Dietary l-carnitine Supplementation Modifies the Lipopolysaccharide-Induced Acute Phase Reaction in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurements and Sample Collection
2.3. Analyses
2.4. Calculations
2.5. Statistical Analyses
3. Results
3.1. Feed Intake, Body Condition and Milk
3.2. Energy Metabolism
3.3. Clinical Findings and Clinical Cumulative Score
3.4. Blood Parameters
3.4.1. Carnitine
3.4.2. Parameters Primarily Related to Energy Metabolism
3.4.3. Key Indicators for Acute Phase Reaction
3.4.4. Blood Gases and Electrolytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Category | Parameter | Score | Meaning |
---|---|---|---|
Posture and behavior | Ear position | 0, 1, 2 | Horizontal, tense and backwards, low |
Behavior | |||
Calm | 0, 1, 2 | Calm and attentive, calm, apathetic | |
Nervous | 0, 1, 2 | Calm and attentive, nervous, hyper nervous | |
Circulatory | Muzzle | 0, 1 | Wet, dry |
Conjunctive | |||
Hypoaemic | 0, 1, 2 | Pale rose, pale, cyanotic | |
Hyperaemic | 0, 1, 2 | Pale rose, rose red, red | |
Injected episcleral vessels | 0, 1, 2, 3 | No, low, medium, severe injected | |
Washed out episcleral vessels | 0, 1 | No, yes | |
Heart rate | |||
Bradycardia | 0, 1, 2, 3 | 65–85, 44–64, 23–43, <43 [bpm] | |
Tachycardia | 0, 1, 2, 3 | 65–85, 86–106, 107–127, >127 [bpm] | |
Respiratory | Respiratory rate | ||
Bradypnea | 0, 1, 2, 3 | 24–36, 15–23, 6–14, <6 [breaths/min] | |
Tachypnea | 0, 1, 2, 3 | 24–36, 37–49, 50–62, >62 [breaths/min] | |
Pathological breathing sound | 0, 1, 2, 3 | None, low, medium, severe labored breathing | |
Digestive | Primary rumen contractions | ||
Hypoperistaltic | 0, 1, 2 | 2–3, 1, 0 [numbers/2 min] | |
Hyperperistaltic | 0, 1, 2 | 2–3, 4, >4 [numbers/2 min] | |
Rumen sound | |||
reduced | 0, 1 | Loud, less loud-silence | |
increased | 0, 1 | Loud, intensive loud | |
Abdominal wall tension | 0, 1, 2, 3 | No, low, medium, severe increased tension | |
Dorsal gas bubble | 0, 1 | Not existing, existing | |
Diarrhoea | 0, 1 | No, yes | |
Rectal temperature | Rectal temperature | ||
Hypothermia | 0, 1, 2, 3 | 38–39, 37–37.9, 36–36.9, <36 [°C] | |
Hyperthermia | 0, 1, 2, 3 | 38–39, 39.1–40, 40.1–41, 41.1–42 [°C] |
Week Relative to LPS Injection | Water Intake [kg/d] | Total Energy Intake [MJ NEL/d] | NEL 1 [MJ/d] | NEB 2 [MJ NEL/d] | Feed Efficiency |
---|---|---|---|---|---|
CON/CAR | |||||
−1 | 75/71 | 159/161 | 124/123 | −2.6/1.6 | 1.7/1.7 |
1 | 155/150 | 120/116 | −2.2/−2.1 | 1.7/1.7 | |
2 | 82/77 | 156/166 | 118/114 | 0.2/14.5 | 1.7/1.5 |
3 | 82/79 | 162/169 | 121/117 | 3.9/14.7 | 1.6/1.5 |
p-Value 3 | |||||
G | 0.137 | 0.426 | 0.328 | 0.066 | 0.050 |
T | <0.001 | 0.003 | 0.002 | 0.001 | 0.001 |
G*T | 0.663 | 0.192 | 0.847 | 0.107 | 0.144 |
PSE4 | 1.825 | 2.902 | 2.210 | 2.931 | 0.034 |
WeekRelative to LPS Injection | Body Weight [kg] | BCS 1 | Milk Yield [kg/d] | Milk Fat [%] | Milk Protein [%] | Fat-Protein Ratio | Lactose [%] | SCC 2 [log10/mL] |
---|---|---|---|---|---|---|---|---|
CON/CAR | ||||||||
−1 | 647/636 | 3.09/2.99 | 41.3/39.6 | 3.4/3.6 | 3.2/3.2 | 1.08/1.14 | 4.83/4.88 | 1.40/1.57 |
1 | 629/623 | 3.05/2.92 | 37.2/36.5 | 4.1/3.9 | 3.2/3.1 | 1.29/1.26 | 4.91/4.75 | 1.61/1.62 |
2 | 645/635 | 3.01/2.92 | 40.2/38.2 | 3.3/3.3 | 3.2/3.3 | 1.00/1.02 | 4.88/4.86 | 1.58/1.57 |
3 | 648/638 | 3.05/2.95 | 40.5/38.4 | 3.3/3.6 | 3.3/3.3 | 1.01/1.10 | 4.87/4.86 | 1.52/1.57 |
p-Value 3 | ||||||||
G | 0.610 | 0.424 | 0.172 | 0.591 | 0.819 | 0.502 | 0.549 | 0.709 |
T | <0.001 | 0.182 | <0.001 | <0.001 | 0.001 | <0.001 | 0.883 | 0.054 |
G*T | 0.373 | 0.862 | 0.109 | 0.132 | 0.564 | 0.270 | 0.298 | 0.265 |
PSE4 | 9.311 | 0.067 | 0.634 | 0.112 | 0.040 | 0.034 | 0.044 | 0.079 |
Week Relative to LPS Injection | Fat-Corrected Milk 1 [kg/d] | Energy-Corrected Milk 2 [kg/d] | Milk Energy 3 [MJ/kg] |
---|---|---|---|
CON/CAR | |||
−1 | 37.7/37.6 | 38.0/37.6 | 2.9/3.0 |
1 | 37.4/36.0 | 36.9/35.4 | 3.2/3.1 |
2 | 35.6/34.4 | 36.3/35.0 | 2.9/2.9 |
3 | 36.5/35.6 | 37.2/35.9 | 2.9/3.0 |
p-Value 4 | |||
G | 0.472 | 0.327 | 0.671 |
T | 0.003 | 0.002 | <0.001 |
G*T | 0.750 | 0.848 | 0.153 |
PSE5 | 0.756 | 0.676 | 0.046 |
Day/Hours Relative to LPS Injection | Triacyl-Glycerides [mmol/L] | CO2 [mmol/L] | Beecf [mmol/L] | Ca [mmol/L] | Ca:P | Anion Gap 1 [mmol/L] |
---|---|---|---|---|---|---|
CON/CAR | ||||||
−1 | 0.13/0.130 | 32.72/33.04 | 7.07/7.48 | 2.30/2.35 | 1.58/1.71 | 8.30/9.75 |
0.5 | 0.17/0.18 | 32.93/30.16 | 7.27/4.63 | 2.19/2.15 | 1.52/1.67 | 8.17/10.67 |
1 | 0.09/0.10 | 29.44/29.76 | 3.26/3.55 | 2.04/1.96 | 1.67/1.69 | 9.37/10.75 |
2 | 0.09/0.10 | 29.00/30.12 | 2.76/4.02 | 1.91/1.70 | 1.76/1.61 | 8.14/8.08 |
3 | 0.08/0.08 | 29.31/30.23 | 3.71/4.84 | 1.60/1.54 | 1.99/1.92 | 7.77/9.00 |
4 | 0.08/0.08 | 24.88/26.37 | −0.80/0.73 | 1.60/1.51 | 2.60/2.30 | 9.63/10.92 |
6 | 0.08/0.08 | 26.12/28.50 | 0.53/2.94 | 1.61/1.48 | 2.05/2.18 | 9.45/10.40 |
9 | 0.10/0.09 | 27.94/28.75 | 2.10/2.84 | 1.71/1.54 | 1.30/1.28 | 9.62/10.42 |
12 | 0.10/0.10 | 28.28/28.53 | 2.54/2.73 | 1.80/1.67 | 1.23/1.18 | 10.17/10.31 |
24 | 0.11/0.11 | 28.93/28.35 | 3.36/2.83 | 2.04/2.04 | 1.29/1.25 | 9.71/10.02 |
48 | 0.09/0.09 | 31.14/30.71 | 5.56/5.12 | 2.20/2.15 | 1.68/1.55 | 8.59/8.57 |
72 | 0.09/0.08 | 31.64/30.95 | 5.97/5.58 | 2.30/2.29 | 1.56/1.65 | 8.41/8.53 |
7 | 0.14/0.14 | 31.47/31.31 | 5.59/5.36 | 2.47/2.39 | 1.68/1.91 | 8.17/9.03 |
14 | 0.13/0.13 | 30.63/31.91 | 4.79/6.22 | 2.41/2.40 | 1.56/1.64 | 8.59/7.84 |
p-Value 2 | ||||||
G | 0.840 | 0.648 | 0.595 | 0.081 | 0.960 | 0.183 |
T | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
G*T | 0.523 | 0.094 | 0.158 | 0.404 | 0.597 | 0.330 |
PSE3 | 0.003 | 0.343 | 0.357 | 0.033 | 0.055 | 0.258 |
References
- McGarry, J.D.; Brown, N.F. The Mitochondrial Carnitine Palmitoyltransferase System—From Concept to Molecular Analysis. Eur. J. Biochem. 1997, 244, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rebouche, C.J.; Seim, H. Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr. 1998, 18, 39–61. [Google Scholar] [CrossRef] [PubMed]
- Pirestani, A.; Aghakhani, M. The effects of rumen-protected choline and l-carnitine supplementation in the transition period on reproduction, production, and some metabolic diseases of dairy cattle. J. Appl. Anim. Res. 2018, 46, 435–440. [Google Scholar] [CrossRef]
- Meyer, J.; Daniels, S.U.; Grindler, S.; Tröscher-Mußotter, J.; Alaedin, M.; Frahm, J.; Hüther, L.; Kluess, J.; Kersten, S.; von Soosten, D. Effects of a Dietary l-carnitine Supplementation on Performance, Energy Metabolism and Recovery from Calving in Dairy Cows. Animals 2020, 10, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüderitz, O.; Tanamoto, K.; Galanos, C.; McKenzie, G.R.; Brade, H.; Zähringer, U.; Rietschel, E.T.; Kusumoto, S.; Shiba, T. Lipopolysaccharides: Structural Principles and Biologic Activities. Rev. Infect. Dis. 1984, 6, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Waldron, M.; Nishida, T.; Nonnecke, B.; Overton, T. Effect of lipopolysaccharide on indices of peripheral and hepatic metabolism in lactating cows. J. Dairy Sci. 2003, 86, 3447–3459. [Google Scholar] [CrossRef]
- Kushibiki, S.; Hodate, K.; Shingu, H.; Hayashi, T.; Touno, E.; Shinoda, M.; Yokomizo, Y. Alterations in lipid metabolism induced by recombinant bovine tumor necrosis factor-alpha administration to dairy heifers. J. Anim. Sci. 2002, 80, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Buttgereit, F.; Burmester, G.-R.; Brand, M.D. Bioenergetics of immune functions: Fundamental and therapeutic aspects. Immunol. Today 2000, 21, 194–199. [Google Scholar] [CrossRef]
- Zhou, X.; Ringseis, R.; Wen, G.; Eder, K. The pro-inflammatory cytokine tumor necrosis factor α stimulates expression of the carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κB in Madin-Darby bovine kidney cells. J. Dairy Sci. 2015, 98, 3840–3848. [Google Scholar] [CrossRef]
- Edmonson, A.; Lean, I.; Weaver, L.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Dirksen, G.; Gründer, H.-D.; Stöber, M. Die klinische Untersuchung des Rindes; Parey Publisher: Singhofen, Germany, 1990; Volume 4. [Google Scholar]
- VDLUFA. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten; VDLUFA-Verlag: Darmstadt, Germany, 2006. [Google Scholar]
- Hiss, S.; Mielenz, M.; Bruckmaier, R.M.; Sauerwein, H. Haptoglobin Concentrations in Blood and Milk After Endotoxin Challenge and Quantification of Mammary Hp mRNA Expression. J. Dairy Sci. 2004, 87, 3778–3784. [Google Scholar] [CrossRef]
- Hirche, F.; Fischer, M.; Keller, J.; Eder, K. Determination of carnitine, its short chain acyl esters and metabolic precursors trimethyllysine and γ-butyrobetaine by quasi-solid phase extraction and MS/MS detection. J. Chromatogr. B 2009, 877, 2158–2162. [Google Scholar] [CrossRef] [PubMed]
- Ling, B.; Alcorn, J. LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and l-carnitine transporter expression at different lactation stages. Res. Vet. Sci. 2010, 89, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Buyse, J.; Swennen, Q.; Niewold, T.A.; Klasing, K.C.; Janssens, G.P.J.; Baumgartner, M.; Goddeeris, B.M. Dietary l-carnitine supplementation enhances the lipopolysaccharide-induced acute phase protein response in broiler chickens. Vet. Immunol. Immunopathol. 2007, 118, 154–159. [Google Scholar] [CrossRef]
- Famularo, G.; Simone, C.; Trinchieri, V.; Mosca, L. Carnitines and Its Congeners: A Metabolic Pathway to the Regulation of Immune Response and Inflammation. Ann. N. Y. Acad. Sci. 2004, 1033, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.; Andersen, P.H.; Toelboell, T.; Heegaard, P.M.H. Dose Dependency and Individual Variability of the Lipopolysaccharide-Induced Bovine Acute Phase Protein Response. J. Dairy Sci. 2004, 87, 3330–3339. [Google Scholar] [CrossRef] [Green Version]
- Burdick, N.C.; Bernhard, B.C.; Carroll, J.A.; Rathmann, R.J.; Johnson, B.J. Enhancement of the acute phase response to a lipopolysaccharide challenge in steers supplemented with chromium. Innate Immun. 2011, 18, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Hirschl, R.B.; Heiss, K.F.; Cilley, R.E.; Hultquist, K.A.; Housner, J.; Bartlett, R.H. Oxygen kinetics in experimental sepsis. Surgery 1992, 112, 37–44. [Google Scholar]
- White, H.D.; Vazquez-Sandoval, A.; Quiroga, P.F.; Song, J.; Jones, S.F.; Arroliga, A.C. Utility of venous blood gases in severe sepsis and septic shock. Proceedings (Bayl. Univ. Med. Cent.) 2018, 31, 269–275. [Google Scholar] [CrossRef]
- Bannert, E.; Tesch, T.; Kluess, J.; Frahm, J.; Kersten, S.; Kahlert, S.; Renner, L.; Rothkötter, H.J.; Dänicke, S. Metabolic and Hematological Consequences of Dietary Deoxynivalenol Interacting with Systemic Escherichia coli Lipopolysaccharide. Toxins 2015, 7, 4773–4796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, M.; Eletr, D.; Bone, H.G.; Ertmer, C.; Weber, T.P.; Aken, H.V.; Booke, M. Arteriovenous carboxyhemoglobin difference in critical illness: Fiction or fact? Biochem. Biophys. Res. Commun. 2002, 299, 479–482. [Google Scholar] [CrossRef]
- Filis, C.; Vasileiadis, I.; Koutsoukou, A. Hyperchloraemia in sepsis. Ann. Intensive Care 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Bellomo, R.; Kramer, D.J.; Pinsky, M.R. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock 1998, 9, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Penn, D.; Zhang, L.; Bobrowski, P.J.; Quinn, M.; McDonough, K.H. Carnitine deprivation adversely affects cardiac performance in the lipopolysaccharide- and hypoxia/reoxygenation-stressed piglet heart. Shock 1999, 11, 120–126. [Google Scholar] [CrossRef]
- Hermann, G.E.; Tovar, C.A.; Rogers, R.C. LPS-induced suppression of gastric motility relieved by TNFR : Fc construct in dorsal vagal complex. Am. J. Physiol. Gastr. Liver Physiol. 2002, 283, G634–G639. [Google Scholar] [CrossRef] [Green Version]
- Ali, T.M.; Nicholson, T.; Singleton, A.G. Stomach motility in insulin-treated sheep. Q. J. Exp. Physiol. 1976, 61, 321–329. [Google Scholar] [CrossRef]
- Onofrj, M.; Ciccocioppo, F.; Varanese, S.; di Muzio, A.; Calvani, M.; Chiechio, S.; Osio, M.; Thomas, A. Acetyl-l-carnitine: From a biological curiosity to a drug for the peripheral nervous system and beyond. Expert Rev. Neurother. 2013, 13, 925–936. [Google Scholar] [CrossRef]
- Fregonesi, C.E.P.T.; Molinari, S.L.; Alves, Â.M.P.; Defani, M.A.; Zanoni, J.N.; Bazotte, R.B.; De Miranda Neto, M.H. Morphoquantitative Aspects of Nitrergic Myoenteric Neurons from the Stomach of Diabetic Rats Supplemented with Acetyl-l-carnitine. Anat. Histol. Embryol. 2005, 34, 93–97. [Google Scholar] [CrossRef]
- Shuster, D.; Harmon, R.; Jackson, J.; Hemken, R. Suppression of milk production during endotoxin-induced mastitis. J. Dairy Sci. 1991, 74, 3763–3774. [Google Scholar] [CrossRef]
- Roseler, D.K.; Ferguson, J.D.; Sniffen, C.J.; Herrema, J. Dietary Protein Degradability Effects on Plasma and Milk Urea Nitrogen and Milk Nonprotein Nitrogen In Holstein Cows. J. Dairy Sci. 1993, 76, 525–534. [Google Scholar] [CrossRef]
- Carlson, D.B.; Litherland, N.B.; Dann, H.M.; Woodworth, J.C.; Drackley, J.K. Metabolic Effects of Abomasal l-carnitine Infusion and Feed Restriction in Lactating Holstein Cows. J. Dairy Sci. 2006, 89, 4819–4834. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, J.L.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q. Role of carnitine in disease. Nutr. Metab. 2010, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringseis, R.; Keller, J.; Eder, K. Mechanisms underlying the anti-wasting effect of l-carnitine supplementation under pathologic conditions: Evidence from experimental and clinical studies. Eur. J. Nutr. 2013, 52, 1421–1442. [Google Scholar] [CrossRef]
- Giri, S.N.; Emau, P.; Cullor, J.S.; Stabenfeldt, G.H.; Bruss, M.L.; Bondurant, R.H.; Osburn, B.I. Effects of endotoxin infusion on circulating levels of eicosanoids, progesterone, cortisol, glucose and lactic acid, and abortion in pregnant cows. Vet. Microbiol. 1990, 21, 211–231. [Google Scholar] [CrossRef]
- McGuinness, O.P. DEFECTIVE GLUCOSE HOMEOSTASIS DURING INFECTION. Annu. Rev. Nutr. 2005, 25, 9–35. [Google Scholar] [CrossRef]
- Filkins, J.; Cornell, R. Depression of hepatic gluconeogenesis and the hypoglycemia of endotoxin shock. Am. J. Physiol. Leg. Conten 1974, 227, 778–781. [Google Scholar] [CrossRef]
- Carlson, D.B.; McFadden, J.W.; D’Angelo, A.; Woodworth, J.C.; Drackley, J.K. Dietary l-carnitine Affects Periparturient Nutrient Metabolism and Lactation in Multiparous Cows. J. Dairy Sci. 2007, 90, 3422–3441. [Google Scholar] [CrossRef]
- Mason, T.M.; Goh, T.; Tchipashvili, V.; Sandhu, H.; Gupta, N.; Lewis, G.F.; Giacca, A. Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats. Am. Diabetes Assoc. 1999, 48, 524–530. [Google Scholar] [CrossRef]
- Oikawa, S.; Oetzel, G.R. Decreased Insulin Response in Dairy Cows Following a Four-Day Fast to Induce Hepatic Lipidosis. J. Dairy Sci. 2006, 89, 2999–3005. [Google Scholar] [CrossRef]
- Carroll, J.A.; Reuter, R.R.; Chase Jr, C.C.; Coleman, S.W.; Riley, D.G.; Spiers, D.E.; Arthington, J.D.; Galyean, M.L. Profile of the bovine acute-phase response following an intravenous bolus-dose lipopolysaccharide challenge. Innate Immun. 2009, 15, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Gross, J.J.; Wellnitz, O.; Bruckmaier, R.M. Cortisol secretion in response to metabolic and inflammatory challenges in dairy cows. J. Anim. Sci. 2015, 93, 3395–3401. [Google Scholar] [CrossRef] [PubMed]
- Werling, D.; Sutter, F.; Arnold, M.; Kun, G.; Tooten, P.C.J.; Gruys, E.; Kreuzer, M.; Langhans, W. Characterisation of the acute phase response of heifers to a prolonged low dose infusion of lipopolysaccharide. Res. Vet. Sci. 1996, 61, 252–257. [Google Scholar] [CrossRef]
- Steiger, M.; Senn, M.; Altreuther, G.; Werling, D.; Sutter, F.; Kreuzer, M.; Langhans, W. Effect of a prolonged low-dose lipopolysaccharide infusion on feed intake and metabolism in heifers. J. Anim. Sci. 1999, 77, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, J.; Kononov, S.U.; Grindler, S.; Tröscher-Mußotter, J.; Alaedin, M.T.; Frahm, J.; Hüther, L.; Kluess, J.; Kersten, S.; von Soosten, D.; et al. Dietary l-carnitine Supplementation Modifies the Lipopolysaccharide-Induced Acute Phase Reaction in Dairy Cows. Animals 2021, 11, 136. https://doi.org/10.3390/ani11010136
Meyer J, Kononov SU, Grindler S, Tröscher-Mußotter J, Alaedin MT, Frahm J, Hüther L, Kluess J, Kersten S, von Soosten D, et al. Dietary l-carnitine Supplementation Modifies the Lipopolysaccharide-Induced Acute Phase Reaction in Dairy Cows. Animals. 2021; 11(1):136. https://doi.org/10.3390/ani11010136
Chicago/Turabian StyleMeyer, Jennifer, Susanne Ursula Kononov, Sandra Grindler, Johanna Tröscher-Mußotter, Mohamad Taher Alaedin, Jana Frahm, Liane Hüther, Jeannette Kluess, Susanne Kersten, Dirk von Soosten, and et al. 2021. "Dietary l-carnitine Supplementation Modifies the Lipopolysaccharide-Induced Acute Phase Reaction in Dairy Cows" Animals 11, no. 1: 136. https://doi.org/10.3390/ani11010136
APA StyleMeyer, J., Kononov, S. U., Grindler, S., Tröscher-Mußotter, J., Alaedin, M. T., Frahm, J., Hüther, L., Kluess, J., Kersten, S., von Soosten, D., Meyer, U., Most, E., Eder, K., Sauerwein, H., Seifert, J., Huber, K., Wegerich, A., Rehage, J., & Dänicke, S. (2021). Dietary l-carnitine Supplementation Modifies the Lipopolysaccharide-Induced Acute Phase Reaction in Dairy Cows. Animals, 11(1), 136. https://doi.org/10.3390/ani11010136