Silage of Prickly Pears (Opuntia spp.) Juice By-Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Micro Silos Preparation
2.2. Evaluation of Chemical Composition and Silage Quality
2.3. In Vitro Gas Production
2.4. Statistical Analysis
3. Results
3.1. Micro Silos Quality and Composition
3.2. In Vitro Fermentation Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miranda-Romero, L.A.; Vazquez-Mendoza, P.; Burgueño-Ferreira, J.A.; Aranda-Osorio, G. Nutritive value of cactus pear silages for finishing lambs. J. Prof. Assoc. Cactus 2018, 20, 196–215. [Google Scholar]
- Nobel, P.S.; Bobich, E.G. Environmental biology. In Cacti, Biology and Uses; Nobel, P.S., Ed.; University of California Press: Los Angeles, CA, USA, 2002; Volume 5, pp. 7–74. [Google Scholar]
- FAO. Agro-Industrial Utilization of Cactus Pear; FAO: Rome, Italy, 2013. [Google Scholar]
- FAO; ICARDA. Crop. Ecology, Cultivation and Uses of Cactus Pear; FAO and ICARDA: Rome, Italy, 2017. [Google Scholar]
- De Oliveira, J.P.F.; De Andrade Ferreira, M.; Alves, A.M.S.V.; De Melo, A.C.C.; De Andrade, I.B.; Suassuna, J.M.A.; De Lima, S.J. Spineless cactus as a replacement for sugarcane in the diets of finishing lambs. Trop. Anim. Health and Prod. 2017, 49, 139–144. [Google Scholar] [CrossRef]
- Dubeux, J.C.B., Jr. Cactus: A Crop for the Dry Areas. Available online: https://www.feedipedia.org/sites/default/files/public/BH_028_cactus.pdf (accessed on 20 March 2020).
- Cardoso, D.B.; de Carvalhoa, F.F.R.; de Medeiros, G.R.; Guim, A.; Cabralc, A.M.D.; Verasd, R.M.L.; dos Santosa, K.C.; Dantasb, L.C.N.; Nascimento, A.G.D. Levels of inclusion of spineless cactus (Nopalea cochenillifera Salm Dyck) in the diet of lambs. Feed Sci. and Technol. 2019, 247, 23–31. [Google Scholar] [CrossRef]
- Amer, F.; Mobaraz, S.; Basyony, M.; Mahrose, K.; El-Medany, S. Effect of using prickly pear and its by-products as alternative feed resources on performance of growing rabbit. Egyptian J. Rabbit Sci. 2019, 29, 99–124. [Google Scholar] [CrossRef] [Green Version]
- Sumaya-Martínez, M.T.; Cruz-Jaime, S.; Madrigal-Santillán, E.; García-Paredes, J.D.; Cariño-Cortés, R.; Cruz-Cansino, N.; Valadez-Vega, C.; Martinez-Cardenas, L.; Alanís-García, E. Betalain, acid ascorbic, phenolic contents and antioxidant properties of purple, red, yellow and white cactus pears. Int. J. Mol. Sci. 2011, 12, 6452–6468. [Google Scholar] [CrossRef] [Green Version]
- Zenteno-Ramirez, G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Monzreal-Montes, M.; García, J.M.; Serratosa, M.P.; Varo Santos, M.Á.; Ortiz Pèrez, M.D.; Rendon-Huerta, J.A. Juices of prickly pear fruits (Opuntia spp.) as functional foods. Ital. J. Food Sci. 2018, 30, 614–627. [Google Scholar]
- ISTAT. Available online: http://dati.istat.it/Index.aspx?QueryId=33705 (accessed on 10 April 2020).
- Todaro, M.; Alabiso, M.; Di Grigoli, A.; Scatassa, M.L.; Cardamone, C.; Mancuso, I.; Mazza, F.; Bonanno, A. Prickly Pear By-Product in the Feeding of Livestock Ruminants: Preliminary Investigation. Animals 2020, 10, 949. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Liotta, L.; Musco, M.; Di Rosa, A.R.; Cutrignelli, M.I.; Chiofalo, B. In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition. Animals 2019, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [Green Version]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Hiriart, L.M. Ensilados: Procesamiento y Calidad, 2nd ed.; Trillas: Mexico City, Mexico, 2008; p. 116. [Google Scholar]
- Chendly, K.; Lee, S. Silage from by-products for smallholders. In Proceedings of the FAO Electronic Conference on Tropical Silage, Roma, Italy, 1 September–15 December 1999. [Google Scholar]
- Sahoo, A. Silage for Climate Resilient Small Ruminant Production. In Ruminants: The Husbandry, Economic and Health Aspects; IntechOpen Limited: London, UK, 2018. [Google Scholar]
- McDonald, P.; Henderson, N.; Heron, S. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Aberystwyth, UK, 1991. [Google Scholar]
- Seale, D.R.; Henderson, A.R.; Pettersson, K.O.; Lowe, J.F. The effect of addition of sugar and inoculation with two commercial inoculants on the fermentation of lucerne silage in laboratory silos. Grass Forage Sci. 1986, 41, 61–70. [Google Scholar] [CrossRef]
- Johnson, H.E.; Merry, R.J.; Davies, D.R.; Kell, D.B.; Theodorou, M.K.; Griffith, G.W. Vacuum packing: A model system for laboratory-scale silage fermentations. J. Appl. Microbiol. 2005, 98, 106–113. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre, and no starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 15th ed.; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- Calabrò, S.; Cutrignelli, M.I.; Piccolo, G.; Bovera, F.; Zicarelli, F.; Infascelli, F. In vitro fermentation kinetics of fresh and dried silage. Anim. Feed Sci. Tech. 2005, 123, 129–137. [Google Scholar] [CrossRef]
- EC Council. Regulation 882/2004 on Official controls performed to ensure verification of compliance with feed and food law, animal health and animal welfare rules. Off. J. Eur. Union 2004, L191/1, 1–52. [Google Scholar]
- Groot, J.C.J.; Cone, J.W.; William, B.A.; Debersaque, F.M.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feedstuff. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Voigt, C.; Mosenthin, R.; Verstegen, M.W.A. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. J. Anim. Sci. 2001, 73, 313–322. [Google Scholar] [CrossRef]
- SAS. ‘SAS/STAT Qualification Tools User’s Guide (Version 9.2); Statistical Analysis System; Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Mardia, K.V.; Kent, J.T.; Bibby, J.M. Multivariate Analysis; Academic Press: London, UK, 2000. [Google Scholar]
- Calabrò, S.; Lopez, S.; Piccolo, V.; Dijkstra, J.; Dhanoad, M.S.; France, J. Comparative analysis of gas production profiles obtained with buffalo and sheep ruminal fluid as the source of inoculum. Anim. Feed Sci. Technol. 2005, 123, 51–65. [Google Scholar] [CrossRef]
- Fantini, A. Le alterazioni dell’insilato minano la salute delle vacche. L’informatore Agrar. 2014, 14, 18–24. [Google Scholar]
- Batista, A.M.; Mustafa, A.F.; McAllister, T.; Wang, Y.; Soita, H.; McKinnon, J.J. Effects of variety on chemical composition, in situ nutrient disappearance and in vitro gas production of spineless cacti. J. Sci Food Agric. 2003, 83, 440–445. [Google Scholar] [CrossRef]
- Guglielmelli, A.; Calabrò, S.; Primi, S.; Carone, F.; Cutrignelli, M.I.; Tudisco, R.; Piccolo, G.; Ronchi, B.; Danieli, P.P. In vitro fermentation patterns and methane production of sainfoin (Onobrychis viciifolia Scop.) hay with different condensed tannin contents. Grass Forage Sci. 2011, 66, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Marles, S.; Bruce, M.A.; Coulman, E.; Bett, K.E. Interference of condensed tannin in lignin analyses of dry bean and forage crops. J. Agric. Food Chem. 2008, 56, 9797–9802. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Gibson, G.R. Microbiological aspects of the production of short-chain fatty acids in the large bowel. In Physiological and Clinical Aspects of Short-Chain Fatty Acids, 2nd ed.; Cummings, J., Rombeau, J., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 87–105. [Google Scholar]
Parameters | PPB Silage: Straw Percentages | Straw | Substrate | |||
---|---|---|---|---|---|---|
0% | 5% | 10% | p Value | |||
DM | % | 27.68 ± 0.42 B | 26.46 ± 0.27 B | 28.42 ± 0.27 B | 91.95 ± 0.38 A | <0.001 |
pH | 3.99 ± 0.01 A | 3.85 ± 0.01 C | 3.96 ± 0.01 B | Nd | <0.001 | |
N-NH3 | % TN | 14.10 ± 0.18 B | 13.29 ± 0.12 C | 15.24 ± 0.12 A | Nd | <0.001 |
CP | % DM | 6.91 ± 0.14 Aa | 6.68 ± 0.09 Aab | 6.40 ± 0.09 Bb | 2.85 ± 0.13 C | <0.001 |
Ether extract | “ | 6.13 ± 0.39 AB | 6.97 ± 0.25 A | 5.30 ± 0.25 B | 7.01 ± 0.35 A | <0.001 |
NDFom | “ | 61.12 ± 0.38 B | 59.50 ± 0.24 C | 60.69 ± 0.24 B | 82.13 ± 0.34 A | <0.001 |
ADFom | “ | 48.39 ± 0.51 B | 48.57 ± 0.33 B | 49.34 ± 0.33 B | 54.66 ± 0.47 A | <0.001 |
Hemicellulose | “ | 12.73 ± 0.44 B | 10.94 ± 0.29 C | 11.34 ± 0.29 C | 27.48 ± 0.40 A | <0.001 |
ADL | “ | 14.68 ± 0.21 A | 13.86 ± 0.14 B | 12.98 ± 0.14 C | 9.46 ± 0.19 D | <0.001 |
Cellulose | “ | 33.71 ± 0.40 Cd | 34.70 ± 0.26 Cc | 36.36 ± 0.26 B | 45.19 ± 0.37 A | <0.001 |
Ash | “ | 10.26 ± 0.22 A | 10.20 ± 0.14 A | 10.19 ± 0.14 A | 7.83 ± 0.20 B | <0.001 |
Parameter | PPB Silage: Straw Percentages | Straw | Substrate | |||
---|---|---|---|---|---|---|
0% | 5% | 10% | p Value | |||
OMD | % | 45.09 ± 1.00 D | 56.10 ± 0.65 B | 50.36 ± 0.65 C | 60.36 ± 0.91 A | <0.001 |
OMCV | mL/g | 132.68 ± 5.28 C | 206.53 ± 3.41 B | 211.93 ± 3.41 B | 252.33 ± 4.82 A | <0.001 |
A | mL/g | 120.92 ± 4.09 D | 184.52 ± 2.64 B | 163.57 ± 2.64 C | 227.78 ± 3.73 A | <0.001 |
B | h | 12.35 ± 0.47 C | 18.59 ± 0.31 B | 29.24 ± 0.43 B | 19.60 ± 0.31 A | <0.001 |
C | 1.25 ± 0.06 C | 1.61 ± 0.04 B | 1.53 ± 0.04 B | 2.00 ± 0.06 A | <0.001 | |
Rmax | mL/h | 7.32 ± 0.30 A | 5.80 ± 0.23 B | 5.38 ± 0.23 B | 5.07 ± 0.33 B | <0.001 |
Tmax | h | 1.92 ± 0.55 D | 7.91 ± 0.35 B | 6.32 ± 0.35 C | 16.84 ± 0.50 A | <0.001 |
Parameter | PPB Silage: Straw Percentages | Straw | Substrate p Value | |||
---|---|---|---|---|---|---|
0% | 5% | 10% | ||||
pH | 6.86 ± 0.07 A | 6.75 ± 0.04 A | 6.87 ± 0.04 A | 6.63 ± 0.06 B | <0.001 | |
Acetate | mmol/g OM | 34.75 ± 1.60 D | 46.17 ± 1.04 B | 42.51 ± 1.00 C | 59.64 ± 1.47 A | <0.001 |
Propionate | “ | 11.24 ± 0.51 D | 17.52 ± 0.33 B | 15.24 ± 0.33 C | 21.90 ± 0.47 A | <0.001 |
Iso-butyrate | “ | 0.35 ± 0.01 C | 0.39 ± 0.01 B | 0.32 ± 0.01 C | 0.49 ± 0.01 A | <0.001 |
Butyrate | “ | 3.98 ± 0.28 Bc | 4.60 ± 0.18 Bb | 3.95 ± 0.18 Bc | 6.50 ± 0.25 Aa | <0.001 |
Iso-valerate | “ | 0.49 ± 0.03 B | 0.67 ± 0.02 A | 0.48 ± 0.02 B | 0.75 ± 0.03 A | <0.001 |
Valerate | “ | 0.76 ± 0.05 B | 1.03 ± 0.03 A | 0.75 ± 0.03 B | 0.54 ± 0.05 C | <0.001 |
VFA | “ | 52.78 ± 2.19 D | 70.38 ± 1.41 B | 63.75 ± 1.41 C | 89.80 ± 2.00 A | <0.001 |
BCFA | % VFA | 1.62 ± 0.06 Aa | 1.52 ± 0.04A Ba | 1.28 ± 0.04 Cc | 1.39 ± 0.05B Cb | <0.001 |
Substrate | PPB 0% Straw | PPB 5% Straw | PPB 10% Straw | Straw |
---|---|---|---|---|
PPB 0% straw | 0 | 49 (p < 0.001) | 69 (p < 0.001) | 729 (p < 0.001) |
PPB 5% straw | 0 | 15 (p < 0.001) | 955 (p < 0.001) | |
PPB 10% straw | 0 | 956 (p < 0.001) | ||
Straw | 0 |
Variable | 1st Canonical Variable | 2nd Canonical Variable |
---|---|---|
Ash | 0.890 | −0.007 |
CP | 0.976 | 0.069 |
Ether extract | −0.293 | 0.168 |
Cellulose | −0.954 | −0.164 |
Hemicellulose | −0.981 | 0.115 |
Lignin | 0.908 | 0.321 |
pH | 0.419 | 0.011 |
OMD | −0.623 | −0.375 |
OMCV | −0.622 | −0.712 |
Tmax | −0.888 | −0.310 |
Rmax | 0.321 | 0.594 |
Acetate | −0.805 | −0.319 |
Propionate | −0.746 | −0.418 |
Butyrate | −0.795 | 0.004 |
Iso-butyrate | −0.778 | 0.081 |
Valerate | 0.585 | −0.089 |
Iso-valerate | −0.556 | −0.060 |
BCFA | 0.123 | 0.563 |
Explained variance (%) | 93.8 | 5.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vastolo, A.; Calabrò, S.; Cutrignelli, M.I.; Raso, G.; Todaro, M. Silage of Prickly Pears (Opuntia spp.) Juice By-Products. Animals 2020, 10, 1716. https://doi.org/10.3390/ani10091716
Vastolo A, Calabrò S, Cutrignelli MI, Raso G, Todaro M. Silage of Prickly Pears (Opuntia spp.) Juice By-Products. Animals. 2020; 10(9):1716. https://doi.org/10.3390/ani10091716
Chicago/Turabian StyleVastolo, Alessandro, Serena Calabrò, Monica Isabella Cutrignelli, Girolamo Raso, and Massimo Todaro. 2020. "Silage of Prickly Pears (Opuntia spp.) Juice By-Products" Animals 10, no. 9: 1716. https://doi.org/10.3390/ani10091716
APA StyleVastolo, A., Calabrò, S., Cutrignelli, M. I., Raso, G., & Todaro, M. (2020). Silage of Prickly Pears (Opuntia spp.) Juice By-Products. Animals, 10(9), 1716. https://doi.org/10.3390/ani10091716