Influence of Immunocastration on Slaughter Traits and Boar Taint Compounds in Pigs Originating from Three Different Terminal Sire Lines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Slaughter Procedure, Carcass Composition and Meat Quality Traits
2.3. Boar Taint Compounds
2.4. Olfactory Analysis of the Boar Taint
2.5. Statistical Analysis
3. Results and Discussion
3.1. Carcass Traits
3.2. Meat Quality Traits
3.3. Androstenone and Skatole
3.4. Olfactory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Borell, E.; Baumgartner, J.; Giersing, M.; Jäggin, N.; Prunier, A.; Tuyttens, F.A.M.; Edwards, S.A. Animal welfare implications of surgical castration and its alternatives in pigs. Animal 2009, 3, 1488–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backus, G.; Higuera, M.; Juul, N.; Nalon, E.; de Bryne, N. Second Progress Report 2015–2017 on the European Declaration on Alternatives to Surgical Castration of Pigs. Available online: https://www.boarsontheway.com/wp-content/uploads/2018/08/Second-progress-report-2015-2017-final-1.pdf (accessed on 8 July 2020).
- Bee, G.; Chevillon, P.; Bonneau, M. Entire male pig production in Europe. Anim. Prod. Sci. 2015, 55, 1347–1359. [Google Scholar] [CrossRef]
- Aluwé, M.; Degezelle, I.; Depuydt, L.; Fremaut, D.; Van den Broeke, A.; Millet, S. Immunocastrated male pigs: Effect of 4 v. 6 weeks time post second injection on performance, carcass quality, and meat quality. Animal 2016, 10, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- De Roest, K.; Montanari, C.; Fowler, T.; Baltussen, W. Resource efficiency, and economic implications of alternatives to surgical castration without anaesthesia. Animal 2009, 3, 1522. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, M.; Weiler, U. Pros and cons of alternatives to piglet castration: Welfare, boar taint, and other meat quality traits. Animals 2019, 9, 884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škrlep, M.; Tomašević, I.; Mörlein, D.; Novaković, S.; Egea, M.; Garrido, M.D.; Font-i-Furnols, M. The Use of Pork from Entire Male and Immunocastrated Pigs for Meat Products—An Overview with Recommendations. Animals 2020, 10, 1754. [Google Scholar] [CrossRef] [PubMed]
- Duijvesteijn, N.; Knol, E.F.; Merks, J.W.; Crooijmans, R.P.; Groenen, M.A.; Bovenhuis, H.; Harlizius, B. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet. 2010, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, V.R.; Conley, L.N.; Sørensen, K.K.; Guldbrandtsen, B.; Velander, I.H.; Bendixen, C. Genome-wide association scan and phased haplotype construction for quantitative trait loci affecting boar taint in three pig breeds. BMC Genom. 2012, 13, 22. [Google Scholar] [CrossRef] [Green Version]
- Sellier, P.; Le Roy, P.; Fouilloux, M.N.; Gruand, J.; Bonneau, M. Responses to restricted index selection and genetic parameters for fat androstenone level and sexual maturity status of young boars. Livest. Prod. Sci. 2000, 63, 265–274. [Google Scholar] [CrossRef]
- Tajet, H.; Andresen, Ø. Estimation of genetic parameters of boar taint; skatole and androstenone and their correlations with sexual maturation. Acta Vet. Scand. 2006, 48, 1–4. [Google Scholar] [CrossRef]
- Bergsma, R.; Knol, E.; Feitsma, H. Parameters of AI Boars and Predicted Correlated Responses of Selection against Boar Taint. In Proceedings of the 58th Annual Meeting of the European Association for Animal Production, Dublin, Ireland, 26–29 August 2007; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007. [Google Scholar]
- EU Health and Food Safety Directorate. Establishing Best Practices on the Production, the Processing and the Marketing of Meat from Uncastrated Pigs or Pigs Vaccinated against Boar Taint (Immunocastrated). Final Report 14 March 2019. Available online: http://www.ec.europa.eu (accessed on 8 October 2020).
- Borell, E.V.; Bonneau, M.; Holinger, M.; Prunier, A.; Stefanski, V.; Zöls, S.; Weiler, U. Welfare Aspects of Raising Entire Male Pigs and Immunocastrates. Animals 2020, 10, 2140. [Google Scholar] [CrossRef] [PubMed]
- Bilić-Šobot, D.; Zamaratskaia, G.; Rasmussen, M.K.; Čandek-Potokar, M.; Škrlep, M.; Povše, M.P.; Škorjanc, D. Chestnut wood extract in boar diet reduces intestinal skatole production, a boar taint compound. Agron. Sustain. Dev. 2016, 36, 62. [Google Scholar] [CrossRef] [Green Version]
- Čandek-Potokar, M.; Škrlep, M.; Lukač, N.B.; Zamaratskaia, G.; Povše, M.P.; Bolta, Š.V.; Bee, G. Hydrolysable tannin fed to entire male pigs affects intestinal production, tissue deposition and hepatic clearance of skatole. Vet. J. 2015, 204, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Tretola, M.; Maghin, F.; Silacci, P.; Ampuero, S.; Bee, G. Effect of supplementing hydrolysable tannins to a grower–finisher diet containing divergent pufa levels on growth performance, boar taint levels in back fat and intestinal microbiota of entire males. Animals 2019, 9, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, L.L.; Mejer, H.; Thamsborg, S.M.; Byrne, D.V.; Roepstorff, A.; Karlsson, A.H.; Tuomola, M. Influence of chicory roots (Cichorium intybus L) on boar taint in entire male and female pigs. Anim. Sci. 2006, 82, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Maribo, H.; Jensen, B.B.; Møller, S. Reduction of Boar Taint in Two Trials: 1. Chicory or Lupins Combined with Slaughter Weight. 2. Feeding Pure Grain. In Proceedings of the EAAP Working Group “Production and Utilization of Meat from Entire Male Pigs”, Nantes, France, 26–30 August 2013. [Google Scholar]
- Zammerini, D.; Wood, J.D.; Whittington, F.M.; Nute, G.R.; Hughes, S.I.; Hazzledine, M.; Matthews, K. Effect of dietary chicory on boar taint. Meat Sci. 2012, 91, 396–401. [Google Scholar] [CrossRef]
- Aluwé, M.; Heyrman, E.; Theis, S.; Sieland, C.; Thurman, K.; Millet, S. Chicory fructans in pig diet reduce skatole in back fat of entire male pigs. Res. Vet. Sci. 2017, 115, 340–344. [Google Scholar] [CrossRef]
- Salmon, L.; Edwards, S.A. The effects of dietary fructo-oligosaccharide addition on boar taint compounds and performance in heavy slaughter weight boars and gilts. Anim. Feed Sci. Technol. 2015, 207, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Giersing, M.; Ladewig, J.; Forkman, B. Animal welfare aspects of preventing boar taint. Acta Vet. Scand. 2006, 48 (Suppl. S1), S3. [Google Scholar] [CrossRef]
- Wesoly, R.; Jungbluth, I.; Stefanski, V.; Weiler, U. Pre-slaughter conditions influence skatole and androstenone in adipose tissue of boars. Meat Sci. 2015, 99, 60–67. [Google Scholar] [CrossRef]
- Cronin, G.M.; Dunshea, F.R.; Butler, K.L.; McCauley, I.; Barnett, J.L.; Hemsworth, P.H. The effects of immuno-and surgical-castration on the behaviour and consequently growth of group-housed, male finisher pigs. Appl. Anim. Behav. Sci. 2003, 81, 111–126. [Google Scholar] [CrossRef]
- Batorek, N.; Škrlep, M.; Prunier, A.; Louveau, I.; Noblet, J.; Bonneau, M.; Čandek-Potokar, M. Effect of feed restriction on hormones, performance, carcass traits, and meat quality in immunocastrated pigs. J. Anim. Sci. 2012, 90, 4593–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackinnon, J.D.; Pearce, M.C. Improvac (Pfizer Animal Health): An immunological product for the control of boar taint in entire male pigs: II. Practical applications in pig production and potential production benefits. Pig J. 2007, 59, 68–90. [Google Scholar]
- Čandek-Potokar, M.; Prevolnik, M.; Škrlep, M. Testes Weight is not a Reliable Tool for Discriminating Immunocastrates from Entire Males. In Proceedings of the International Symposium of Animal Science, Belgrade, Serbia, 23–25 September 2014; Faculty of Agriculture: Belgrade, Serbia, 2014; pp. 43–49. [Google Scholar]
- Tomasevic, I.; Bahelka, I.; Čandek-Potokar, M.; Čítek, J.; Djekić, I.; Kušec, I.D.; Nakov, D. Attitudes and beliefs of Eastern European consumers towards piglet castration and meat from castrated pigs. Meat Sci. 2020, 160, 107965. [Google Scholar] [CrossRef] [PubMed]
- Aluwé, M.; Heyrman, E.; Almeida, J.M.; Babol, J.; Battacone, G.; Čítek, J.; Font i Furnols, M.; Getya, A.; Karolyi, D.; Kostyra, E.; et al. Exploratory Survey on European Consumer and Stakeholder Attitudes towards Alternatives for Surgical Castration of Piglets. Animals 2020, 10, 1758. [Google Scholar] [CrossRef]
- Škrlep, M.; Batorek, N.; Bonneau, M.; Prevolnik, M.; Kubale, V.; Čandek-Potokar, M. Effect of immunocastration in group-housed commercial fattening pigs on reproductive organs, malodorous compounds, carcass and meat quality. Czech J. Anim. Sci. 2012, 57, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Stupka, R.; Čítek, J.; Vehovský, K.; Zadinová, K.; Okrouhlá, M.; Urbanová, D.; Stádník, L. Effects of immunocastration on growth performance, body composition, meat quality, and boar taint. Czech J. Anim. Sci. 2017, 62, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Trefan, L.; Doeschl-Wilson, A.; Rooke, J.A.; Terlouw, C.; Bünger, L. Meta-analysis of effects of gender in combination with carcass weight and breed on pork quality. J. Anim. Sci. 2013, 91, 1480–1492. [Google Scholar] [CrossRef]
- NN 71/2018 Regulation on Classification and Identification of Beef, Pig and Sheep Carcasses and on Labelling of Meat from Beef Younger Than 12 Months. Available online: http://www.fao.org/faolex/results/details/fr/c/LEX-FAOC135783/ (accessed on 10 January 2020).
- Christensen, L.B. Drip loss sampling in porcine m. longissimus dorsi. Meat Sci. 2003, 63, 469–477. [Google Scholar] [CrossRef]
- Hansen-Møller, J. Rapid high-performance liquid chromatographic method for simultaneous determination of androstenone, skatole and indole in back fat from pigs. J. Chromatogr. B Biomed. Sci. Appl. 1994, 661, 219–230. [Google Scholar] [CrossRef]
- Pauly, C.; Spring, P.; O’Doherty, J.V.; Ampuero Kragten, S.; Bee, G. Growth performance, carcass characteristics and meat quality of group-penned surgically castrated, immunocastrated (Improvac®) and entire male pigs and individually penned entire male pigs. Animal 2009, 3, 1057–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AVVLmHyg. Allgemeine Verwaltungsvorschrift über die Durchführung der Amtlichen Überwachung der Einhaltung von Hygienevorschriften für Lebensmittel Tierischen Ursprungs und zum Verfahren zur Prüfung von Leitlinien für Eine Gute Verfahrenspraxis (AVV LmH) in der Neufassung vom 09.11.2009, unter Berücksichtigung der AVV Lebensmittelhygiene vom 12.09.2007, Anlage 4: Methoden zur Untersuchung von Fleisch, Nr. 6, Feststellung von Geruchs- und Geschmacksabweichungen im Sinne der Verordnung (EG) Nr. 854/2004. Zuletzt Geändert Durch die Verwaltungsvorschrift vom 30.03.2011 (BAnz 2011 S.1287). Available online: https://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_09112009_329225270006.htm (accessed on 10 January 2020).
- Whittington, F.M.; Zammerini, D.; Nute, G.R.; Baker, A.; Hughes, S.I.; Wood, J.D. Comparison of heating methods and the use of different tissues for sensory assessment of abnormal odours (boar taint) in pig meat. Meat Sci. 2011, 88, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Dell Inc. Dell Statistica (Data Analysis Software System), Version 12. 2015. Available online: software.dell.com (accessed on 1 October 2020).
- Signorell, A.; Aho, K.; Alfons, A.; Anderegg, N.; Aragon, T.; Arppe, A.; Borchers, H.W. DescTools: Tools for Descriptive Statistics. R Package Version 0.99. 34; CRAN). Available online: https://cran.r-project.org/package=DescTools (accessed on 10 January 2020).
- R Development Core Team. R: A Language and Environment for Statistical Computing; Version 4.0.2; Computer Software: Vienna, Austria, 2020; Available online: https://www.R-project.org (accessed on 8 October 2020).
- Škrlep, M.; Batorek, N.; Šegula, B.; Zajec, M.; Košorok, S.; Glavač-Vnuk, M.; Čandek-Potokar, M. Effect of immunocastration on performance of Slovenian pig fatteners. Agric. Conspec. Sci. 2011, 76, 205–208. [Google Scholar]
- Edwards, D.B.; Bates, R.O.; Osburn, W.N. Evaluation of Duroc-vs. Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 2003, 81, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Latorre, M.A.; Lázaro, R.; Gracia, M.I.; Nieto, M.; Mateos, G.G. Effect of sex and terminal sire genotype on performance, carcass characteristics, and meat quality of pigs slaughtered at 117 kg body weight. Meat Sci. 2003, 65, 1369–1377. [Google Scholar] [CrossRef]
- Radović, I.; Trivunović, S.; Stančić, I.; Stančić, B.; Dragin, S.; Urošević, M. The feed conversion, daily gain, average backfat thickness and meat percentage in performance test of Landrace boars. Contemp. Agric. 2012, 61, 44–53. [Google Scholar]
- Vidović, V.; Lukač, D.; Višnjić, V.; Stoisavljević, A.; Stupar, M. Effect of different selection criteria for litter size, growth performance and carcass traits improvement of the pigs in Serbia. Bulg. J. Agric. Sci. 2015, 21, 687–692. [Google Scholar]
- Kušec, G.; Kralik, G.; Petričević, A.; Margeta, V.; Gajčević, Z.; Gutzmirtl, D.; Pešo, M. Differences in slaughtering characteristics between crossbred pigs with Pietrain and Duroc as terminal sire. Acta Agric. Slov. 2004, 1, 121–127. [Google Scholar]
- Škrlep, M.; Segula, B.; Zajec, M.; Kastelic, M.; Kosorok, S.; Fazarinc, G.; Candek-Potokar, M. Effect of immunocastration (Improvac®) in fattening pigs. II: Carcass traits and meat quality. Slov Vet. Res. 2010, 47, 65–72. [Google Scholar]
- Van den Broeke, A.; Leen, F.; Aluwé, M.; Ampe, B.; Van Meensel, J.; Millet, S. The effect of GnRH vaccination on performance, carcass, and meat quality and hormonal regulation in boars, barrows, and gilts. J. Anim. Sci. 2016, 94, 2811–2820. [Google Scholar] [CrossRef]
- Batorek, N.; Candek-Potokar, M.; Bonneau, M.; Van Milgen, J. Meta-analysis of the effect of immunocastration on production performance, reproductive organs and boar taint compounds in pigs. Animal 2012, 6, 1330. [Google Scholar] [CrossRef] [PubMed]
- Nautrup, B.P.; Van Vlaenderen, I.; Aldaz, A.; Mah, C.K. The effect of immunization against gonadotropin-releasing factor on growth performance, carcass characteristics and boar taint relevant to pig producers and the pork packing industry: A meta-analysis. Res. Vet. Sci. 2018, 119, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Škrlep, M.; Poklukar, K.; Kress, K.; Vrecl, M.; Fazarinc, G.; Batorek Lukač, N.; Čandek-Potokar, M. Effect of immunocastration and housing conditions on pig carcass and meat quality traits. Transl. Anim. Sci. 2020, 4, txaa055. [Google Scholar] [CrossRef] [PubMed]
- Gispert, M.; Oliver, M.À.; Velarde, A.; Suarez, P.; Pérez, J.; i Furnols, M.F. Carcass and meat quality characteristics of immunocastrated male, surgically castrated male, entire male and female pigs. Meat Sci. 2010, 85, 664–670. [Google Scholar] [CrossRef]
- Caldara, F.R.; Moi, M.; dos Santos, L.S.; Paz, I.C.D.L.A.; Garcia, R.G.; de Alencar Nääs, I.; Fernandes, A.R.M. Carcass characteristics and qualitative attributes of pork from immunocastrated animals. Asian-Australas. J. Anim. Sci. 2013, 26, 1630. [Google Scholar] [CrossRef] [Green Version]
- Bee, G.; Quiniou, N.; Maribo, H.; Zamaratskaia, G.; Lawlor, P.G. Strategies to Meet Nutritional Requirements and Reduce Boar Taint in Meat from Entire Male Pigs and Immunocastrates. Animals 2020, 10, 1950. [Google Scholar] [CrossRef]
- Park, J.; Campbell, C.P.; Squires, E.J.; de Lange, C.F.M.; Mandell, I.B. Effects of pig genotype, immunological castration, and use of ractopamine on growth performance, carcass traits and pork quality of entire male pigs. Can. J. Anim. Sci. 2019, 99, 82–106. [Google Scholar] [CrossRef]
- Rocha, L.M.; Bridi, A.M.; Foury, A.; Mormède, P.; Weschenfelder, A.V.; Devillers, N.; Bertoloni, W.; Faucitano, L. Effects of ractopamine administration and castration method on the response to preslaughter stress and carcass and meat quality in pigs of two Pietrain genotypes. Anim. Sci. 2013, 91, 3965–3977. [Google Scholar] [CrossRef] [Green Version]
- Channon, H.A.; Kerr, M.G.; Walker, P.J. Effect of Duroc content, sex and ageing period on meat eating quality attributes of pork loin. Meat Sci. 2004, 66, 881–888. [Google Scholar] [CrossRef]
- Raj, S.; Skiba, G.; Weremko, D.; Fandrejewski, H.; Migdal, W.; Borowiec, F.; Polawska, E. The relationship between the chemical composition of the carcass and the fatty acid composition of intramuscular fat of several pig breeds slaughtered at different weights. Meat Sci. 2010, 86, 324–330. [Google Scholar] [CrossRef]
- Suzuki, K.; Shibata, T.; Kadowaki, H.; Abe, H.; Toyoshima, T. Meat quality comparison of Berkshire, Duroc and crossbred pigs sired by Berkshire and Duroc. Meat Sci. 2003, 64, 35–42. [Google Scholar] [CrossRef]
- Morales, J.I.; Serrano, M.P.; Cámara, L.; Berrocoso, J.D.; López, J.P.; Mateos, G.G. MateosGrowth performance and carcass quality of immunocastrated and surgically castrated pigs from crossbreds from Duroc and Pietrain sires. J. Anim. Sci. 2013, 91, 3955–3964. [Google Scholar] [CrossRef] [PubMed]
- Latorre, M.A.; Medel, P.; Fuentetaja, A.; Lázaro, R.; Mateos, G.G. Effect of gender, terminal sire line and age at slaughter on performance, carcass and meat quality of heavy pigs. Anim. Sci. 2003, 77, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.H.; McPhee, C.P. Genetic parameters and responses of performance and body composition traits in pigs selected for high and low growth rate on a fixed ration over a set time. Genet. Sel. Evol. 2005, 37, 199–213. [Google Scholar] [CrossRef]
- Pauly, C.; Luginbühl, W.; Ampuero, S.; Bee, G. Expected effects on carcass and pork quality when surgical castration is omitted—Results of a meta-analysis study. Meat Sci. 2012, 92, 858–862. [Google Scholar] [CrossRef]
- Hofmann, K. What is Quality? Definition, Measurement and Evaluation of Meat Quality. Meat Focus Int. 1994, 3, 73–82. [Google Scholar]
- Forrest, J.C. Line speed implementation of various pork quality measures. In Proceedings of the NSIF Conference and Annual Meeting, East Lansing, MI, USA, 4–5 December 1998; Volume 23. [Google Scholar]
- Li, H.; Gariépy, C.; Jin, Y.; i Furnols, M.F.; Fortin, J.; Rocha, L.M.; Faucitano, L. Effects of ractopamine administration and castration method on muscle fiber characteristics and sensory quality of the longissimus muscle in two Piétrain pig genotypes. Meat Sci. 2015, 102, 27–34. [Google Scholar] [CrossRef]
- Seiquer, I.; Palma-Granados, P.; Haro, A.; Lara, L.; Lachica, M.; Fernández-Fígares, I.; Nieto, R. Meat quality traits in longissimus lumborum and gluteus medius muscles from immunocastrated and surgically castrated Iberian pigs. Meat Sci. 2018, 150, 77–84. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Reiland, S. Growth and skeletal development of the pig. Acta Radiol. Suppl. 1978, 358, 15–22. [Google Scholar]
- Macdougall, D.B.; Disney, J.G. Quality characteristics of pork with special reference to Pietrain, Pietrain X Landrace and Landrace pigs at different weights. Int. J. Food Sci. Technol. 1967, 2, 285–297. [Google Scholar] [CrossRef]
- Lonergan, S.M.; Huff-Lonergan, E.; Rowe, L.J.; Kuhlers, D.L.; Jungst, S.B. Selection for lean growth efficiency in Duroc pigs influences pork quality. J. Anim. Sci. 2001, 79, 2075–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cuyper, C.; Tanghe, S.; Janssens, S.; Van den Broeke, A.; Van Meensel, J.; Aluwé, M.; Millet, S. The effect of Piétrain sire on the performance of the progeny of two commercial dam breeds: A pig intervention study. Animal 2019, 13, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Daza, A.; Latorre, M.A.; Olivares, A.; Bote, C.L. The effects of male and female immunocastration on growth performances and carcass and meat quality of pigs intended for dry-cured ham production: A preliminary study. Livest. Sci. 2016, 190, 20–26. [Google Scholar] [CrossRef]
- Heyrman, E.; Kowalski, E.; Millet, S.; Tuyttens, F.A.M.; Ampe, B.; Janssens, S.; Aluwé, M. Monitoring of behavior, sex hormones and boar taint compounds during the vaccination program for immunocastration in three sire lines. Res. Vet. Sci. 2019, 124, 293–302. [Google Scholar] [CrossRef]
- Xue, J.; Dial, G.D.; Holton, E.E.; Vickers, Z.; Squires, E.J.; Lou, Y.; Morel, N. Breed differences in boar taint: Relationship between tissue levels boar taint compounds and sensory analysis of taint. J. Anim. Sci. 1996, 74, 2170–2177. [Google Scholar] [CrossRef] [Green Version]
- Frieden, L.; Looft, C.; Tholen, E. Breeding for reduced boar taint. Lohmann. Inf. 2011, 46, 21–27. [Google Scholar]
- Liu, G.; Jennen, D.G.J.; Tholen, E.; Juengst, H.; Kleinwächter, T.; Hölker, M.; Tesfaye, D.; Ün, G.; Schreinemachers, H.J.; Murani, E.; et al. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim. Genet. 2007, 38, 241–252. [Google Scholar] [CrossRef]
- Andresen, O. Boar taint related compounds: Androstenone/skatole/other substances. Acta Vet. Scand. 2006, 48, S5. [Google Scholar] [CrossRef]
- Oskam, I.C.; Lervik, S.; Tajet, H.; Dahl, E.; Ropstad, E.; Andresen, Ø. Differences in testosterone, androstenone, and skatole levels in plasma and fat between pubertal purebred Duroc and Landrace boars in response to human chorionic gonadotrophin stimulation. Theriogenology 2010, 74, 1088–1098. [Google Scholar] [CrossRef]
- Babol, J.; Zamaratskaia, G.; Juneja, R.K.; Lundström, K. The effect of age on distribution of skatole and indole levels in entire male pigs in four breeds: Yorkshire, Landrace, Hampshire and Duroc. Meat Sci. 2004, 67, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Aluwé, M.; Millet, S.; Bekaert, K.M.; Tuyttens, F.A.M.; Vanhaecke, L.; De Smet, S.; De Brabander, D.L. Influence of breed and slaughter weight on boar taint prevalence in entire male pigs. Animal Int. J. Anim. Biosci. 2011, 5, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubale, V.; Batorek, N.; Škrlep, M.; Prunier, A.; Bonneau, M.; Fazarinc, G.; Čandek-Potokar, M. Steroid hormones, boar taint compounds, and reproductive organs in pigs according to the delay between immunocastration and slaughter. Theriogenology 2013, 79, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Walstra, P.; Claudi-Magnussen, C.; Chevillon, P.; von Seth, G.; Diestre, A.; Matthews, K. An international study on the importance of androstenone and skatole for boar taint: Levels of androstenone and skatole by country and season. Livest. Prod. Sci. 1999, 62, 15–28. [Google Scholar] [CrossRef]
- Meier-Dinkel, L.; Sharifi, R.A.; Frieden, L.; Tholen, E.; Wicke, E.; Mörlein, D. Controlling boar taint: Assessors’ sensitivity matters. In Proceedings of the 58th International Congress on Meat Science and Technology 2012, Montreal, QC, Canada, 12–17 August 2012. [Google Scholar]
- Mörlein, D.; Trautmann, J.; Gertheiss, J.; Meier-Dinkel, L.; Fischer, J.; Eynck, H.J.; Tholen, E. Interaction of skatole and androstenone in the olfactory perception of boar taint. J. Agric. Food Chem. 2016, 64, 4556–4565. [Google Scholar] [CrossRef] [Green Version]
- Aluwé, M.; Aaslyng, M.; Backus, G.; Bonneau, M.; Chevillon, P.; Haugen, J.E.; Tuyttens, F.A.M. Consumer acceptance of minced meat patties from boars in four European countries. Meat Sci. 2018, 137, 235–243. [Google Scholar] [CrossRef]
- Trautmann, J.; Meier-Dinkel, L.; Gertheiss, J.; Mörlein, D. Boar taint detection: A comparison of three sensory protocols. Meat Sci. 2016, 111, 92–100. [Google Scholar] [CrossRef]
- Bonneau, M.; Chevillon, P. Acceptability of entire male pork with various levels of androstenone and skatole by consumers according to their sensitivity to androstenone. Meat Sci. 2012, 90, 330–337. [Google Scholar] [CrossRef]
Trait | Carcass Weight, kg | F, mm | M, mm | LMP, % | Carcass Length, cm | Ham Length, cm | Ham Circumference, cm |
---|---|---|---|---|---|---|---|
Terminal sire line (TSL) | |||||||
A | 95.1 ± 0.35 | 15.8 a ± 0.54 | 72.6 ± 0.69 | 57.9 a ± 0.44 | 91.5 b ± 0.28 | 34.3 ± 0.14 | 74.2 b ± 0.15 |
B | 95.3 ± 0.41 | 15.1 b ± 0.44 | 71.8 ± 0.64 | 57.7 a ± 0.52 | 91.9 ab ± 0.25 | 34.2 ± 0.10 | 75.2 a ± 0.15 |
C | 96.6 ± 0.61 | 17.4 a ± 0.56 | 71.4 ± 0.63 | 55.6 b ± 0.43 | 92.7 a ± 0.33 | 34.6 ± 0.14 | 75.2 a ± 0.20 |
Male category (MC) | |||||||
IC | 94.8 ± 0.51 | 16.1 b ± 0.47 | 71.9 ± 0.72 | 56.6 ± 0.43 | 92.3 ± 0.32 | 34.4 ± 0.14 | 74.7 b ± 0.17 |
EM | 96.6 ± 0.49 | 13.5 c ± 0.37 | 71.4 ± 0.60 | 57.4 ± 0.50 | 91.7 ± 0.26 | 34.3 ± 0.12 | 74.6 b ± 0.20 |
SC | 95.6 ± 0.41 | 18.8 a ± 0.51 | 72.5 ± 0.63 | 57.2 ± 0.51 | 92.2 ± 0.30 | 34.4 ± 0.13 | 75.2 a ± 0.16 |
Trait | pH45 | pH24 | Drip Loss, % | Cooking Loss, % | WBSF, N | CIE-L* | CIE-a* | CIE-b* |
---|---|---|---|---|---|---|---|---|
Terminal sire line (TSL) | ||||||||
A | 6.27 ab ± 0.03 | 5.53 ± 0.01 | 7.9 b ± 0.35 | 34.70 ± 0.18 | 46.90 a ± 0.76 | 53.30 ± 0.30 | 7.90 ab ± 0.17 | 3.70 ± 0.13 |
B | 6.18 b ± 0.03 | 5.55 ± 0.01 | 7.6 b ± 0.41 | 34.40 ± 0.20 | 43.40 b ± 0.89 | 53.30 ± 0.29 | 8.20 a ± 0.17 | 3.50 ± 0.11 |
C | 6.28 a ± 0.03 | 5.55 ± 0.01 | 9.30 a ± 0.38 | 34.4 ± 0.23 | 44.50 ab ± 0.88 | 53.80 ± 0.28 | 7.60 b ± 0.14 | 3.50 ± 0.12 |
Male category (MC) | ||||||||
IC | 6.26 ± 0.03 | 5.53 ± 0.01 | 8.40 ab ± 0.36 | 34.9 ab ± 0.17 | 45.80 ± 0.91 | 53.60 ± 0.23 | 7.80 ± 0.14 | 3.50 ± 0.09 |
EM | 6.20 ± 0.03 | 5.56 ± 0.01 | 8.90 a ± 0.45 | 35.3 a ± 0.16 | 44.50 ± 0.89 | 53.10 ± 0.21 | 8.00 ± 0.16 | 3.60 ± 0.10 |
SC | 6.27 ± 0.03 | 5.54 ± 0.01 | 7.60 b ± 0.35 | 33.3 b ± 0.19 | 44.50 ± 0.78 | 53.80 ± 0.29 | 8.00 ± 0.18 | 3.50 ± 0.16 |
Terminal Sire Line (TSL) | Androstenone (µg/g) | Skatole (µg/g) |
---|---|---|
A | 0.68 b ± 0.08 | 0.085 ± 0.02 |
B | 0.73 b ± 0.30 | 0.051 ± 0.01 |
C | 1.51 a ± 0.13 | 0.052 ± 0.02 |
Male category (MC) | ||
IC | 0.28 b ± 0.03 | 0.033 b ± 0.00 |
EM | 1.66 a ± 0.02 | 0.092 a ± 0.02 |
Terminal Sire Line | Male Category | Proportion (%) of Carcasses with Skatole > 0.25 µg/g, [CI] | Proportion (%) of Carcasses with Androstenone > 1.0 µg/g, [CI] |
---|---|---|---|
A | IC | 0 [0.00, 1.00] | 0 [0.00, 1.00] |
EM | 10 [0.05, 1.00] | 35 [0.20, 0.88] | |
B | IC | 0 [0.00, 1.00] | 5 [0.00, 1.00] |
EM | 5 [0.00, 1.00] | 40 [0.25, 0.85] | |
C | IC | 0 [0.00, 1.00] | 0 [0.00, 1.00] |
EM | 5 [0.00, 1.00] | 79 [0.60, 0.94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djurkin Kušec, I.; Cimerman, E.; Škrlep, M.; Karolyi, D.; Gvozdanović, K.; Komlenić, M.; Radišić, Ž.; Kušec, G. Influence of Immunocastration on Slaughter Traits and Boar Taint Compounds in Pigs Originating from Three Different Terminal Sire Lines. Animals 2021, 11, 228. https://doi.org/10.3390/ani11010228
Djurkin Kušec I, Cimerman E, Škrlep M, Karolyi D, Gvozdanović K, Komlenić M, Radišić Ž, Kušec G. Influence of Immunocastration on Slaughter Traits and Boar Taint Compounds in Pigs Originating from Three Different Terminal Sire Lines. Animals. 2021; 11(1):228. https://doi.org/10.3390/ani11010228
Chicago/Turabian StyleDjurkin Kušec, Ivona, Emilija Cimerman, Martin Škrlep, Danijel Karolyi, Kristina Gvozdanović, Miodrag Komlenić, Žarko Radišić, and Goran Kušec. 2021. "Influence of Immunocastration on Slaughter Traits and Boar Taint Compounds in Pigs Originating from Three Different Terminal Sire Lines" Animals 11, no. 1: 228. https://doi.org/10.3390/ani11010228
APA StyleDjurkin Kušec, I., Cimerman, E., Škrlep, M., Karolyi, D., Gvozdanović, K., Komlenić, M., Radišić, Ž., & Kušec, G. (2021). Influence of Immunocastration on Slaughter Traits and Boar Taint Compounds in Pigs Originating from Three Different Terminal Sire Lines. Animals, 11(1), 228. https://doi.org/10.3390/ani11010228