Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Birds, Diets, and Experimental Design
2.3. Analysis of Mycotoxins in Experimental Feeds
2.4. Sampling and Analysis
2.5. DON and DON-3S Determination in Different Biological Matrices (Plasma, Liver, and Excreta)
2.5.1. Chemicals, Products and Reagents
2.5.2. In Plasma
2.5.3. In Liver and Excreta
2.5.4. LC-MS/MS Analysis
2.6. Blood Hematology
2.7. Response to Common Vaccines (NDV and IBV)
2.8. Plasma IL-8 Determination
2.9. Gene Expression by Quantitative Real-Time PCR (qRT-PCR)
2.10. Physiological Stress Related-Parametrs
2.10.1. Stress Index (Heterophil to Lymphocyte Ratio)
2.10.2. Plasma Corticosterone Determination
2.11. Statistical Analysis
3. Results
3.1. Dietary Mycotoxin Concentrations
3.2. DON and DON-3S Determination in Plasma, Liver, and Excreta
3.3. Hematological Indices
3.4. Response to Common Vaccines (NDV and IBV)
3.5. Plasma IL-8 Production and Realtive mRNA Expression of Immune Genes
3.6. Physiological Stress Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Creppy, E.E. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol. Lett. 2002, 127, 19–28. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Shatzmayr, G. Global mycotoxin occurrence in feed: A ten year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins inproducts intended for animal feeding. Off. J. Eur. Union 2006, 299, 7–9. [Google Scholar]
- Kubena, L.F.; Edrington, T.S.; Harvey, R.B.; Buckley, S.A.; Phillips, T.D.; Rottinghaus, G.E.; Casper, H.H. Individual and combined effects of fumonisin B1 present in fusarium moniliforme culture material and T-2 Toxin or deoxynivalenol in broiler chicks. Poult. Sci. 1997, 76, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.B.; Kubena, L.F.; Rottinghaus, G.E.; Turk, J.R.; Casper, H.H.; Buckley, S.A. Moniliformin from Fusarium fujikuroi culture material and deoxynivalenol from naturally contaminated wheat incorporated into diets of broiler chicks. Avian Dis. 1997, 41, 957. [Google Scholar] [CrossRef] [PubMed]
- Broekaert, N.; Devreese, M.; van Bergen, T.; Schauvliege, S.; De Boevre, M.; De Saeger, S.; Vanhaecke, L.; Berthiller, F.; Michlmayr, H.; Malachová, A.; et al. In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: Oral bioavailability, hydrolysis and toxicokinetics. Arch. Toxicol. 2017, 91, 699–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dänicke, S.; Brezina, U. Kinetics and metabolism of the fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem. Toxicol. 2013, 60, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Devreese, M.; Antonissen, G.; Broekaert, N.; De Mil, T.; De Baere, S.; Vanhaecke, L.; De Backer, P.; Croubels, S. Toxicokinetic study and oral bioavailability of deoxynivalenol in Turkey poults, and comparative biotransformation between broilers and Turkeys. World Mycotoxin J. 2015, 8, 533–539. [Google Scholar] [CrossRef]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.; Fremy, J.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H.; et al. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2017, 6. [Google Scholar] [CrossRef]
- Bondy, G.S.; Pestka, J.J. Immunomodulation by fungal toxins. J. Toxicol. Environ. Health Part B Crit. Rev. 2000, 3, 109–143. [Google Scholar] [CrossRef]
- Pestka, J.J.; Zhou, H.R.; Moon, Y.; Chung, Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 2004, 153, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins 2010, 2, 1300–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghareeb, K.; Awad, W.A.; Böhm, J. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poult. Sci. 2012, 91, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Antonissen, G.; De Baere, S.; Devreese, M.; Van Immerseel, F.; Martel, A.; Croubels, S. Feed contamination with Fusarium mycotoxins induces a corticosterone stress response in broiler chickens. Poult. Sci. 2017, 96, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Riahi, I.; Marquis, V.; Ramos, A.J.; Brufau, J.; Esteve-Garcia, E.; Pérez-Vendrell, A.M. Effects of deoxynivalenol contaminated-diets on productive, morphological, and physiological indicators in broiler chickens. Animals 2020, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Metayer, J.P.; Travel, A.; Mika, A.; Bailly, J.D.; Cleva, D.; Boissieu, C.; Le Guennec, J.; Froment, P.; Albaric, O.; Labrut, S.; et al. Lack of toxic interaction between fusariotoxins in broiler chickens fed throughout their life at the highest level tolerated in the european union. Toxins 2019, 11, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broekaert, N.; Devreese, M.; De Mil, T.; Fraeyman, S.; De Baere, S.; De Saeger, S.; De Backer, P.; Croubels, S. Development and validation of an LC-MS/MS method for the toxicokinetic study of deoxynivalenol and its acetylated derivatives in chicken and pig plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 971, 43–51. [Google Scholar] [CrossRef]
- Reid, W.D.K.; Close, A.J.; Humphrey, S.; Chaloner, G.; Lacharme-Lora, L.; Rothwell, L.; Kaiser, P.; Williams, N.J.; Humphrey, T.J.; Wigley, P.; et al. Cytokine responses in birds challenged with the human food-borne pathogen Campylobacter jejuni implies a Th17 response. R. Soc. Open Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Eicher, S.D.; Applegate, T.J. Effects of increasing dietary concentrations of corn naturally contaminated with deoxynivalenol on broiler and Turkey poult performance and response to lipopolysaccharide. Poult. Sci. 2011, 90, 2766–2774. [Google Scholar] [CrossRef] [PubMed]
- Cote, L.M.; Beasley, V.R.; Bratich, P.M.; Swanson, S.P.; Shivaprasad, H.L.; Buck, W.B. Sex-related reduced weight gains in growing swine fed diets containing deoxynivalenol. J. Anim. Sci. 1985, 61, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Swamy, H.V.L.N.; Smith, T.K.; Cotter, P.F.; Boermans, H.J.; Sefton, A.E. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on production and metabolism in broilers. Poult. Sci. 2002, 81, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, K.; Awad, W.A.; Böhm, J.; Zebeli, Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: Poultry and swine. J. Appl. Toxicol. 2015, 35, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Hess, M.; Twaruzek, M.; Grajewski, J.; Kosicki, R.; Böhm, J.; Zentek, J. The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci. 2011, 12, 7996–8012. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Huang, L.; Pan, Y.; Wu, Q.; Chen, D.; Tao, Y.; Wang, X.; Liu, Z.; Li, J.; Wang, L.; et al. Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. J. Agric. Food Chem. 2014, 62, 288–296. [Google Scholar] [CrossRef]
- Lauwers, M.; Croubels, S.; Letor, B.; Gougoulias, C.; Devreese, M. Biomarkers for exposure as a tool for efficacy testing of a mycotoxin detoxifier in broiler chickens and pigs. Toxins 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Schwartz-Zimmermann, H.E.; Fruhmann, P.; Dänicke, S.; Wiesenberger, G.; Caha, S.; Weber, J.; Berthiller, F. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 2015, 7, 4706–4729. [Google Scholar] [CrossRef]
- Yi, L.; Dratter, J.; Wang, C.; Tunge, J.A.; Desaire, H. Identification of sulfation sites of metabolites and prediction of the compounds’ biological effects. Anal. Bioanal. Chem. 2006, 386, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Prelusky, D.B.; Gerdes, R.G.; Underhill, K.L.; Rotter, B.A.; Jui, P.Y.; Trenholm, H.L. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Nat. Toxins 1994, 2, 97–104. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Smith, T.K.; Boermans, H.J.; Woodward, B. Effects of feed-borne Fusarium mycotoxins on hematology and immunology of Turkeys. Poult. Sci. 2005, 84, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Swanson, S.P.; Harvey, R.B.; Rowe, L.D.; Phillips, T.D. Effects of feeding deoxynivalenol (vomitoxin)-contaminated wheat to growing chicks. Poult. Sci. 1985, 64, 1649–1655. [Google Scholar] [CrossRef]
- Harvey, R.B.; Kubena, L.F.; Huff, W.E.; Elissalde, M.H.; Phillips, T.D. Hematologic and immunologic toxicity of deoxynivalenol (DON)-contaminated diets to growing chickens. Bull. Environ. Contam. Toxicol. 1991, 46, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Matthes, S.; Halle, I.; Ueberschär, K.H.; Döll, S.; Valenta, H. Effects of graded levels of Fusarium toxin-contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters. Br. Poult. Sci. 2003, 44, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Yegani, M.; Smith, T.K.; Leeson, S.; Boermans, H.J. Effects of feeding grains naturally contaminated with Fu- sarium mycotoxins on performance and metabolism of broiler breeders. Poult. Sci. 2006, 85, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.W.; Ghareeb, K.; Twaruzek, M.; Grajewski, J.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poult. Sci. 2012, 91, 844–851. [Google Scholar] [CrossRef]
- Sallusto, F.; Baggiolini, M. Chemokines and leukocyte traffic. Nat. Immunol. 2008, 9, 949–952. [Google Scholar] [CrossRef]
- Maresca, M.; Yahi, N.; Younès-Sakr, L.; Boyron, M.; Caporiccio, B.; Fantini, J. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial. Toxicol. Appl. Pharmacol. 2008, 228, 84–92. [Google Scholar] [CrossRef]
- Lessard, M.; Savard, C.; Deschene, K.; Lauzon, K.; Pinilla, V.A.; Gagnon, C.A.; Lapointe, J.; Guay, F.; Chorfi, Y. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem. Toxicol. 2015, 80, 7–16. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Soodoi, C.; Sasgary, S.; Strasser, A.; Böhm, J. Effects of feed contaminant deoxynivalenol o plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS ONE 2013, 8, e71492. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, Z.B.; Yang, W.R.; Wang, S.J.; Jiang, S.Z.; Wu, Y.B. Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens. Poult. Sci. 2012, 91, 2487–2495. [Google Scholar] [CrossRef] [PubMed]
- Girgis, G.N.; Sharif, S.; Barta, J.R.; Boermans, H.J.; Smith, T.K. Immunomodulatory effects of feed-borne fusarium mycotoxins in chickens infected with coccidia. Exp. Biol. Med. 2008, 233, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Dohnal, I.; Shanmugasundaram, R.; Eicher, S.D.; Selvaraj, R.K.; Schatzmayr, G.; Applegate, T.J. Susceptibility of broiler chickens to coccidiosis when fed subclinical doses of deoxynivalenol and fumonisins—special emphasis on the immunological response and themycotoxin interaction. Toxins 2016, 8, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.R.; Yan, D.; Pestka, J.J. Differential cytokine mRNA expression in mice after oval exposure to the trichothecene vomitoxin (Deoxynivalenol): Dose response and time course. Toxicol. Appl. Pharmacol. 1997, 144, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.W.; Malefyt, R.D.W.; Robert, L.; Garra, A.O. Interleukin-10 and the Interleukin-10. Annu. Rev. Immunol. 2001, 1, 683–765. [Google Scholar] [CrossRef] [PubMed]
- Onbaşilar, E.E.; Aksoy, F.T. Stress parameters and immune response of layers under different cage floor and density conditions. Livest. Prod. Sci. 2005, 95, 255–263. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Sid-Ahmed, O.E.; Böhm, J. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- El-Lethey, H.; Huber-Eicher, B.; Jungi, T.W. Exploration of stress-induced immunosuppression in chickens reveals both stress-resistant and stress-susceptible antigen responses. Vet. Immunol. Immunopathol. 2003, 95, 91–101. [Google Scholar] [CrossRef]
Ingredients (%) | Starter: Control 1–21 Days | Grower: Control 21–42 Days |
---|---|---|
Maize | 54.00 | 59.49 |
Soy-meal 48% | 36.93 | 31.02 |
Soybean oil | 4.91 | 5.73 |
Monocalcium phosphate | 1.42 | 1.30 |
Calcium carbonate | 1.23 | 1.13 |
Sodium chloride | 0.19 | 0.21 |
Sodium bicarbonate | 0.27 | 0.24 |
DL-methionine | 0.30 | 0.26 |
L-Lysine HCl | 0.23 | 0.18 |
Noxyfeed | 0.02 | 0.02 |
Premix 1 | 0.49 | 0.44 |
Calculated content (%) | ||
Metabolizable energy (Kcal/kg) | 3050 | 3150 |
Crude protein | 22.0 | 19.5 |
Ether extract | 7.01 | 7.92 |
Crude fibre | 2.36 | 2.25 |
Lysine | 1.38 | 1.18 |
Methionine + cysteine | 0.91 | 0.87 |
Threonine | 0.81 | 0.70 |
Tryptophan | 0.21 | 0.18 |
Calcium | 0.90 | 0.82 |
Inorganic phosphorus | 0.64 | 0.59 |
Sodium | 0.16 | 0.16 |
Sample | Analysis 1 |
---|---|
Blood | Hematology |
Serum | Response to common vaccines |
Plasma | IL-8 Corticosterone DON and DON-3S |
Small intestine (Jejunum) | IL-6, IL-1β, IL-10, IFN-γ |
Liver | DON and DON-3S |
Excreta | DON and DON-3S |
Mycotoxin 1 (µg/kg) | Control Group | DON Group (5000 µg/kg) | DON Group (15,000 µg/kg) | |||
---|---|---|---|---|---|---|
Starter | Grower | Starter | Grower | Starter | Grower | |
DON | 65 | 73 | 4760 | 4650 | 14,390 | 15,120 |
ZEN | <LOD | <LOD | 84.4 | 85.9 | 242 | 259 |
FBs | 142 | 225 | 257 | 216 | 216 | 275 |
OTA | 0.94 | 1.59 | 0.90 | 1.11 | 1.21 | 1.10 |
AFB1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Dietary Treatment/Biological Matrix | DON 1 | DON-3S 2 (×106) |
---|---|---|
Plasma (ng/mL) | ||
Control | ND 3 | ND |
DON low level (5 mg/kg) | ND | 0.27 ± 0.01 b |
DON high level (15 mg/kg) | ND | 0.62 ± 0.15 a |
SEM | - | 0.11 |
p-Value | - | 0.01 |
Liver (ng/g) | ||
Control | ND | ND |
DON low level (5 mg/kg) | ND | ND |
DON high level (15 mg/kg) | ND | 0.70 ± 0.37 |
Excreta (ng/g) | ||
Control | ND | ND |
DON low level (5 mg/kg) | 22.0 | 110 b |
DON high level (15 mg/kg) | 24.1 | 295 a |
SEM | 11.9 | 22.2 |
p-Value | 0.81 | 0.0001 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item 2 | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
HCT (%) | 31.9 | 30.1 | 30.2 | 0.74 | 0.16 | 0.15 | 0.20 |
HGB (g/dL) | 12.1 a | 11.1 b | 10.1 c | 0.29 | 0.0002 | <0.0001 | 0.54 |
RBC (×106/µL) | 2.3 a | 2.3 a | 1.9 b | 0.38 | <0.0001 | <0.0001 | 0.06 |
MCV (fL) | 132 b | 133 b | 151 a | 4.26 | 0.004 | 0.001 | 0.29 |
MCH (pg) | 50.1 | 49.4 | 50.5 | 0.41 | 0.14 | 0.22 | 0.12 |
MCHC(g/dL) | 37.8 a | 37.3 a | 34.1 b | 0.93 | 0.004 | 0.001 | 0.50 |
Leukocyte (×103/µL) | 15.8 | 18.3 | 19.2 | 1.85 | 0.37 | 0.20 | 0.55 |
Eosinophil (%) | 6.00 | 4.66 | 7.07 | 0.93 | 0.33 | 0.27 | 0.32 |
Basophil (%) | 7.84 | 7.08 | 6.61 | 1.32 | 0.51 | 0.26 | 0.76 |
Lymphocyte (%) | 41.2 | 37.7 | 37.1 | 2.81 | 0.52 | 0.33 | 0.55 |
Monocyte (%) | 2.15 | 2.75 | 0.92 | 0.70 | 0.19 | 0.17 | 0.21 |
Total heterophils (%) | 44.5 | 48.7 | 48.3 | 3.17 | 0.64 | 0.43 | 0.61 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item 2 | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
Titers against NDV (HA) | 0.38 | 0.30 | 0.25 | 0.15 | 0.82 | 0.56 | 0.84 |
Titers against IBV (HA) | 2.92 | 3.20 | 3.00 | 0.30 | 0.81 | 0.95 | 0.52 |
Titers against IBV (ELISA) | 874 | 851 | 786 | 120 | 0.31 | 0.13 | 0.76 |
Dietary Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Item 2 | Control | DON (5 mg/kg) | DON (15 mg/kg) | SEM | p-Value | Linear | Quadratic |
H/L ratio | 1.1 | 1.3 | 1.3 | 0.15 | 0.47 | 0.30 | 0.50 |
Plasma corticosterone (ng/mL) | 2.93 a | 2.34 b | 2.44 b | 0.15 | 0.03 | 0.07 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riahi, I.; Marquis, V.; Pérez-Vendrell, A.M.; Brufau, J.; Esteve-Garcia, E.; Ramos, A.J. Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens. Animals 2021, 11, 147. https://doi.org/10.3390/ani11010147
Riahi I, Marquis V, Pérez-Vendrell AM, Brufau J, Esteve-Garcia E, Ramos AJ. Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens. Animals. 2021; 11(1):147. https://doi.org/10.3390/ani11010147
Chicago/Turabian StyleRiahi, Insaf, Virginie Marquis, Anna Maria Pérez-Vendrell, Joaquim Brufau, Enric Esteve-Garcia, and Antonio J. Ramos. 2021. "Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens" Animals 11, no. 1: 147. https://doi.org/10.3390/ani11010147
APA StyleRiahi, I., Marquis, V., Pérez-Vendrell, A. M., Brufau, J., Esteve-Garcia, E., & Ramos, A. J. (2021). Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens. Animals, 11(1), 147. https://doi.org/10.3390/ani11010147