-and branched-chain fatty acids in goat milk as indicators of the diet composition. Ital. J. Anim. Sci. 2016, 16, 68–74. [Google Scholar] [CrossRef]
- Khaw, K.T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012, 9, e1001255. [Google Scholar] [CrossRef] [Green Version]
- Ran-Ressler, R.R.; Bae, S.; Lawrence, P.; Wang, D.H.; Brenna, J.T. Branched-chain fatty acid content of foods and estimated intake in the USA. Br. J. Nutr. 2014, 112, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, S.; Chen, X.; Chen, H.; Huang, M.; Zheng, J. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Res. 2000, 60, 505–509. [Google Scholar]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.L.; Sánchez, M.-J.; Guevara, M.; Beulens, J.W.J.; et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Hanus, O.; Samkova, E.; Křížova, L.; Hasoňova, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Bello-Pérez, E.; Aguilar, C.; Toro-Mujica, P.P.; Vera, R.; Ugalde, C.; Rodriguez, S.; Briones, I. A comparative study of the fatty acid profiles in commercial sheep cheeses. Grasas Aceites 2014, 65, e048. [Google Scholar] [CrossRef] [Green Version]
- Sant’Ana, A.M.; Bessa, R.J.; Alves, S.P.; De Medeiros, A.N.; Costa, R.G.; De Sousa, Y.R.; Bezerril, F.F.; Batista, A.S.M.; Madruga, M.S.; Queiroga, R.C. Fatty acid, volatile and sensory profiles of milk and cheese from goats raised on native semiarid pasture or in confinement. Int. Dairy J. 2019, 91, 147–154. [Google Scholar] [CrossRef]
- Rafiee-Yarandi, H.; Ghorbani, G.R.; Alikhani, M.; Sadeghi-Sefidmazgi, A.; Drackley, J.K. A comparison of the effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation Holstein cows. J. Dairy Sci. 2016, 99, 5422–5435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamukova, D.; Naydenova, N.; Mihaylova, G. Fatty Acid Profile and Healthy Lipid Indices of Bulgarian Goat Milk From Breeds, Pasture-Raised in a Mountain Region. Trakia J. Sci. 2018, 16, 313–319. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Lozada, L.; Fraga, M.J.; Juárez, M. Fatty Acid Composition of Caprine Milk: Major, Branched-Chain, and Trans Fatty Acids. J. Dairy Sci. 1999, 82, 878–884. [Google Scholar] [CrossRef]
- Sampelayo, M.R.S.; Pérez, L.; Alonso, J.J.M.; Extremera, F.G.; Boza, J. Effects of concentrates with different contents of protected fat rich in PUFAs on the performance of lactating Granadina goats. 1. Feed intake, nutrient digestibility, N and energy utilisation for milk production. Small Rumin. Res. 2002, 43, 133–139. [Google Scholar] [CrossRef]
- LeDoux, M.; Rouzeau, A.; Bas, P.; Sauvant, D. Occurrence of trans-C18:1 fatty acid isomers in goat milk: Effect of two dietary regimens. J. Dairy Sci. 2002, 85, 190–197. [Google Scholar] [CrossRef]
- EC. Commission regulation (EC) no 889/2008 of 5 September 2008 laying down detailed rules for the implementation of council regulation (EC) no 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Off. J. Eur. Union 2008, L 250, 1–84. [Google Scholar]
Fresh Cheese | Semi-Hard Cheese | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Farm | O | M | C | O | M | C | ||||
F/C 1 | 70/30 | 60/40 | 50/50 | 70/30 | 60/40 | 50/50 | ||||
n | 8 | 7 | 8 | 6 | 7 | 7 | ||||
Saturated fatty acids (SFA) | sign | sign | ||||||||
4:0 | 1.98 ± 0.22 | 1.87 ± 0.25 | 1.99 ± 0.17 | 2.01 ± 0.25 ab | 2.42 ± 0.41 a | 1.93 ± 0.10 b | * | |||
6:0 | 1.98 ± 0.21 | 1.88 ± 0.15 | 2.05 ± 0.18 | 1.98 ± 0.20 | 2.15 ± 0.37 | 1.96 ± 0.08 | ||||
8:0 | 2.63 ± 0.28 | 2.12 ± 0.93 | 2.76 ± 0.24 | 2.58 ± 0.23 | 2.01 ± 1.29 | 2.62 ± 0.08 | ||||
10:0 | 9.52 ± 0.85 | 9.05 ± 1.05 | 10.04 ± 0.65 | 9.41 ± 0.47 ab | 8.37 ± 2.52 b | 9.82 ± 0.38 a | * | |||
12:0 | 5.43 ± 1.71 | 5.65 ± 2.19 | 5.19 ± 0.70 | 5.08 ± 0.89 | 4.08 ± 0.70 | 5.31 ± 0.78 | ||||
14:0 | 11.18 ± 2.12 | 11.20 ± 2.27 | 11.20 ± 0.59 | 10.91 ± 1.53 ab | 9.85 ± 0.70 b | 11.63 ± 0.73 a | * | |||
16:0 | 25.96 ± 2.34 ab | 23.80 ± 1.49 a | 26.95 ± 1.58 b | * | 26.25 ± 1.91 a | 23.68 ± 1.99 b | 27.30 ± 0.93 a | ** | ||
18:0 | 9.16 ± 3.03 | 9.97 ± 3.49 | 8.96 ± 1.44 | 9.37 ± 2.33 ab | 11.92 ± 0.71 a | 8.89 ± 1.62 b | * | |||
20:0 2 | 0.84 ± 0.18 | 1.01 ± 0.15 | 0.86 ± 0.10 | 0.93 ± 0.09 | 0.95 ± 0.37 | 0.88 ± 0.07 | ||||
22:0 | 0.10 ± 0.03 ab | 0.12 ± 0.04 a | 0.07 ± 0.02 b | ** | 0.11 ± 0.02 | 0.08 ± 0.05 | 0.07 ± 0.01 | |||
ΣSFA | 70.88 ± 3.04 | 68.74 ± 3.24 | 71.77 ± 1.02 | 70.75 ± 1.66 a | 67.58 ± 2.63 b | 72.16 ± 1.01 a | ** | |||
Monounsaturated fatty acids (MUFA) | ||||||||||
14:1 | 0.26 ± 0.22 | 0.27 ± 0.18 | 0.19 ± 0.07 | 0.22 ± 0.13 | 0.20 ± 0.29 | 0.18 ± 0.07 | ||||
16:1 | 0.77 ± 0.33 | 0.71 ± 0.21 | 0.60 ± 0.11 | 0.71 ± 0.17 | 0.64 ± 0.27 | 0.59 ± 0.14 | ||||
t9, 18:1 | 0.31 ± 0.07 a | 0.39 ± 0.04 b | 0.50 ± 0.06 c | ** | 0.31 ± 0.04 a | 0.41 ± 0.12 ab | 0.50 ± 0.04 b | ** | ||
t11, 18:1 | 1.06 ± 0.39 | 1.31 ± 0.09 | 1.32 ± 0.21 | 1.17 ± 0.32 | 1.60 ± 0.73 | 1.41 ± 0.45 | ||||
c9, 18:1 | 19.70 ± 2.62 | 21.11 ± 3.22 | 18.09 ± 0.71 | 19.74 ± 1.25 a | 21.93 ± 1.79 b | 17.78 ± 0.68 c | ** | |||
c11, 18:1 | 0.41 ± 0.05 | 0.38 ± 0.06 | 0.40 ± 0.02 | 0.41 ± 0.05 ab | 0.47 ± 0.06 a | 0.40 ± 0.02 b | * | |||
20:1n9 | 0.05 ± 0.00 a | 0.04 ± 0.01 a | 0.07 ± 0.01 b | ** | 0.05 ± 0.01 a | 0.04 ± 0.02 a | 0.07 ± 0.01 b | ** | ||
ΣMUFA | 22.85 ± 2.60 ab | 24.51 ± 2.88 a | 21.33 ± 0.77 b | * | 22.89 ± 1.39 a | 25.59 ± 2.49 b | 21.09 ± 0.83 a | ** | ||
Polyunsaturated fatty acids (PUFA) | ||||||||||
t9t12, 18:2n6 | 0.21 ± 0.07 | 0.26 ± 0.02 | 0.25 ± 0.04 | 0.23 ± 0.06 | 0.26 ± 0.08 | 0.24 ± 0.04 | ||||
c9t12, 18:2n6 | 0.12 ± 0.02 a | 0.17 ± 0.06 b | 0.15 ± 0.03 ab | * | 0.11 ± 0.01 | 0.11 ± 0.07 | 0.13 ± 0.02 | |||
c9c12, 18:2n6 | 2.13 ± 0.41 a | 2.47 ± 0.43 a | 3.28 ± 0.29 b | ** | 2.14 ± 0.28 a | 2.71 ± 0.12 b | 3.17 ± 0.12 c | ** | ||
18:3n6 | 0.02 ± 0.02 | 0.03 ± 0.02 | 0.03 ± 0.01 | 0.02 ± 0.02 | 0.03 ± 0.02 | 0.03 ± 0.02 | ||||
18:3n3 | 0.72 ± 0.13 a | 0.76 ± 0.07 a | 0.45 ± 0.13 b | ** | 0.78 ± 0.09 a | 0.82 ± 0.13 a | 0.43 ± 0.10 b | ** | ||
20:2n6 | 0.05 ± 0.02 | 0.04 ± 0.01 | 0.04 ± 0.02 | 0.03 ± 0.02 | 0.02 ± 0.02 | 0.03 ± 0.00 | ||||
20:3n6 | 0.03 ± 0.02 | 0.03 ± 0.00 | 0.03 ± 0.02 | 0.02 ± 0.02 | 0.03 ± 0.03 | 0.03 ± 0.01 | ||||
20:4n6 | 0.16 ± 0.02 a | 0.18 ± 0.02 ab | 0.19 ± 0.03 b | * | 0.15 ± 0.01 a | 0.19 ± 0.03 b | 0.18 ± 0.01 b | ** | ||
20:5n3 | 0.09 ± 0.02 | 0.14 ± 0.11 | 0.07 ± 0.02 | 0.09 ± 0.03 | 0.07 ± 0.04 | 0.06 ± 0.03 | ||||
22:5n3 | 0.17 ± 0.02 ab | 0.16 ± 0.04 a | 0.13 ± 0.04 b | ** | 0.19 ± 0.03 a | 0.20 ± 0.05 a | 0.12 ± 0.04 b | ** | ||
ΣPUFA | 3.69 ± 0.61 a | 4.28 ± 0.35 ab | 4.62 ± 0.37 b | ** | 3.77 ± 0.40 a | 4.44 ± 0.31 b | 4.43 ± 0.25 b | ** | ||
Σn3 | 0.98 ± 0.14 a | 1.10 ± 0.13 a | 0.64 ± 0.12 b | ** | 1.06 ± 0.13 a | 1.10 ± 0.18 a | 0.61 ± 0.15 b | ** | ||
Σn6 | 2.72 ± 0.51 a | 3.18 ± 0.40 a | 3.98 ± 0.33 b | ** | 2.71 ± 0.36 a | 3.34 ± 0.20 b | 3.81 ± 0.15 c | ** | ||
n6/n3 | 2.79 ± 0.47 a | 2.95 ± 0.63 a | 6.38 ± 1.23 b | ** | 2.59 ± 0.42 a | 3.09 ± 0.42 a | 6.53 ± 1.39 b | ** | ||
Odd and branched chain fatty acids (OBCFA) | ||||||||||
11:0 | 0.12 ± 0.05 | 0.13 ± 0.07 | 0.10 ± 0.02 | 0.12 ± 0.03 a | 0.06 ± 0.04 b | 0.10 ± 0.03 ab | * | |||
13:0 | 0.12 ± 0.03 | 0.12 ± 0.04 | 0.10 ± 0.01 | 0.12 ± 0.02 | 0.07 ± 0.04 | 0.10 ± 0.02 | ||||
iso 14:0 | 0.15 ± 0.03 a | 0.13 ± 0.03 a | 0.10 ± 0.01 b | ** | 0.16 ± 0.01 a | 0.14 ± 0.02 a | 0.10 ± 0.01 b | ** | ||
iso 15 | 0.23 ± 0.03 | 0.24 ± 0.05 | 0.23 ± 0.03 | 0.24 ± 0.00 | 0.26 ± 0.04 | 0.24 ± 0.03 | ||||
anteiso 15:0 | 0.65 ± 0.09 a | 0.65 ± 0.05 a | 0.52 ± 0.05 b | ** | 0.65 ± 0.06 a | 0.57 ± 0.08 ab | 0.54 ± 0.04 b | * | ||
15:0 | 1.13 ± 0.10 a | 1.10 ± 0.08 a | 0.90 ± 0.05 b | ** | 1.15 ± 0.07 a | 1.07 ± 0.06 a | 0.94 ± 0.04 b | ** | ||
iso 16:0 | 0.33 ± 0.06 a | 0.27 ± 0.07 ab | 0.25 ± 0.03 b | * | 0.35 ± 0.04 a | 0.32 ± 0.05 a | 0.25 ± 0.03 b | ** | ||
iso 17:0 | 0.35 ± 0.04 | 0.36 ± 0.06 | 0.40 ± 0.03 | 0.36 ± 0.03 | 0.39 ± 0.02 | 0.40 ± 0.03 | ||||
anteiso 17:0 | 0.82 ± 0.21 | 0.79 ± 0.10 | 0.72 ± 0.07 | 0.79 ± 0.13 | 0.68 ± 0.04 | 0.72 ± 0.07 | ||||
17:0 | 0.72 ± 0.13 | 0.73 ± 0.19 | 0.60 ± 0.06 | 0.74 ± 0.09 a | 0.86 ± 0.07 a | 0.60 ± 0.05 b | ** | |||
17:1 | 0.33 ± 0.03 a | 0.33 ± 0.02 a | 0.23 ± 0.02 b | ** | 0.33 ± 0.03 a | 0.34 ± 0.03 a | 0.23 ± 0.01 b | ** | ||
ΣOCFA | 2.10 ± 0.16 a | 2.07 ± 0.16 a | 1.70 ± 0.06 b | ** | 2.54 ± 0.16 a | 2.36 ± 0.23 ab | 2.25 ± 0.10 b | * | ||
ΣBCFA | 2.52 ± 0.22 a | 2.43 ± 0.13 a | 2.21 ± 0.11 b | ** | 2.13 ± 0.05 a | 2.07 ± 0.11 a | 1.75 ± 0.05 b | ** | ||
ΣOBCFA | 4.62 ± 0.26 a | 4.50 ± 0.27 a | 3.91 ± 0.14 b | ** | 4.66 ± 0.16 a | 4.43 ± 0.27 a | 4.00 ± 0.15 b | ** | ||
Health Lipid Indices | ||||||||||
AI 3 | 2.95 ± 0.84 | 2.64 ± 0.73 | 2.97 ± 0.2 | 2.84 ± 0.48 a | 2.25 ± 0.27 b | 3.11 ± 0.30 a | ** | |||
TI 4 | 2.92 ± 0.44 ab | 2.59 ± 0.22 a | 3.20 ± 0.23 b | ** | 2.84 ± 0.22 a | 2.52 ± 0.20 b | 3.32 ± 0.19 c | ** | ||
h/H 5 | 0.65 ± 0.15 | 0.74 ± 0.18 | 0.60 ± 0.05 | 0.64 ± 0.10 a | 0.79 ± 0.09 b | 0.57 ± 0.04 a | ** |
Farm | Proper Disbudding | Absence of Abscesses | Absence of Kneeling | Free Access at Feeding | Free Access at Drinking | Good Hair Coat Condition | Absence of Oblivion | Absence of Thermal Stress | Normal Gait |
---|---|---|---|---|---|---|---|---|---|
O | 97.22% | 100.00% | 88.89% | 91.67% | 97.22% | 97.22% | 100.00% | 100.00% | 100.00% |
M | 87.50% | 95.83% | 12.50% | 95.83% | 100.00% | 33.33% | 100.00% | 100.00% | 100.00% |
C | 82.05% | 97.44% | 100.00% | 92.31% | 97.44% | 87.18% | 100.00% | 100.00% | 97.44% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, A.; Vasconi, M.; Battini, M.; Mattiello, S.; Moretti, V.M.; Bellagamba, F. Intrinsic and Extrinsic Quality Attributes of Fresh and Semi-Hard Goat Cheese from Low- and High-Input Farming Systems. Animals 2020, 10, 1567. https://doi.org/10.3390/ani10091567
Lopez A, Vasconi M, Battini M, Mattiello S, Moretti VM, Bellagamba F. Intrinsic and Extrinsic Quality Attributes of Fresh and Semi-Hard Goat Cheese from Low- and High-Input Farming Systems. Animals. 2020; 10(9):1567. https://doi.org/10.3390/ani10091567
Chicago/Turabian StyleLopez, Annalaura, Mauro Vasconi, Monica Battini, Silvana Mattiello, Vittorio Maria Moretti, and Federica Bellagamba. 2020. "Intrinsic and Extrinsic Quality Attributes of Fresh and Semi-Hard Goat Cheese from Low- and High-Input Farming Systems" Animals 10, no. 9: 1567. https://doi.org/10.3390/ani10091567
APA StyleLopez, A., Vasconi, M., Battini, M., Mattiello, S., Moretti, V. M., & Bellagamba, F. (2020). Intrinsic and Extrinsic Quality Attributes of Fresh and Semi-Hard Goat Cheese from Low- and High-Input Farming Systems. Animals, 10(9), 1567. https://doi.org/10.3390/ani10091567