Random Regression Analysis of Calving Interval of Japanese Black Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Phenotype and Pedigree Data
2.3. Statistical Analysis
3. Results and Discussion
3.1. Basic Statistics
3.2. Variance Components, Heritability, and Repeatability
3.3. Additive Genetic and Permanent Environmental Correlations
3.4. Selection Accuracy
3.5. Effects of Inbreeding and Age at the Previous Calving of Cow on Calving Interval
3.6. General Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gotoh, T.; Takahashi, H.; Nishimura, T.; Kuchida, K.; Mannen, H. Meat produced by Japanese Black cattle and Wagyu. Anim. Front. 2014, 4, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Hirooka, H. Marbled Japanese Black cattle. J. Anim. Breed. Genet. 2014, 131, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Henderson, C.R. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef] [Green Version]
- Ashida, I.; Iwaisaki, H. A numerical technique for REML estimation of variance components using average information algorithm and its computing property. Anim. Sci. Technol. 1998, 69, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Miyake, T.; Gaillard, C.; Oguni, T.; Matsumoto, M.; Ito, M.; Kurahara, T.; Sasae, Y.; Fujinaka, K.; Ohtagaki, S.; et al. Comparison of genetic gains per year for carcass traits among breeding programs in the Japanese Brown and the Japanese Black cattle. J. Anim. Sci. 2006, 84, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Wagyu Registry Association. Breeding and Improvement of Wagyu, 2nd ed.; Wagyu Registry Association: Kyoto, Japan, 2007. (In Japanese) [Google Scholar]
- Oyama, K. Genetic variability of Wagyu cattle estimated by statistical approaches. Anim. Sci. J. 2011, 82, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, M.; Sasaki, K.; Watanabe, A. Wagyu and the factors contributing to its beef quality: A Japanese industry overview. Meat Sci. 2016, 120, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, H.; Oishi, K. Economic values for production and reproduction traits of Japanese Black (Wagyu) cattle from a bio-economic model. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Jennrich, R.I.; Schluchter, M.D. Unbalanced repeated-measures models with structured covariance matrices. Biometrics 1986, 42, 805–820. [Google Scholar] [CrossRef]
- Meyer, K.; Hill, W.G. Estimation of genetic and phenotypic covariance functions for longitudinal or “repeated” records by restricted maximum likelihood. Livest. Prod. Sci. 1997, 47, 185–200. [Google Scholar] [CrossRef]
- Henderson, C.R., Jr. Analysis of covariance in the mixed model: Higher level, nonhomogeneous, and random regression. Biometrics 1982, 38, 623–640. [Google Scholar] [CrossRef]
- Laird, N.M.; Ware, J.H. Random effects models for longitudinal data. Biometrics 1982, 38, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.; Kirkpatrick, M. Up hill, down dale: Quantitative genetics of curvaceous traits. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 1443–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, G.A. Estimates of Genetic Parameters for Female Fertility Traits from a Dairy Selection Experiment for Fat Plus Protein by Using Random Regression and Linear-Threshold Animal Models. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2010. [Google Scholar]
- Panetto, J.C.C.; Val, J.E.; Marcondes, C.R.; Peixoto, M.G.C.D.; Verneque, R.S.; Ferraz, J.B.S.; Golden, B.L. Female fertility in a Guzerat dairy subpopulation: Heterogeneity of variance components for calving intervals. Livest. Sci. 2012, 145, 87–94. [Google Scholar] [CrossRef]
- Aziz, M.A.; Nishida, S.; Suzuki, K.; Nishida, A. Estimation of direct and maternal genetic and permanent environmental effects for weights from birth to 356 days of age in a herd of Japanese Black cattle using random regression. J. Anim. Sci. 2005, 83, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A.; Aziz, M.A.; Nishida, S.; Suzuki, K. Modelling number of services per conception of Japanese Black cattle by random regression. J. Anim. Breed. Genet. 2006, 123, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Satoh, M. A program for computing inbreeding coefficients from large data sets. Jpn. J. Swine Sci. 2000, 37, 122–126. (In Japanese) [Google Scholar] [CrossRef]
- Oyama, K.; Katsuta, T.; Anada, K.; Mukai, F. Heritability and repeatability estimates for reproductive traits of Japanese Black cows. Asian Australas. J. Anim. Sci. 2002, 15, 1680–1685. [Google Scholar] [CrossRef]
- Lopez, B.I.; Son, J.-H.; Seo, K.; Lim, D. Estimation of genetic parameters for reproductive traits in Hanwoo (Korean Cattle). Animals 2019, 9, 715. [Google Scholar] [CrossRef] [Green Version]
- Oyama, K.; Katsuta, T.; Anada, K.; Mukai, F. Genetic parameters for reproductive performance of breeding cows and carcass traits of fattening animals in Japanese Black (Wagyu) cattle. Anim. Sci. 2004, 78, 195–201. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D.H. BLUPF90 and related programs (BGF90). In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19−23 August 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 16 December 2020).
- Oyama, K.; Mukai, F.; Yoshimura, T. Genetic relationships among traits recorded at registry judgment, reproductive traits of breeding females and carcass traits of fattening animals in Japanese Black cattle. Anim. Sci. Technol. 1996, 67, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Baco, S.; Harada, H.; Furukawa, R. Genetic relationships of body measurements at registration to a couple of reproductive traits in Japanese Black cows. Anim. Sci. Technol. 1998, 69, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T.; Mukai, F. Estimation of dominance genetic variances for reproductive traits and growth traits of calves in Japanese Black cattle. Anim. Sci. J. 2004, 75, 285–294. [Google Scholar] [CrossRef]
- Ibi, T.; Kahi, A.K.; Hirooka, H. Genetic parameters for gestation length and the relationship with birth weight and carcass traits in Japanese Black cattle. Anim. Sci. J. 2008, 79, 297–302. [Google Scholar] [CrossRef]
- Inoue, K.; Hosono, M.; Tanimoto, Y. Inferring causal structures and comparing the causal effects among calving difficulty, gestation length and calf size in Japanese Black cattle. Animal 2017, 11, 2120–2128. [Google Scholar] [CrossRef] [PubMed]
- Irikura, N.; Uematsu, M.; Ktahara, G.; Osawa, T.; Sasaki, Y. Association of interservice interval with conception rate in Japanese Black cattle. Reprod. Domest. Anim. 2018, 53, 1020–1023. [Google Scholar] [CrossRef]
- Setiaji, A.; Oikawa, T. Genetic parameters of reproductive traits from artificial insemination records of Japanese Black cows. Livest. Sci. 2019, 229, 85–89. [Google Scholar] [CrossRef]
- Kirkpatrick, M.; Hill, W.G.; Thompson, R. Estimating the covariance sturucture of traits during growth and aging, illustrated with lactation in dairy cattle. Genet. Res. Camb. 1994, 64, 57–69. [Google Scholar] [CrossRef] [Green Version]
- López-Romero, P.; Carabaño, M.J. Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livest. Prod. Sci. 2003, 82, 81–96. [Google Scholar] [CrossRef]
- Pool, M.H.; Janss, L.L.G.; Meuwissen, T.H.E. Genetic parameters of Legendre polynomials for first parity lactation curves. J. Dairy Sci. 2000, 83, 2640–2649. [Google Scholar] [CrossRef]
- Meyer, K. Estimates of genetic and phenotypic covariance functions for postweaning growth and mature weight of beef cows. J. Anim. Breed. Genet. 1999, 116, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Arango, J.A.; Cundiff, L.V.; Van Vleck, L.D. Covariance functions and random regression models for cow weight in beef cattle. J. Anim. Sci. 2004, 82, 54–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohmanova, J.; Miglior, F.; Jamrozik, J.; Misztal, I.; Sullivan, P.G. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows. J. Dairy Sci. 2008, 91, 3627–3638. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A. The sampling variance of the genetic correlation coefficient. Biometrics 1959, 15, 469–485. [Google Scholar] [CrossRef]
- Wagyu Registry Association. Wagyu; 277; Wagyu Registry Association: Kyoto, Japan, 2016; p. 28. (In Japanese) [Google Scholar]
- Kirkpatrick, M.; Lofsvold, D.; Bulmer, M. Analysis of the inheritance, selection and evolution of growth trajectories. Genetics 1990, 124, 979–993. [Google Scholar] [CrossRef]
- Pereira, R.J.; Bignardi, A.B.; El Faro, L.; Vernerque, R.S.; Vercesi Filho, A.E.; Albuquerque, L.G. Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle. J. Dairy Sci. 2013, 96, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I. Properties of random regression models using linear splines. J. Anim. Breed. Genet. 2006, 123, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Matsuda, H.; Taniguchi, Y.; Watanabe, T.; Nishimura, S.; Sugimoto, Y.; Iwaisaki, H. Effects of single nucleotide polymorphism marker density on degree of genetic variance explained and genomic evaluation for carcass traits in Japanese Black beef cattle. BMC Genet. 2014, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Onogi, A.; Sasaki, S.; Kobayashi, M.; Ogino, A.; Nozaki, T.; Kurogi, K.; Yasumori, T.; Togashi, K.; Iwata, H. A genetic analysis of meat compositions in Japanese Black cattle: Genetic parameters and sex influence. J. Anim. Breed. Genet. 2017, 134, 373–382. [Google Scholar] [CrossRef]
- Atagi, Y.; Onogi, A.; Kinukawa, M.; Ogino, A.; Kurogi, K.; Uchiyama, K.; Yasumori, T.; Adachi, K.; Togashi, K.; Iwata, H. Genetic analysis of semen production traits of Japanese Black and Holstein bulls: Genome-Wide marker-based estimation of genetic parameters and environmental effect trends. J. Anim. Sci. 2017, 95, 1900–1912. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, S.; Satoh, M. Random Regression Analysis of Calving Interval of Japanese Black Cows. Animals 2021, 11, 202. https://doi.org/10.3390/ani11010202
Ogawa S, Satoh M. Random Regression Analysis of Calving Interval of Japanese Black Cows. Animals. 2021; 11(1):202. https://doi.org/10.3390/ani11010202
Chicago/Turabian StyleOgawa, Shinichiro, and Masahiro Satoh. 2021. "Random Regression Analysis of Calving Interval of Japanese Black Cows" Animals 11, no. 1: 202. https://doi.org/10.3390/ani11010202
APA StyleOgawa, S., & Satoh, M. (2021). Random Regression Analysis of Calving Interval of Japanese Black Cows. Animals, 11(1), 202. https://doi.org/10.3390/ani11010202