The Implications of Nutritional Strategies that Modify Dietary Energy and Lysine for Growth Performance in Two Different Swine Production Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1: Pietrain
2.1.1. Experimental Design and Animals
2.1.2. Feeding and Analyses
2.1.3. Calculations and Statistical Analysis
2.2. Experiment 2: Duroc Sire Line
2.2.1. Experimental Design and Animals
2.2.2. Feeding and Analyses
2.2.3. Calculations and Statistical Analyses
3. Results
3.1. Experiment 1: Pietrain
Effects on Growth Performance
3.2. Experiment 2: Duroc
3.2.1. Effects on Growth Performance
3.2.2. Effects on Carcass Traits
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonneau, M.; Lebret, B. Production systems and influence on eating quality of pork. Meat Sci. 2010, 84, 293–300. [Google Scholar] [CrossRef]
- Gispert, M.; i Furnols, M.F.; Gil, M.; Velarde, A.; Diestre, A.; Carrión, D.; Sosnicki, A.A.; Plastow, G.S. Relationships between carcass quality parameters and genetic types. Meat Sci. 2007, 77, 397–404. [Google Scholar] [CrossRef]
- Edwards, D.B.; Bates, R.O.; Osburn, W.N. Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 2003, 81, 1895–1899. [Google Scholar] [CrossRef]
- Masferrer, G.; Carreras, R.; Font-i-furnols, M.; Gispert, M.; Marti-puig, P.; Serra, M. On-line Ham Grading using pattern recognition models based on available data in commercial pig slaughterhouses. Meat Sci. 2018, 143, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daza, A.; Latorre, M.A.; Olivares, A.; López Bote, C.J. The effects of male and female immunocastration on growth performances and carcass and meat quality of pigs intended for dry-cured ham production: A preliminary study. Livest. Sci. 2016, 190, 20–26. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef]
- Aymerich, P.; Gasa, J.; Bonet, J.; Coma, J.; Solà-Oriol, D. The effects of sire line, sex, weight and marketing day on carcass fatness of non-castrated pigs. Livest. Sci. 2019, 228, 25–30. [Google Scholar] [CrossRef]
- Augspurger, N.R.; Ellis, M.; Hamilton, D.N.; Wolter, B.F.; Beverly, J.L.; Wilson, E.R. The effect of sire line on the feeding patterns of grow-finish pigs. Appl. Anim. Behav. Sci. 2002, 75, 103–114. [Google Scholar] [CrossRef]
- Carabús, A.; Sainz, R.D.; Oltjen, J.W.; Gispert, M.; Font-i-Furnols, M. Growth of total fat and lean and of primal cuts is affected by the sex type. Animal 2017, 11, 1321–1329. [Google Scholar] [CrossRef]
- Pettigrew, J.E.; Esnaola, M.A. Swine nutrition and pork quality: A review. J. Anim. Sci. 2001, 79, E316–E342. [Google Scholar] [CrossRef]
- Avalos, F. Do oil prices drive food prices? The tale of a structural break. J. Int. Money Financ. 2014, 42, 253–271. [Google Scholar] [CrossRef]
- Schinckel, A.P.; Einstein, M.E.; Jungst, S.; Matthews, J.O.; Booher, C.; Dreadin, T.; Fralick, C.; Wilson, E.; Boyd, R.D. Daily feed intake, energy intake, growth rate and measures of dietary energy efficiency of pigs from four sire lines fed diets with high or low metabolizable and net energy concentrations. Asian Australas. J. Anim. Sci. 2012, 25, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Patience, J.F. Factors involved in the regulation of feed and energy intake of pigs. Anim. Feed Sci. Technol. 2017, 233, 22–33. [Google Scholar] [CrossRef]
- Quiniou, N.; Noblet, J. Effect of the dietary net energy concentration on feed intake and performance of growing-finishing pigs housed individually. J. Anim. Sci. 2012, 90, 4362–4372. [Google Scholar] [CrossRef] [Green Version]
- Smit, M.N.; Landero, J.L.; Young, M.G.; Beltranena, E. Feeding diets with reduced net energy levels to growing-finishing barrows and gilts. Can. J. Anim. Sci. 2017, 97, 30–41. [Google Scholar] [CrossRef]
- Oresanya, T.F.; Beaulieu, A.D.; Beltranena, E.; Patience, J.F. The effect of dietary energy concentration and total lysine/digestible energy ratio on the growth performance of weaned pigs. Can. J. Anim. Sci. 2007, 87, 45–55. [Google Scholar] [CrossRef]
- Hastad, C.W.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; DeRouchey, J.M.; Wu, F. Effects of added fat on growth performance of finishing pigs sorted by initial weight. Transl. Anim. Sci. 2020, 4, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Aymerich, P.; Soldevila, C.; Bonet, J.; Gasa, J.; Coma, J.; Solà-Oriol, D. Increasing Dietary Lysine Impacts Differently Growth Performance of Growing Pigs Sorted by Body Weight. Animals 2020, 10, 1032. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.V.; dos Reis Barbosa, L.M.; Marcolla, C.S.; Soares, M.H.; Valente, D.T.; Rodrigues, G.A.; Saraiva, A. Metabolizable energy levels in diets with high lysine for growing and finishing pigs. Semin. Ciencias Agrar. 2019, 40, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Urynek, W.; Buraczewska, L. Effect of dietary energy concentration and apparent ileal digestible lysine:metabolizable energy ratio on nitrogen balance and growth performance of young pigs. J. Anim. Sci. 2003, 81, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.K.; Maxwell, C.V.; Brown, D.C.; Friesen, K.G.; Musser, R.E.; Johnson, Z.B.; Armstrong, T.A. Effects of dietary lysine and energy density on performance and carcass characteristics of finishing pigs fed ractopamine. J. Anim. Sci. 2004, 82, 3277–3287. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, A.D.; Williams, N.H.; Patience, J.F. Response to dietary digestible energy concentration in growing pigs fed cereal grain-based diets. J. Anim. Sci. 2009, 87, 965–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cámara, L.; Berrocoso, J.D.; Sánchez, J.L.; López-Bote, C.J.; Mateos, G.G. Influence of net energy content of the diets on productive performance and carcass merit of gilts, boars and immunocastrated males slaughtered at 120 kg BW. Meat Sci. 2014, 98, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Möhn, S.; Gillis, A.M.; Moughan, P.J.; de Lange, C.F.M. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization in the growing pig. J. Anim. Sci. 2000, 78, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Nitikanchana, S.; Dritz, S.S.; Tokach, M.D.; De Rouchey, J.M.; Goodband, R.D.; White, B.J. Regression analysis to predict growth performance from dietary net energy in growing-finishing pigs. J. Anim. Sci. 2015, 93, 2826–2839. [Google Scholar] [CrossRef]
- Marçal, D.A.; Kiefer, C.; Tokach, M.D.; Dritz, S.S.; Woodworth, J.C.; Goodband, R.D.; Cemin, H.S.; DeRouchey, J.M. Diet formulation method influences the response to increasing net energy in finishing pigs. Transl. Anim. Sci. 2019, 3, 1349–1358. [Google Scholar] [CrossRef]
- Hinson, R.B.; Wiegand, B.R.; Ritter, M.J.; Allee, G.L.; Carr, S.N. Impact of dietary energy level and ractopamine on growth performance, carcass characteristics, and meat quality of finishing pigs. J. Anim. Sci. 2011, 89, 3572–3579. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sánchez, J.A.; Sanz, M.A.; Blanco, M.; Serrano, M.P.; Joy, M.; Latorre, M.A. The influence of dietary lysine restriction during the finishing period on growth performance and carcass, meat, and fat characteristics of barrows and gilts intended for dry-cured ham production. J. Anim. Sci. 2011, 89, 3651–3662. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.r-project.org/ (accessed on 17 April 2020).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models_R Package Version 3.1-139. 2019. Available online: https://cran.r-project.org/package=nlme (accessed on 17 April 2020).
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.4.5. Available online: https://cran.r-project.org/package=emmeans (accessed on 17 April 2020).
- Zhang, G.J.; Yi, X.W.; Chu, L.C.; Lu, N.; Htoo, J.; Qiao, S.Y. Effects of dietary net energy density and standardized ileal digestible lysine: Net energy ratio on the performance and carcass characteristic of growing-finishing pigs fed low crude protein supplemented with crystalline amino acids diets. Agric. Sci. China 2011, 10, 602–610. [Google Scholar] [CrossRef]
- Cámara, L.; Berrocoso, J.D.; Coma, J.; López-Bote, C.J.; Mateos, G.G. Growth performance and carcass quality of crossbreds pigs from two Pietrain sire lines fed isoproteic diets varying in energy concentration. Meat Sci. 2016, 114, 69–74. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- Stewart, L.L.; Kil, D.Y.; Ji, F.; Hinson, R.B.; Beaulieu, A.D.; Allee, G.L.; Patience, J.F.; Pettigrew, J.E.; Stein, H.H. Effects of dietary soybean hulls and wheat middlings on body composition, nutrient and energy retention, and the net energy of diets and ingredients fed to growing and finishing pigs. J. Anim. Sci. 2013, 91, 2756–2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Llata, M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L. Effects of increasing lysine to calorie ratio and added fat for growing-finishing pigs reared in a commercial environment: 1. Growth performance and carcass characteristics. Prof. Anim. Sci. 2007, 23, 417–428. [Google Scholar] [CrossRef]
- Sauvant, D.; Perez, J.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004. [Google Scholar]
- Weatherup, R.N.; Beattie, V.E.; Mccracken, K.J.; Henry, R.W.; Mcilroy, S.G.; Smyth, S. The effects of energy and lysine concentrations in grower diets for pigs on performance from 8 to 12 weeks of age. Irish J. Agric. Food Res. 2002, 41, 95–104. [Google Scholar]
- Ettle, T.; Roth-Maier, D.A.; Roth, F.X. Effect of apparent ileal digestible lysine to energy ratio on performance of finishing pigs at different dietary metabolizable energy levels. J. Anim. Physiol. Anim. Nutr. Berl. 2003, 87, 269–279. [Google Scholar] [CrossRef]
- Yi, X.W.; Zhang, S.; Yang, Q.; Yin, H.H.; Qiao, S.Y. Influence of dietary net energy content on performance of growing pigs fed low crude protein diets supplemented with crystalline amino acids. J. Swine Heal. Prod. 2010, 18, 294–300. [Google Scholar]
- Fracaroli, C.; Perondi, D.; dos Santos, L.S.; da Silva, W.C.; Veira, A.M.; Hauschild, L. Net energy levels of reduced crude protein, amino acid-supplemented diets for heavy pigs. Livest. Sci. 2017, 205, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Gondret, F.; Louveau, I.; Mourot, J.; Duclos, M.J.; Lagarrigue, S.; Gilbert, H.; van Milgen, J. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency. J. Anim. Sci. 2014, 92, 4865–4877. [Google Scholar] [CrossRef] [Green Version]
- Kil, D.Y.; Ji, F.; Stewart, L.L.; Hinson, R.B.; Beaulieu, A.D.; Allee, G.L.; Patience, J.F.; Pettigrew, J.E.; Stein, H.H. Net energy of soybean oil and choice white grease in diets fed to growing and finishing pigs. J. Anim. Sci. 2011, 89, 448–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fundación Española para el Desarrollo de la Nutrición Animal. Tablas FEDNA de Composición y Valor Nutritivo de Alimentos Para la Fabricación de Piensos Compuestos, 3rd ed.; de Blas, C., Mateos, G.G., García-Rebollar, P., Eds.; FEDNA: Madrid, Spain, 2010. [Google Scholar]
- Main, R.G.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L. Determining an optimum lysine: Calorie ratio for barrows and gilts in a commercial finishing facility. J. Anim. Sci. 2008, 86, 2190–2207. [Google Scholar] [CrossRef] [PubMed]
- Menegat, M.B.; Dritz, S.S.; Tokach, M.D.; Woodworth, J.C.; Derouchey, J.M.; Goodband, R.D. A review of compensatory growth following lysine restriction in grow-finish pigs. Transl. Anim. Sci. 2020, 4, txaa014. [Google Scholar] [CrossRef] [Green Version]
- De La Llata, M.; Dritz, S.S.; Langemeier, M.R.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L. Economics of increasing lysine:calorie ratio and adding dietary fat for growing-finishing pigs reared in a commercial environment. J. Swine Heal. Prod. 2001, 9, 215–223. [Google Scholar]
Net Energy, kcal/kg | 1.00 % SID Lys 1 | 1.20 % SID Lys | |||
---|---|---|---|---|---|
2360 | 2550 | 2360 | 2550 | ||
Ingredient composition, % | |||||
Maize | 37.15 | 35.01 | 36.01 | 33.68 | |
Wheat | 35.00 | 35.00 | 35.00 | 35.00 | |
Wheat middlings | 2.80 | - | 2.04 | - | |
Soybean meal | 19.50 | 21.00 | 20.60 | 21.50 | |
Animal fat | 1.00 | 4.50 | 1.00 | 4.50 | |
Calcium carbonate | 0.64 | 0.63 | 0.66 | 0.63 | |
Dicalcium phosphate | 1.24 | 1.27 | 1.25 | 1.27 | |
Sodium chloride | 0.42 | 0.42 | 0.42 | 0.42 | |
Lysine sulphate | 0.65 | 0.60 | 0.98 | 0.96 | |
L-Threonine | 0.18 | 0.17 | 0.30 | 0.29 | |
DL-Methionine | 0.15 | 0.15 | 0.26 | 0.27 | |
L-Valine | 0.02 | - | 0.13 | 0.13 | |
L-Tryptophan | 0.01 | 0.01 | 0.05 | 0.05 | |
L-Isoleucine | - | - | 0.05 | 0.05 | |
Phytase 2 | 0.01 | 0.01 | 0.01 | 0.01 | |
Acids mix 3 | 0.70 | 0.70 | 0.70 | 0.70 | |
VIT-MIN premix 4 | 0.55 | 0.55 | 0.55 | 0.55 | |
Calculated composition 1 | |||||
Dry matter, % | 87.96 | 88.39 | 88.05 | 88.49 | |
Crude fiber, % | 3.01 | 2.73 | 2.95 | 2.72 | |
Neutral detergent fiber, % | 10.06 | 8.92 | 9.77 | 8.86 | |
Starch, % | 44.68 | 42.72 | 43.82 | 41.89 | |
Crude fat, % | 3.23 | 6.57 | 3.18 | 6.54 | |
Crude protein, % | 16.71 | 16.77 | 17.59 | 17.51 | |
SID Lys, % | 1.00 | 1.00 | 1.20 | 1.20 | |
Net energy, kcal/kg | 2360 | 2550 | 2360 | 2550 | |
Total Ca | 0.62 | 0.62 | 0.63 | 0.63 | |
STTD P | 0.38 | 0.38 | 0.39 | 0.38 | |
Analyzed composition, % | |||||
Crude fat | 3.3 | 6.2 | 3.3 | 6.5 | |
Crude protein | 16.5 | 17.0 | 17.1 | 17.5 | |
Lysine | 1.12 | 1.11 | 1.32 | 1.28 | |
Methionine + Cysteine | 0.66 | 0.66 | 0.79 | 0.78 | |
Threonine | 0.76 | 0.77 | 0.91 | 0.88 | |
Valine | 0.77 | 0.79 | 0.90 | 0.89 | |
Isoleucine | 0.68 | 0.71 | 0.73 | 0.75 |
Growing Phase (d 0–43) | Finishing Phase (d 43–85) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SID Lysine, % 1 | 0.94 | 1.04 | 0.80 | 0.90 | |||||||
Net Energy, kcal/kg | 2200 | 2450 | 2200 | 2450 | 2230 | 2450 | 2230 | 2450 | |||
Ingredient composition, % | |||||||||||
Maize | 30.00 | 30.50 | 30.00 | 30.50 | 25.00 | 40.50 | 25.00 | 40.50 | |||
Wheat | 15.00 | 30.00 | 15.00 | 30.00 | 25.00 | 25.00 | 25.00 | 25.00 | |||
Barley | 21.55 | 14.46 | 22.01 | 13.82 | 26.79 | 15.33 | 27.31 | 15.35 | |||
Wheat middlings | 12.00 | - | 12.00 | - | 8.00 | - | 8.00 | - | |||
Soybean meal 47% | 10.90 | 11.80 | 10.00 | 12.00 | 3.50 | 7.50 | 2.50 | 7.00 | |||
Sunflower meal | 6.00 | 6.00 | 6.00 | 6.00 | 8.00 | 6.00 | 8.00 | 6.00 | |||
Animal fat | 1.00 | 3.60 | 0.85 | 3.55 | - | - | - | - | |||
Palm oil | - | - | - | - | 0.80 | 2.80 | 0.80 | 2.80 | |||
Calcium carbonate | 1.26 | 1.24 | 1.26 | 1.24 | 1.28 | 1.22 | 1.26 | 1.22 | |||
Dicalcium phosphate | 0.10 | 0.16 | 0.10 | 0.16 | - | 0.12 | - | 0.13 | |||
Sodium chloride | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | |||
Lysine sulphate | 0.77 | 0.80 | 1.01 | 0.99 | - | - | - | - | |||
Lysine HCl | - | - | - | - | 0.54 | 0.49 | 0.70 | 0.63 | |||
L-Threonine | 0.19 | 0.19 | 0.28 | 0.26 | 0.18 | 0.16 | 0.26 | 0.24 | |||
Liquid MHA 2 | 0.13 | 0.14 | 0.21 | 0.21 | 0.10 | 0.10 | 0.17 | 0.17 | |||
L-Valine | 0.04 | 0.05 | 0.12 | 0.12 | 0.03 | 0.03 | 0.12 | 0.11 | |||
L-Tryptophan | 0.02 | 0.03 | 0.04 | 0.04 | 0.02 | 0.02 | 0.05 | 0.04 | |||
L-Isoleucine | - | - | 0.08 | 0.08 | 0.04 | - | 0.11 | 0.07 | |||
Phytase 3 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |||
Acids mix 4 | 0.30 | 0.30 | 0.30 | 0.30 | - | - | - | - | |||
VIT-MIN premix 5 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | |||
Calculated composition | |||||||||||
Dry matter, % | 88.1 | 88.5 | 88.1 | 88.3 | 88.6 | 88.5 | 88.7 | 88.5 | |||
Crude fiber, % | 5.49 | 4.44 | 5.47 | 3.63 | 5.57 | 4.30 | 5.55 | 4.28 | |||
Neutral detergent fiber, % | 16.1 | 12.0 | 16.1 | 10.7 | 16.1 | 11.8 | 16.1 | 11.8 | |||
Starch, % | 41.1 | 44.2 | 41.3 | 45.2 | 45.8 | 48.0 | 46.1 | 48.0 | |||
Crude fat, % | 3.20 | 5.54 | 3.05 | 4.79 | 2.90 | 4.94 | 2.90 | 4.93 | |||
Crude protein, % | 15.6 | 15.1 | 15.7 | 15.7 | 13.4 | 13.3 | 13.4 | 13.4 | |||
SID Lys, % | 0.94 | 0.94 | 1.04 | 1.04 | 0.80 | 0.80 | 0.90 | 0.90 | |||
Net energy, kcal/kg | 2200 | 2450 | 2200 | 2450 | 2230 | 2450 | 2230 | 2450 | |||
Total Ca | 0.60 | 0.60 | 0.60 | 0.60 | 0.57 | 0.57 | 0.56 | 0.57 | |||
STTD P 6 | 0.31 | 0.30 | 0.31 | 0.30 | 0.29 | 0.29 | 0.29 | 0.29 | |||
Analyzed composition, % | |||||||||||
Crude fat | 3.5 | 5.5 | 3.4 | 4.9 | 3.3 | 5.2 | 3.2 | 5.3 | |||
Crude protein | 15.9 | 15.8 | 16.0 | 16.3 | 13.6 | 13.4 | 13.7 | 13.8 | |||
Lysine | 1.04 | 1.07 | 1.19 | 1.18 | 0.91 | 0.87 | 0.99 | 0.97 | |||
Methionine + Cysteine 7 | 0.61 | 0.64 | 0.70 | 0.71 | 0.56 | 0.54 | 0.61 | 0.60 | |||
Threonine | 0.67 | 0.70 | 0.77 | 0.77 | 0.61 | 0.59 | 0.65 | 0.63 | |||
Valine | 0.72 | 0.75 | 0.81 | 0.83 | 0.64 | 0.63 | 0.71 | 0.70 | |||
Isoleucine | 0.55 | 0.60 | 0.63 | 0.68 | 0.50 | 0.49 | 0.55 | 0.54 | |||
Feed cost, €/t | 220.2 | 232.8 | 231.1 | 249.0 | 204.0 | 212.6 | 219.8 | 228.6 |
NE (kcal/kg) | 2360 | 2550 | SEM 2 | p-Value 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Item 3 | SID Lys (%) | 1.00 | 1.20 | 1.00 | 1.20 | Lys | NE | Lys × NE | ||
Body weight, kg | ||||||||||
d 0 | 19.8 | 19.9 | 19.8 | 19.9 | 0.15 | 0.847 | 0.962 | 0.966 | ||
d 14 4 | 28.6 | 29.4 | 28.6 | 29.2 | 0.64 | 0.003 | 0.556 | 0.741 | ||
d 26 5 | 37.6 | 38.7 | 37.4 | 38.5 | 0.50 | <0.001 | 0.331 | 0.968 | ||
d 68 5 | 68.4 | 69.6 | 68.1 | 69.0 | 0.44 | 0.023 | 0.328 | 0.754 | ||
d 116 5 | 109.7 | 110.3 | 107.9 | 109.4 | 0.70 | 0.103 | 0.025 | 0.450 | ||
Phase 1, d 0–14 | ||||||||||
ADG, kg | 0.630 | 0.680 | 0.625 | 0.666 | 0.0386 | <0.001 | 0.293 | 0.621 | ||
ADFI, kg | 1.000 | 1.010 | 0.964 | 0.961 | 0.0430 | 0.857 | <0.001 | 0.617 | ||
SID Lys intake, g/d | 10.0 | 12.1 | 9.6 | 11.5 | 0.47 | <0.001 | <0.001 | 0.405 | ||
NE intake, Mcal/d | 2.37 | 2.38 | 2.46 | 2.45 | 0.105 | 0.870 | 0.003 | 0.615 | ||
Feed/gain | 1.59 | 1.49 | 1.54 | 1.44 | 0.028 | <0.001 | 0.001 | 0.730 | ||
NEE, Mcal/kg | 3.76 | 3.51 | 3.93 | 3.68 | 0.068 | <0.001 | <0.001 | 0.967 | ||
LysE, g/kg | 15.9 | 17.8 | 15.4 | 17.3 | 0.30 | <0.001 | <0.001 | 0.983 | ||
Feed cost/gain, EUR/kg | 0.403 | 0.394 | 0.414 | 0.404 | 0.0074 | 0.006 | 0.004 | 0.979 | ||
Phase 2, d 14–26 | ||||||||||
ADG, kg 5 | 0.740 | 0.775 | 0.727 | 0.773 | 0.0122 | <0.001 | 0.432 | 0.545 | ||
ADFI, kg | 1.31 | 1.31 | 1.25 | 1.26 | 0.013 | 0.837 | <0.001 | 0.898 | ||
SID Lys intake, g/d | 13.1 | 15.8 | 12.5 | 15.1 | 0.14 | <0.001 | <0.001 | 0.775 | ||
NE intake, Mcal/d | 3.10 | 3.10 | 3.20 | 3.21 | 0.031 | 0.831 | 0.002 | 0.890 | ||
Feed/gain 4 | 1.77 | 1.70 | 1.72 | 1.63 | 0.024 | <0.001 | <0.001 | 0.442 | ||
NEE, Mcal/kg 4 | 4.19 | 4.00 | 4.40 | 4.15 | 0.060 | <0.001 | <0.001 | 0.291 | ||
LysE, g/kg 4,6 | 17.7 | 20.3 | 17.2 | 19.5 | 0.26 | <0.001 | <0.001 | 0.220 | ||
Feed cost/gain, EUR/kg 4 | 0.449 | 0.449 | 0.462 | 0.455 | 0.0065 | 0.266 | 0.003 | 0.239 | ||
Phase 1 & 2, d 0–26 | ||||||||||
ADG, kg | 0.681 | 0.724 | 0.672 | 0.715 | 0.0171 | <0.001 | 0.220 | 0.993 | ||
ADFI, kg4 | 1.15 | 1.15 | 1.10 | 1.10 | 0.025 | 0.821 | <0.001 | 0.826 | ||
SID Lys intake, g/d 4 | 11.5 | 13.8 | 11.0 | 13.2 | 0.27 | <0.001 | <0.001 | 0.505 | ||
NE intake, Mcal/d 4 | 2.70 | 2.71 | 2.80 | 2.80 | 0.060 | 0.825 | <0.001 | 0.831 | ||
Feed/gain | 1.68 | 1.59 | 1.63 | 1.53 | 0.008 | <0.001 | <0.001 | 0.837 | ||
NEE Mcal/kg | 3.97 | 3.74 | 4.16 | 3.91 | 0.019 | <0.001 | <0.001 | 0.474 | ||
LysE, g/kg | 16.8 | 19.0 | 16.3 | 18.4 | 0.09 | <0.001 | <0.001 | 0.397 | ||
Feed cost/gain, EUR/kg 7 | 0.425 | 0.420 | 0.437 | 0.429 | 0.0020 | 0.001 | <0.001 | 0.385 | ||
Common diet, d 26–116 | ||||||||||
ADG, kg 6 | 0.801 | 0.794 | 0.785 | 0.787 | 0.0055 | 0.695 | 0.037 | 0.371 | ||
ADFI, kg | 1.79 | 1.79 | 1.74 | 1.75 | 0.013 | 0.491 | 0.001 | 0.843 | ||
Feed/gain | 2.23 | 2.26 | 2.22 | 2.23 | 0.010 | 0.059 | 0.024 | 0.274 | ||
Overall d 0–116 | ||||||||||
ADG, kg 5 | 0.788 | 0.790 | 0.772 | 0.784 | 0.0045 | 0.106 | 0.020 | 0.265 | ||
ADFI, kg | 1.64 | 1.65 | 1.60 | 1.61 | 0.014 | 0.491 | <0.001 | 0.892 | ||
Feed/gain 5 | 2.09 | 2.09 | 2.07 | 2.05 | 0.019 | 0.162 | <0.001 | 0.100 | ||
Feed cost/gain, EUR/kg 7 | 0.473 | 0.477 | 0.474 | 0.474 | 0.0016 | 0.310 | 0.454 | 0.145 |
Day 0–43 | 2200 kcal NE/kg | 2450 kcal NE/kg | SEM 2 | p-Value 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SID Lys, % | 0.94 | 1.04 | 0.94 | 1.04 | ||||||
Day 43–85 | 2230 kcal NE/kg | 2450 kcal NE/kg | Lys | NE | Lys × NE | |||||
Item 3 | SID Lys, % | 0.80 | 0.90 | 0.80 | 0.90 | |||||
Body weight, kg | ||||||||||
d 0 | 32.5 | 32.4 | 32.4 | 32.5 | 0.13 | 0.890 | 0.939 | 0.601 | ||
d 23 4 | 50.9 | 51.4 | 51.5 | 51.3 | 0.72 | 0.644 | 0.513 | 0.269 | ||
d 43 | 74.0 | 74.2 | 75.1 | 74.5 | 0.68 | 0.717 | 0.157 | 0.476 | ||
d 72 | 107 | 108 | 109 | 109 | 0.88 | 0.903 | 0.039 | 0.943 | ||
d 85 5 | 120 | 121 | 122 | 122 | 1.16 | 0.714 | 0.077 | 0.867 | ||
Growing phase, d 0–43 | ||||||||||
ADG, kg 6,7 | 0.956 | 0.969 | 0.985 | 0.972 | 0.0135 | 0.992 | 0.105 | 0.213 | ||
ADFI, kg 5 | 2.07 | 2.11 | 2.03 | 2.01 | 0.028 | 0.469 | <0.001 | 0.102 | ||
SID Lys intake, g/d 5 | 19.4 | 22.0 | 19.1 | 20.9 | 0.28 | <0.001 | <0.001 | 0.071 | ||
NE intake, Mcal/d | 4.54 | 4.65 | 4.97 | 4.92 | 0.065 | 0.526 | <0.001 | 0.111 | ||
Feed/gain 8 | 2.16 | 2.18 | 2.06 | 2.07 | 0.011 | 0.295 | <0.001 | 0.605 | ||
NE/gain, Mcal/kg | 4.75 | 4.79 | 5.05 | 5.06 | 0.026 | 0.307 | <0.001 | 0.645 | ||
SID Lys/gain, g/kg 5,8 | 20.3 | 22.6 | 19.4 | 21.5 | 0.11 | <0.001 | <0.001 | 0.322 | ||
Feed cost/gain, EUR/kg 5,8 | 0.475 | 0.503 | 0.479 | 0.514 | 0.0026 | <0.001 | 0.004 | 0.166 | ||
Finishing phase, d 43–85 | ||||||||||
ADG, kg | 1.099 | 1.099 | 1.106 | 1.119 | 0.0136 | 0.570 | 0.220 | 0.555 | ||
ADFI, kg | 3.25 | 3.28 | 3.05 | 3.08 | 0.034 | 0.296 | <0.001 | 0.889 | ||
SID Lys intake, g/d 5 | 26.0 | 29.5 | 24.4 | 27.7 | 0.30 | <0.001 | <0.001 | 0.811 | ||
NE intake, Mcal/d | 7.25 | 7.31 | 7.46 | 7.55 | 0.078 | 0.287 | 0.002 | 0.849 | ||
Feed/gain | 2.96 | 2.98 | 2.75 | 2.76 | 0.016 | 0.362 | <0.001 | 0.482 | ||
NE/gain, Mcal/kg | 6.60 | 6.65 | 6.74 | 6.75 | 0.037 | 0.380 | 0.001 | 0.510 | ||
SID Lys/gain, g/kg | 23.7 | 26.9 | 22.0 | 24.8 | 0.14 | <0.001 | <0.001 | 0.141 | ||
Feed cost/gain, EUR/kg | 0.604 | 0.656 | 0.585 | 0.630 | 0.0035 | <0.001 | <0.001 | 0.276 | ||
Overall, d 0–85 | ||||||||||
ADG, kg 5,7,9 | 1.027 | 1.033 | 1.045 | 1.044 | 0.0116 | 0.637 | 0.027 | 0.610 | ||
ADFI, kg 5 | 2.65 | 2.69 | 2.53 | 2.54 | 0.028 | 0.250 | <0.001 | 0.483 | ||
SID Lys intake, g/d 5 | 22.7 | 25.7 | 21.7 | 24.3 | 0.26 | <0.001 | <0.001 | 0.249 | ||
NE intake, Mcal/d 5 | 5.88 | 5.96 | 6.20 | 6.20 | 0.064 | 0.260 | <0.001 | 0.516 | ||
Feed/gain | 2.58 | 2.60 | 2.42 | 2.43 | 0.010 | 0.184 | <0.001 | 0.668 | ||
NE/gain, Mcal/kg | 5.72 | 5.77 | 5.93 | 5.95 | 0.024 | 0.192 | <0.001 | 0.721 | ||
SID Lys/gain, g/kg | 22.1 | 24.8 | 20.7 | 23.2 | 0.09 | <0.001 | <0.001 | 0.144 | ||
Feed cost/gain, EUR/kg | 0.541 | 0.579 | 0.533 | 0.574 | 0.0025 | <0.001 | 0.004 | 0.675 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aymerich, P.; Soldevila, C.; Bonet, J.; Gasa, J.; Coma, J.; Solà-Oriol, D. The Implications of Nutritional Strategies that Modify Dietary Energy and Lysine for Growth Performance in Two Different Swine Production Systems. Animals 2020, 10, 1638. https://doi.org/10.3390/ani10091638
Aymerich P, Soldevila C, Bonet J, Gasa J, Coma J, Solà-Oriol D. The Implications of Nutritional Strategies that Modify Dietary Energy and Lysine for Growth Performance in Two Different Swine Production Systems. Animals. 2020; 10(9):1638. https://doi.org/10.3390/ani10091638
Chicago/Turabian StyleAymerich, Pau, Carme Soldevila, Jordi Bonet, Josep Gasa, Jaume Coma, and David Solà-Oriol. 2020. "The Implications of Nutritional Strategies that Modify Dietary Energy and Lysine for Growth Performance in Two Different Swine Production Systems" Animals 10, no. 9: 1638. https://doi.org/10.3390/ani10091638
APA StyleAymerich, P., Soldevila, C., Bonet, J., Gasa, J., Coma, J., & Solà-Oriol, D. (2020). The Implications of Nutritional Strategies that Modify Dietary Energy and Lysine for Growth Performance in Two Different Swine Production Systems. Animals, 10(9), 1638. https://doi.org/10.3390/ani10091638