Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. General Findings and Outlook
3.2. Management
3.2.1. Classification of Farms
3.2.2. Prediction Models for Water and Electricity Consumption
3.2.3. Performance Characteristics
3.3. Physiology and Health
3.3.1. Body Condition Scoring
3.3.2. Lameness
3.3.3. Heat Stress
3.3.4. Mastitis
3.3.5. Metabolic Status
3.3.6. Infectious Diseases and Spatial Analysis
3.4. Reproduction
3.4.1. Herd Management
3.4.2. Behaviors Associated with Reproduction
3.4.3. Genetic Selection
3.4.4. Dystocia and Calving
3.5. Behavior Analysis
3.5.1. Sensor-Based Behavior Classification
3.5.2. Vision-Based Behavior Monitoring
3.5.3. Anomaly Detection
3.5.4. Behavior Related to Metabolic Status
3.6. Feeding
3.6.1. Group Feeding
3.6.2. Grazing
3.7. Constraints of Data Availability
3.8. Robustness of Models, Cross Validation, and the Risks of Machine Learning in Dairy Science
3.9. Synthesis
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cozzi, G.; Brscic, M.; Gottardo, F. Animal welfare as a pillar of a sustainable farm animal production. Acta Agric. Slov. 2008, 91, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Wall, E.; Russell, G.; Roberts, D.J.; Simm, G. Risk factors for culling in Holstein-Friesian dairy cows. Vet. Rec. 2010, 167, 238. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Pasha, M. Survey of Machine Learning Algorithms for Disease Diagnostic. J. Intell. Learn. Syst. Appl. 2017, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- USAMV, WP2. Community of Practice Deliverable D2.4 “Industry Innovations Report”. In 4D4F—Data Driven Dairy Decision 4 Farmers; 2016; Available online: https://www.4d4f.eu/sites/default/files/Industry%20Innovations%20Report%20v2.pdf (accessed on 9 September 2020).
- Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 2017, 136, 31–41. [Google Scholar] [CrossRef]
- Wolfger, B.; Jones, B.W.; Orsel, K.; Bewley, J.M. Technical note: Evaluation of an ear-attached real-time location monitoring system. J. Dairy Sci. 2017, 100, 2219–2224. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Fallast, M. Device for the Measurement of Individual Farm Animal Data. U.S. Patent US9504231B2, 29 November 2016. [Google Scholar]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Umstätter, C. Digital technology adoption in livestock production with a special focus on ruminant farming. Animal 2020, 1–10. [Google Scholar] [CrossRef]
- Skansi, S. Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Liu, Y. Development of a machine vision algorithm for recognition of peach fruit in natural scene. Trans. ASABE 2011, 54, 695–702. [Google Scholar] [CrossRef]
- Mueller, J.P.; Massaron, L. Machine Learning for Dummies; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gorczyca, M.T.; Gebremedhin, K.G. Ranking of environmental heat stressors for dairy cows using machine learning algorithms. Comput. Electron. Agric. 2020, 168, 105124. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Peacock, R. Effectiveness and efficiency of search methods in systematic reviews of complex evidence: Audit of primary sources. BMJ 2005, 331, 1064–1065. [Google Scholar] [CrossRef] [Green Version]
- Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef] [Green Version]
- O’Grady, M.J.; O’Hare, G.M.P. Modelling the smart farm. Inf. Process. Agric. 2017, 4, 179–187. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium review: Real-time continuous decision making using big data on dairy farms. J. Dairy Sci. 2019, 103, 3856–3866. [Google Scholar] [CrossRef]
- Liberati, P.; Zappavigna, P. Improving the automated monitoring of dairy cows by integrating various data acquisition systems. Comput. Electron. Agric. 2009, 68, 62–67. [Google Scholar] [CrossRef]
- Newton, J.E.; Nettle, R.; Pryce, J.E. Farming smarter with big data: Insights from the case of Australia’s national dairy herd milk recording scheme. Agric. Syst. 2020, 181, 102811. [Google Scholar] [CrossRef]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big Data Analytics and precision animal agriculture symosium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A multivariate statistical analysis approach to characterize mechanization, structural and energy profile in Italian dairy farms. Energy Rep. 2016, 2, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Hyland, J.J.; Heanue, K.; McKillop, J.; Micha, E. Factors influencing dairy farmers’ adoption of best management grazing practices. Land Use Policy 2018, 78, 562–571. [Google Scholar] [CrossRef]
- Shine, P.; Murphy, M.D.; Upton, J.; Scully, T. Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms. Comput. Electron. Agric. 2018, 150, 74–87. [Google Scholar] [CrossRef]
- Shine, P.; Scully, T.; Upton, J.; Murphy, M.D. Multiple linear regression modelling of on-farm direct water and electricity consumption on pasture based dairy farms. Comput. Electron. Agric. 2018, 148, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Shine, P.; Scully, T.; Upton, J.; Shalloo, L.; Murphy, M.D. Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis. Appl. Energy 2018, 210, 529–537. [Google Scholar] [CrossRef]
- Shine, P.; Scully, T.; Upton, J.; Murphy, M.D. Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine. Appl. Energy 2019, 250, 1110–1119. [Google Scholar] [CrossRef]
- Jensen, D.B.; van der Voort, M.; Hogeveen, H. Dynamic forecasting of individual cow milk yield in automatic milking systems. J. Dairy Sci. 2018, 101, 10428–10439. [Google Scholar] [CrossRef]
- Dallago, G.M.; Figueiredo, D.M.D.; Andrade, P.C.d.R.; Santos, R.A.D.; Lacroix, R.; Santschi, D.E.; Lefebvre, D.M. Predicting first test day milk yield of dairy heifers. Comput. Electron. Agric. 2019, 166, 105032. [Google Scholar] [CrossRef]
- Brotzman, R.L.; NCook, B.; Nordlund, K.; Bennett, T.B.; Rivas, A.G.; Döpfer, D. Cluster analysis of Dairy Herd Improvement data to discover trends in performance characteristics in large Upper Midwest dairy herds. J. Dairy Sci. 2015, 98, 3059–3070. [Google Scholar] [CrossRef] [Green Version]
- Shalloo, L.; O’Donovan, M.; Leso, L.; Werner, J.; Ruelle, E.; Geoghegan, A.; Delaby, L.; O’Leary, N. Review: Grass-based dairy systems, data and precision technologies. Animal 2018, 12, s262–s271. [Google Scholar] [CrossRef] [Green Version]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef]
- Song, X.; Bokkers, E.A.M.; van Mourik, S.; Koerkamp, P.W.G.G.; van der Tol, P.P.J. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. J. Dairy Sci. 2019, 102, 4294–4308. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.R.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodriguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques. Agronomy 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Ledinek, M.; Gruber, L.; Steininger, F.; Fuerst-Waltl, B.; Zottl, K.; Royer, M.; Krimberger, K.; Mayerhofer, M.; Egger-Danner, C. Analysis of lactating cows in commercial Austrian dairy farms: Interrelationships between different efficiency and production traits, body condition score and energy balance. Ital. J. Anim. Sci. 2019, 18, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Bercovich, A.; Edan, Y.; Alchanatis, V.; Moallem, U.; Parmet, Y.; Honig, H.; Maltz, E.; Antler, A.; Halachmi, I. Development of an automatic cow body condition scoring using body shape signature and Fourier descriptors. J. Dairy Sci. 2013, 96, 8047–8059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spoliansky, R.; Edan, Y.; Parmet, Y.; Halachmi, I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 2016, 99, 7714–7725. [Google Scholar] [CrossRef] [PubMed]
- Halachmi, I.; Polak, P.; Roberts, D.J.; Klopcic, M. Cow Body Shape and Automation of Condition Scoring. J. Dairy Sci. 2008, 91, 4444–4451. [Google Scholar] [CrossRef] [Green Version]
- Yukun, S.; Pengju, H.; Yujie, W.; Ziqi, C.; Yang, L.; Baisheng, D.; Runze, L.; Yonggen, Z. Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. J. Dairy Sci. 2019, 102, 10140–10151. [Google Scholar] [CrossRef] [PubMed]
- Çevik, K.K.; Mustafa, B. Body Condition Score (BCS) Segmentation and Classification in Dairy Cows using R-CNN Deep Learning Architecture. Avrupa Bilim Teknol. Derg. 2019, 17, 1248–1255. [Google Scholar]
- O’Leary, N.; Leso, L.; Buckley, F.; Kenneally, J.; McSweeney, D.; Shalloo, L. Validation of an Automated Body Condition Scoring System Using 3D Imaging. Agriculture 2020, 10, 246. [Google Scholar] [CrossRef]
- Juarez, S.T.; Robinson, P.H.; DePeters, E.J.; Price, E.O. Impact of lameness on behavior and productivity of lactating Holstein cows. Appl. Anim. Behav. Sci. 2003, 83, 1–14. [Google Scholar] [CrossRef]
- O’Leary, N.W.; Byrne, D.T.; O’Connor, A.; Shalloo, L. Invited review: Cattle lameness detection with accelerometers. J. Dairy Sci. 2020, 103, 3895–3911. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wu, Q.; Yin, X.; Jiang, B.; Wang, H.; He, D.; Song, H. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector. Biosyst. Eng. 2020, 189, 150–163. [Google Scholar] [CrossRef]
- Hudson, C.D.; Huxley, J.N.; Green, M.J. Using Simulation to Interpret a Discrete Time Survival Model in a Complex Biological System: Fertility and Lameness in Dairy Cows. PLoS ONE 2014, 9, e103426. [Google Scholar] [CrossRef] [Green Version]
- Hudson, C. Big Data and the Dairy Cow: Factors Affecting Fertility in UK Herds; University of Nottingham: Nottingham, UK, 2015; p. 184. [Google Scholar]
- Warner, D.; Vasseur, E.; Lefebvre, D.M.; Lacroix, R. A machine learning based decision aid for lameness in dairy herds using farm-based records. Comput. Electron. Agric. 2020, 169, 105193. [Google Scholar] [CrossRef]
- Polsky, L.; von Keyserlingk, M.A. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczyk, K. The application of cluster analysis methods in assessment of daily physical activity of dairy cows milked in the Voluntary Milking System. Comput. Electron. Agric. 2017, 141, 65–72. [Google Scholar] [CrossRef]
- Ravagnolo, O.; Misztal, I. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 2000, 83, 2126–2130. [Google Scholar] [CrossRef]
- Fernández, G.; Barreal, M.L.; Pombo, M.B.; Ginzo-Villamayor, M.J.; González-Manteiga, W.; Prieto, A.; Lago, N.; González-Palencia, J. Comparison of the epidemiological behavior of mastitis pathogens by applying time-series analysis in results of milk samples submitted for microbiological examination. Vet. Res. Commun. 2013, 37, 259–267. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Mohammadi-Dehcheshmeh, M.; Ebrahimie, E.; Petrovski, K.R. Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: Deep Learning and Gradient-Boosted Trees outperform other models. Comput. Biol. Med. 2019, 114, 103456. [Google Scholar] [CrossRef]
- Probo, M.; Pascottini, O.B.; LeBlanc, S.; Opsomer, G.; Hostens, M. Association between metabolic diseases and the culling risk of high-yielding dairy cows in a transition management facility using survival and decision tree analysis. J. Dairy Sci. 2018, 101, 9419–9429. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.; Kammer, M.; Lange, H.; Plattner, S.; Baumgartner, C.; Stegeman, J.A.; Duda, J.; Mansfeld, R.; Döpfer, D. Identifying poor metabolic adaptation during early lactation in dairy cows using cluster analysis. J. Dairy Sci. 2018, 101, 7311–7321. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; van Knegsel, A.T.M.; Vervoort, J.J.M.; Bruckmaier, R.M.; van Hoeij, R.J.; Kemp, B.; Saccenti, E. Prediction of metabolic status of dairy cows in early lactation with on-farm cow data and machine learning algorithms. J. Dairy Sci. 2019, 102, 10186–10201. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Antoine, V.; Mialon, M.-M.; Lardy, R.; Silberberg, M.; Koko, J.; Veissier, I. Machine learning to detect behavioural anomalies in dairy cows under subacute ruminal acidosis. Comput. Electron. Agric. 2020, 170, 105233. [Google Scholar] [CrossRef]
- Lombard, J.E. Epidemiology and Economics of Paratuberculosis. Vet. Clin. North Am. Food Anim. Pract. 2011, 27, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Zare, Y.; Shook, G.E.; Collins, M.T.; Kirkpatrick, B.W. Evidence of birth seasonality and clustering of Mycobacterium avium subspecies paratuberculosis infection in US dairy herds. Prev. Vet. Med. 2013, 112, 276–284. [Google Scholar] [CrossRef]
- Rossi, G.; de Leo, G.A.; Pongolini, S.; Natalini, S.; Zarenghi, L.; Ricchi, M.; Bolzoni, L. The potential role of direct and indirect contacts on infection spread in dairy farm networks. PLoS Comput. Biol. 2017, 13, e1005301. [Google Scholar] [CrossRef]
- Selemetas, N.; Ducheyne, E.; Phelan, P.; O’Kiely, P.; Hendrickx, G.; de Waal, T. Spatial analysis and risk mapping of Fasciola hepatica infection in dairy herds in Ireland. Geospat. Health 2015, 9, 1970–7096. [Google Scholar] [CrossRef]
- De Waal, T.; Relf, V.; Good, B.; Gray, J.; Murphy, T.; Forbes, A.; Mulcahy, G. Developing models for the predictions of fasciolosis in Ireland. In Making Science Work on the Farm—A Workshop on Decision Support Systems for Irish Agriculture; Holden, N.M., Hochstrasser, T., Schulte, R.P.O., Walsh, S., Eds.; Agmet: Dublin, Ireland, 2007; pp. 60–63. [Google Scholar]
- Van Eerdenburg, F.J.C.M.; Karthaus, D.; Taverne, M.A.M.; Mercis, I.; Szenci, O. The Relationship between Estrous Behavioral Score and Time of Ovulation in Dairy Cattle. J. Dairy Sci. 2002, 85, 1150–1156. [Google Scholar] [CrossRef]
- Cook, J.G.; Green, M.J. Use of early lactation milk recording data to predict the calving to conception interval in dairy herds. J. Dairy Sci. 2016, 99, 4699–4706. [Google Scholar] [CrossRef]
- Fenlon, C.; O’Grady, L.; Dunnion, J.; Shalloo, L.; Butler, S.T.; Doherty, M.L. A comparison of machine learning techniques for predicting insemination outcome in Irish dairy cows. In AICS 2016 Artificial Intelligence and Cognitive Science; Ruzica Piskac: Dublin, Ireland, 2016. [Google Scholar]
- Hempstalk, K.; McParland, S.; Berry, D.P. Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows. J. Dairy Sci. 2015, 98, 5262–5273. [Google Scholar] [CrossRef] [Green Version]
- Hudson, C.D.; Bradley, A.J.; Breen, J.E.; Green, M.J. Dairy herd mastitis and reproduction: Using simulation to aid interpretation of results from discrete time survival analysis. Vet. J. 2015, 204, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Aungier, S.P.M.; Roche, J.F.; Duffy, P.; Scully, S.; Crowe, M.A. The relationship between activity clusters detected by an automatic activity monitor and endocrine changes during the periestrous period in lactating dairy cows. J. Dairy Sci. 2015, 98, 1666–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigele, H.C.; Gygax, L.; Steiner, A.; Wechsler, B.; Burla, J.B. Moderate lameness leads to marked behavioral changes in dairy cows. J. Dairy Sci. 2018, 101, 2370–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Recio, O.; Weigel, K.A.; Gianola, D.; Naya, H.; Rosa, G.J. L 2-Boosting algorithm applied to high-dimensional problems in genomic selection. Genet. Res. 2010, 92, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehret, A.; Hochstuhl, D.; Gianola, D.; Thaller, G. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Genet. Sel. Evol. 2015, 47, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, C.; Spurlock, D.; Armentano, L.; Page, C.D., Jr.; VandeHaar, M.; Bickhart, D.; Weigel, K. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle. J. Dairy Sci. 2013, 96, 6716–6729. [Google Scholar] [CrossRef] [Green Version]
- Zaborski, D.; Proskura, W.S.; Grzesiak, W.; Różańska-Zawieja, J.; Sobek, Z. The comparison between random forest and boosted trees for dystocia detection in dairy cows. Comput. Electron. Agric. 2019, 163, 104856. [Google Scholar] [CrossRef]
- Fadul, M.; Christopher, B.; Alsaaod, M.; Hasler, J.; Alexander, S.; Adrian, S.; Hirsbrunner, G. Prediction of calving time in dairy cattle. Anim. Reprod. Sci. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef]
- Fenlon, C.; O’Grady, L.; Mee, J.F.; Butler, S.T.; Doherty, M.L.; Dunnion, J. A comparison of 4 predictive models of calving assistance and difficulty in dairy heifers and cows. J. Dairy Sci. 2017, 100, 9746–9758. [Google Scholar] [CrossRef] [Green Version]
- Ede, T.; Lecorps, B.; von Keyserlingk, M.A.G.; Weary, D.M. Symposium review: Scientific assessment of affective states in dairy cattle. J. Dairy Sci. 2019, 102, 10677–10694. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.L.; NParthaláin, M.; Brewer, P.; James, W.P.J.; Rose, M.T. A novel behavioral model of the pasture-based dairy cow from GPS data using data mining and machine learning techniques. J. Dairy Sci. 2016, 99, 2063–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.L.; James, W.P.; Rose, M.T. Variable segmentation and ensemble classifiers for predicting dairy cow behaviour. Biosyst. Eng. 2019, 178, 156–167. [Google Scholar] [CrossRef]
- Killick, R.; Eckley, I. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 2014, 58, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Benaissa, S.; Tuyttens, F.A.; Plets, D.; de Pessemier, T.; Trogh, J.; Tanghe, E.; Martens, L.; Vandaele, L.; van Nuffel, A.; Joseph, W. On the use of on-cow accelerometers for the classification of behaviours in dairy barns. Res. Vet. Sci. 2019, 125, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Guzhva, O.; Ardö, H.; Nilsson, M.; Herlin, A.; Tufvesson, L. Now You See Me: Convolutional Neural Network Based Tracker for Dairy Cows. Front. Robot. AI 2018, 5, 107. [Google Scholar] [CrossRef] [Green Version]
- Boyland, N.K.; Mlynski, D.T.; James, R.; Brent, L.J.; Croft, D.P. The social network structure of a dynamic group of dairy cows: From individual to group level patterns. Appl. Anim. Behav. Sci. 2016, 174, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Foris, B.; Zebunke, M.; Langbein, J.; Melzer, N. Comprehensive analysis of affiliative and agonistic social networks in lactating dairy cattle groups. Appl. Anim. Behav. Sci. 2019, 210, 60–67. [Google Scholar] [CrossRef]
- Foris, B.; Zebunke, M.; Langbein, J.; Melzer, N. Evaluating the temporal and situational consistency of personality traits in adult dairy cattle. PLoS ONE 2018, 13, e0204619. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Hu, H.; Dai, B.; Wei, X.; Sun, J.; Jiang, L.; Sun, Y. Individual identification of dairy cows based on convolutional neural networks. Multimed. Tools Appl. 2020, 79, 14711–14724. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, Q.; Yin, X.; Wu, D.; Song, H.; He, D. FLYOLOv3 deep learning for key parts of dairy cow body detection. Comput. Electron. Agric. 2019, 166, 104982. [Google Scholar] [CrossRef]
- Salau, J.; Lamp, O.; Krieter, J. Dairy cows’ contact networks derived from videos of eight cameras. Biosyst. Eng. 2019, 188, 106–113. [Google Scholar] [CrossRef]
- Guo, Y.; He, D.; Chai, L. A Machine Vision-Based Method for Monitoring Scene-Interactive Behaviors of Dairy Calf. Animals 2020, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- González, L.A.; Tolkamp, B.J.; Coffey, M.P.; Ferret, A.; Kyriazakis, I. Changes in Feeding Behavior as Possible Indicators for the Automatic Monitoring of Health Disorders in Dairy Cows. J. Dairy Sci. 2008, 91, 1017–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaby, L.; Faverdin, P.; Michel, G.; Disenhaus, C.; Peyraud, J.-L. Effect of different feeding strategies on lactation performance of Holstein and Normande dairy cows. Animal 2009, 3, 891–905. [Google Scholar] [CrossRef] [Green Version]
- Dorea, J.R.R.; Rosa, G.J.M.; Weld, K.A.; Armentano, L.E. Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows. J. Dairy Sci. 2018, 101, 5878–5889. [Google Scholar] [CrossRef] [Green Version]
- Purcell, P.J.; Law, R.A.; Gordon, A.W.; McGettrick, S.A.; Ferris, C.P. Effect of concentrate feeding method on the performance of dairy cows in early to mid lactation. J. Dairy Sci. 2016, 99, 2811–2824. [Google Scholar] [CrossRef]
- Little, M.W.; O’Connell, N.E.; Ferris, C.P. A comparison of individual cow versus group concentrate allocation strategies on dry matter intake, milk production, tissue changes, and fertility of Holstein-Friesian cows offered a grass silage diet. J. Dairy Sci. 2016, 99, 4360–4373. [Google Scholar] [CrossRef]
- Bonora, F.; Benni, S.; Barbaresi, A.; Tassinari, P.; Torreggiani, D. A cluster-graph model for herd characterisation in dairy farms equipped with an automatic milking system. Biosyst. Eng. 2018, 167, 1–7. [Google Scholar] [CrossRef]
- Glatz-Hoppe, J.; Mohr, E.; Losand, B. Use of milk recording data for characterization of dairy cow supply situation Second part: Evaluation scheme for the assessment of milk ingredients at farm level. Zuechtungskunde 2019, 91, 449–473. [Google Scholar]
- Gazzarin, C.; Frey, H.-J.; Petermann, R.; Hoeltschi, M. Pasture feeding or cowshed feeding-which is more economical? Agrar. Schweiz 2011, 2, 418–423. [Google Scholar]
- Shalloo, L.; O’Donnell, S.; Horan, B. Profitable dairying in an increased EU milk quota scenario. In Proceedings of the National Dairy Conferences, Kilkenny, Ireland, 21–22 November 2007. [Google Scholar]
- Rombach, M.; Südekum, K.H.; Münger, A.; Schori, F. Herbage dry matter intake estimation of grazing dairy cows based on animal, behavioral, environmental, and feed variables. J. Dairy Sci. 2019, 102, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hills, J.; Wales, B.; Dunshea, F.; Garcia, S.; Roche, J. Invited review: An evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 2015, 98, 1363–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafiullah, A.Z.; Werner, J.; Kennedy, E.; Leso, L.; O’Brien, B.; Umstätter, C. Machine Learning Based Prediction of Insufficient Herbage Allowance with Automated Feeding Behaviour and Activity Data. Sensors 2019, 19, 4479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokhorst, C.; de Mol, R.M.; Kamphuis, C. Invited review: Big Data in precision dairy farming. Animal 2019, 13, 1519–1528. [Google Scholar] [CrossRef] [Green Version]
- Sykuta, M.E. Big data in agriculture: Property rights, privacy and competition in ag data services. Int. Food Agribus. Manag. Rev. 2016, 19, 5–74. [Google Scholar]
- Liu, Q.; Li, P.; Zhao, W.; Cai, W.; Yu, S.; Leung, V.C.M. A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View. IEEE Access 2018, 6, 12103–12117. [Google Scholar] [CrossRef]
- Weigel, K.A.; VanRaden, P.M.; Norman, H.D.; Grosu, H. A 100-Year Review: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms. J. Dairy Sci. 2017, 100, 10234–10250. [Google Scholar] [CrossRef] [Green Version]
- Bornmann, L. Scientific peer review. Annu. Rev. Inf. Sci. Technol. 2011, 45, 197–245. [Google Scholar] [CrossRef]
- Flach, P. Performance Evaluation in Machine Learning: The Good, the Bad, the Ugly, and the Way Forward. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Model Selection and Overfitting. Nat. Methods 2016. [Google Scholar] [CrossRef]
- Kučevi, ć.D.; Trivunović, S.; Šoronja, Ž.; Janković, D.; Stanojević, D.; Đedović, R.; Papović, T. Association between age at first calving and milk production in first lactation on longevity traits in Holstein cows. Biotechnol. Anim. Husb. 2020, 36, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Ferris, M.C.; Christensen, A.; Wangen, S.R. Symposium review: Dairy Brain—Informing decisions on dairy farms using data analytics. J. Dairy Sci. 2020, 103, 3874–3881. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.S.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 2020, 98, 102047. [Google Scholar] [CrossRef]
Google Scholar | Scopus | ||||
---|---|---|---|---|---|
Search String | In Title | In Document | Article Title | Abstract Title Keywords | In Document |
Machine learning agriculture | 81 | 39,100 | 17 (13/4) | 869 (808/61) | 18,453 (17,133/1320) |
Machine learning dairy | 33 | 15,900 | 19 (19/0) | 109 (102/7) | 2192 (1861/331) |
Random forest dairy | 3 | 15,900 | 3 (3/0) | 46 (46/0) | 1055 (930/125) |
Cluster* dairy | 41 | 18,200 | 36 (35/1) | 1174 (1143/31) | 14,714 (12,075/2009) |
Neural networks dairy | 12 | 15,800 | 12 (12/0) | 112 (108/4) | 4,133 (3368/765) |
Deep learning dairy | 9 | 15,900 | 5 (5/0) | 25 (21/4) | 863 (654/209) |
K-Nearest neighbor dairy | 0 | 379 | 0 | 10 (10/0) | 123 (114/9) |
Bayesian models dairy | 1 | 12,600 | 4 (4/0) | 213 (209/4) | 4318 (3920/398) |
Support vector dairy | 2 | 16,800 | 2 (2/0) | 51 (49/2) | 1803 (1464/339) |
Decision tree dairy | 3 | 16,600 | 3 (3/0) | 68 (67/1) | 1449 (1222/227) |
Ensemble learning dairy | 0 | 4010 | 0 | 13 (12/1) | 298 (249/49) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cockburn, M. Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms. Animals 2020, 10, 1690. https://doi.org/10.3390/ani10091690
Cockburn M. Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms. Animals. 2020; 10(9):1690. https://doi.org/10.3390/ani10091690
Chicago/Turabian StyleCockburn, Marianne. 2020. "Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms" Animals 10, no. 9: 1690. https://doi.org/10.3390/ani10091690
APA StyleCockburn, M. (2020). Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms. Animals, 10(9), 1690. https://doi.org/10.3390/ani10091690