Non-Invasive Physiological Indicators of Heat Stress in Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Stress Response to Hot Environment
3. Thermoregulatory Mechanism
4. Environmental Factors Related to Heat Stress in Cattle
5. Cattle Responses to Heat Stress and Their Measurement
5.1. Respiration Rates
5.2. Body Condition and Growth
5.3. Health Status
5.4. Endocrinological Changes
Cortisol Metabolites
5.5. Body Temperature Changes
Potential of Infrared Thermography to Measure Body Temperature
6. Confounding Factors Associated with Infrared Thermography
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nienaber, J.A.; Hahn, G.L. Livestock production system management responses to thermal challenges. Int. J. Biometeorol. 2007, 52, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, P.J. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 2004, 82, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.M. Biological Responses of Feedlot Cattle to Heat Load. Ph.D. Thesis, The University of Queensland, Gatton, Australia, 2016. [Google Scholar]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167. [Google Scholar] [CrossRef] [Green Version]
- Lacetera, N.; Bernabucci, U.; Scalia, D.; Basiricò, L.; Morera, P.; Nardone, A. Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. J. Dairy Sci. 2006, 89, 4606–4612. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, T.; Loureiro, B. Selecting thermotolerant animals as a strategy to improve fertility in Holstein cows. Glob. J. Anim. Sci. Res. 2015, 3, 119–127. [Google Scholar]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Sackett, D.; Holmes, P.; Abbot, K.; Jephcott, S.; Barber, M. Assessing the Economic Cost of Endemic Disease on the Profitability of Australian Beef Cattle and Sheep Producers; MLA Final Report AHW.087; Meat and Livestock Australia: Sydney, Australia, 2006. [Google Scholar]
- Senft, R.; Rittenhouse, L. A model of thermal acclimation in cattle. J. Anim. Sci. 1985, 61, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Vermunt, J.J.; Tranter, B.P. Heat stress in dairy cattle—A review, and some of the potential risks associated with the nutritional management of this condition. In Proceedings of the Annual Conference of the Australian Veterinary Association—Queensland Division, Townsville, Australia, 25–27 March 2011; pp. 212–221. [Google Scholar]
- Veissier, I.; Laer, E.V.; Palme, R.; Moons, C.P.H.; Ampe, B.; Sonck, B.; Andanson, S.; Tuyttens, F.A. Heat stress in cows at pasture and benefit of shade in a temperate climate region. Int. J. Biometeorol. 2018, 62, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Samad, H.; Shehzad, F.; Qayyum, A. Physiological responses of cattle to heat stress. World Appl. Sci. J. 2010, 8, 38–43. [Google Scholar]
- Scharf, B.A. Comparison of Thermoregulatory Mechanisms in Heat Sensitive and Tolerant Breeds of Bos taurus Cattle. Master’s Thesis, Science-University of Missouri-Columbia, Columbia, MO, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Rees, A.; Fischer-Tenhagen, C.; Heuwieser, W. Effect of Heat Stress on Concentrations of Faecal Cortisol Metabolites in Dairy Cows. Reprod. Domest. Anim. 2016, 51, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Palme, R.; Robia, C.; Messmann, S.; Hofer, J.; Mostl, E. Measurement of faecal cortisol metabolites in ruminants: A non-invasive parameter of adrenocortical function. Wien. Tierarztl. Monat. 1999, 86, 237–241. [Google Scholar]
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Palme, R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 2012, 21, 331. [Google Scholar] [CrossRef]
- Christison, G.; Johnson, H. Cortisol turnover in heat-stressed cows 1. J. Anim. Sci. 1972, 35, 1005–1010. [Google Scholar] [CrossRef]
- Beede, D.K.; Collier, R.J.; Mallonee, P.G.; Wilcox, C.J.; Buffington, D.E. Heat stress and dietary potassium effects on circadian profiles of blood prolactin and aldosterone in lactating cows. In American Society of Agricultural Engineers; ASAE Publication: St. Joseph, MO, USA, 1982. [Google Scholar]
- Gaughan, J.B. Respiration Rate and Rectal Temperature Responses of Feedlot Cattle in Dynamic, Thermally Challenging Environments. Ph.D. Thesis, The University of Queensland, Gatton, Australia, 2002. [Google Scholar]
- Reuter, R.R.; Carroll, J.A.; Hulbert, L.E.; Dailey, J.W.; Galyean, M.L. Development of a self-contained, indwelling rectal temperature probe for cattle research. J. Anim. Sci. 2010, 88, 3291–3295. [Google Scholar] [CrossRef] [Green Version]
- Hillman, P.; Willard, S.; Lee, C.; Kennedy, S. Efficacy of a Vaginal Temperature Logger to Record Body Temperatures of Dairy Cows; ASAE: Las Vegas, NV, USA, 2003. [Google Scholar]
- Hillman, P.; Lee, C.; Willard, S. Thermoregulatory responses associated with lying and standing in heat-stressed dairy cows. Trans. Am. Soc. Agric. Engr. 2005, 48, 795–801. [Google Scholar] [CrossRef]
- Hillman, P.E.; Gebremedhin, K.G.; Willard, S.T.; Lee, C.N.; Kennedy, A.D. Continuous measurements of vaginal temperature of female cattle using a data logger encased in a plastic anchor. Appl. Eng. Agric. 2009, 25, 291–296. [Google Scholar] [CrossRef]
- Brown-Brandl, T.; Eigenberg, R.; Hahn, G.; Nienaber, J. Measurements of bioenergetic responses in livestock. In American Society of Agricultural Engineers Special Meetings and Conferences Papers; ASAE: Las Vegas, NV, USA, 1999; p. 994210. [Google Scholar]
- Brown-Brandl, T.M.; Yanagi, T.; Xin, H.; Gates, R.S.; Bucklin, R.A.; Ross, G.S. A new telemetry system for measuring core body temperature in livestock and poultry. Appl. Eng. Agric. 2003, 19, 583. [Google Scholar] [CrossRef]
- Uddin, J.; Phillips, C.J.C.; Goma, A.A.; McNeill, D.M. Relationships between infrared temperature and laterality. Appl. Anim. Behav. Sci. 2019, 220, 104855. [Google Scholar] [CrossRef]
- Uddin, J.; McNeill, D.M.; Lisle, A.T.; Phillips, C.J.C. A sampling strategy for the determination of infrared temperature of relevant external body surfaces of dairy cows. Int. J. Biometeorol. 2020, 64, 1583–1592. [Google Scholar] [CrossRef]
- Lee, C.; Gebremedhin, K.; Parkhurst, A.; Hillman, P. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature. Int. J. Biometeorol. 2015, 59, 1201–1205. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Selye, H. Stress and the General Adaptation Syndrome. Br. Med. J. 1950, 1, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Selye, H. The Evolution of the Stress Concept: The originator of the concept traces its development from the discovery in 1936 of the alarm reaction to modern therapeutic applications of syntoxic and catatoxic hormones. Am. Sci. 1973, 61, 692–699. [Google Scholar]
- Moberg, G.P.; Mench, J.A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI Publishing: New York, NY, USA, 2000. [Google Scholar]
- Young, B.A. Implications of excessive heat load to the welfare of cattle in feedlots. In Recent Advances in Animal Nutrition in Australia; Farrell, D.J., Ed.; University of New England Publishing Unit: Armidale, Australia, 1993; pp. 45–50. [Google Scholar]
- Young, B.A.; Hall, A.B. Heat load in cattle in the Australian environment. In Australian Beef; Coombs, B., Ed.; Morescope Pty Ltd.: Melbourne, Australia, 1993; pp. 143–148. [Google Scholar]
- Cartwright, T.C. Responses of beef cattle to high ambient temperatures. J. Anim. Sci. 1955, 14, 350–362. [Google Scholar] [CrossRef]
- Tait, L. Heat Load Alleviation in Beef Cattle: Water Application during Continuous High Temperature Exposure. Ph.D. Thesis, The University of Queensland, Gatton, Australia, 2015. [Google Scholar]
- Yousef, M.K. Stress Physiology in Livestock. Volume I. Basic Principles; CRC Press: Boca Raton, FL, USA, 1985; ISBN 0849356679. [Google Scholar]
- Hahn, G. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77, 10–20. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, K.S.; Collier, R.J. Regulation of acclimation to environmental stress. In Environmental Physiology of Livestock; Collier, R.J., Collier, L.J., Eds.; Wiley Blackwell West Sussex: Chichester, UK, 2012; pp. 49–63. [Google Scholar]
- Finch, V. Body temperature in beef cattle: Its control and relevance to production in the tropics. J. Anim. Sci. 1986, 62, 531–542. [Google Scholar] [CrossRef]
- Hahn, G.L. Environmental management for improved livestock performance, health and well-being. JPN J. Livest. Manag. 1995, 30, 113–127. [Google Scholar] [CrossRef]
- Hahn, G.; Parkhurst, A.; Gaughan, J. Cattle respiration rate as a function of ambient temperature. Am. Soc. Agric. Engr. 1997, 121, NMC97. [Google Scholar]
- Nienaber, J.; Hahn, G.; Eigenberg, R.; Brown, T.; Gaughan, J. Feed intake response of heat challenged cattle. In Proceedings of the Sixth International Livestock Environment International Symposium, Louisville, KY, USA, 21–23 May 2001; Publication number 121435. pp. 154–164. [Google Scholar]
- Berman, A. Estimates of heat stress relief needs for Holstein dairy cows. J. Anim. Sci. 2005, 83, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Kovács, L.; Kézér, L.; Tőzsér, J. Measuring stress level of dairy cows during milking using by geometric indices of heart rate variability. J. Anim. Sci. Biol. Technol. 2013, 46, 213–217. [Google Scholar]
- Johnson, K. Sweating rate and the electrolyte content of skin secretions of Bos taurus and Bos indicus cross-bred cows. J. Agric. Sci. 1970, 75, 397–402. [Google Scholar] [CrossRef]
- Mader, T.L.; Holt, S.M.; Hahn, G.L.; Davis, M.S.; Spiers, D.E. Feeding strategies for managing heat load in feedlot cattle. J. Anim. Sci. 2002, 80, 2373–2382. [Google Scholar] [CrossRef] [Green Version]
- McLean, J. The partition of insensible losses of body weight and heat from cattle under various climatic conditions. J. Physiol. 1963, 167, 427. [Google Scholar] [CrossRef] [Green Version]
- Gaughan, J.; Mader, T.; Holt, S.; Sullivan, M.; Hahn, G. Assessing the heat tolerance of 17 beef cattle genotypes. Int. J. Biometeorol. 2010, 54, 617–627. [Google Scholar] [CrossRef]
- Brown-Brandl, T.; Eigenberg, R.; Nienaber, J.; Hahn, G.L. Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, Part 1: Analyses of indicators. Biosyst. Eng. 2005, 90, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Nienaber, J.A. Heat stress risk factors of feedlot heifers. Livest. Sci. 2006, 105, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.M.; Nienaber, J.A.; Eigenberg, R.A.; Mader, T.L.; Morrow, J.; Dailey, J. Comparison of heat tolerance of feedlot heifers of different breeds. Livest. Sci. 2006, 105, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Gaughan, J.B.; Mader, T.L. Body temperature and respiratory dynamics in un-shaded beef cattle. Int. J. Biometeorol. 2014, 58, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A new heat load index for feedlot cattle. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, C.B.; Coetzee, J.F.; Stookey, J.M.; Thomson, D.U.; Grandin, T.; Schwartzkopf-Genswein, K.S. Beef cattle welfare in the USA: Identification of priorities for future research. Anim. Health Res. Rev. 2015, 16, 107–124. [Google Scholar] [CrossRef]
- Mader, T.L. Environmental stress in confined beef cattle. J. Anm. Sci. 2003, 81, E110–E119. [Google Scholar] [CrossRef]
- Kadzere, C.; Murphy, M.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Ravagnolo, O.; Misztal, I. Effect of heat stress on nonreturn rate in Holsteins: Fixed-model analyses. J. Dairy Sci. 2002, 85, 3101–3106. [Google Scholar] [CrossRef]
- Baumgard, L.; Rhoads, R. Ruminant Nutrition Symposium: Ruminant production and metabolic responses to heat stress. J. Anim. Sci. 2012, 90, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitali, A.; Segnalini, M.; Bertocchi, L.; Bernabucci, U.; Nardone, A.; Lacetera, N. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J. Dairy Sci. 2009, 92, 3781–3790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow-Tesch, J.; Woollen, N.; Hahn, L. Response of gamma delta T-lymphocytes to heat stress in Bos taurus and Bos indicus crossbred cattle. J. Therm. Biol. 1996, 21, 101–108. [Google Scholar] [CrossRef]
- Sejian, V.; Indu, S.; Naqvi, S. Impact of short-term exposure to different environmental temperature on the blood biochemical and endocrine responses of Malpura ewes under semi-arid tropical environment. Indian J. Anim. Sci. 2013, 83, 1155–1160. [Google Scholar]
- Bauman, D.E.; Currie, W.B. Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef]
- El-Nouty, F.; Elbanna, I.; Davis, T.; Johnson, H. Aldosterone and ADH response to heat and dehydration in cattle. J. Appl. Physiol. 1980, 48, 249–255. [Google Scholar] [CrossRef]
- Wettemann, R.; Tucker, H.A. Relationship of Ambient Temperature to Serum Prolactin in Heifers. Proc. Soc. Exp. Biol. Med. 1974, 146, 908–911. [Google Scholar] [CrossRef]
- Alvarez, M.; Johnson, H. Environmental Heat Exposure on Cattle Plasma Catecholamine and Glucocorticoids1. J. Dairy Sci. 1973, 56, 189–194. [Google Scholar] [CrossRef]
- Collier, R.J.; Beede, D.K.; Thatcher, W.W.; Israel, L.A.; Wilcox, C.J. Influences of environment and its modification on dairy animal health and production1. J. Dairy Sci. 1982, 65, 2213–2227. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Beede, D.; Collier, R. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- Roman-Ponce, H.; Thatcher, W.W.; Collier, R.J.; Wilcox, C.J. Hormonal responses of lactating dairy cattle to TRH and ACTH in a shade management system within a subtropical environment. Theriogenology. 1981, 16, 131–138. [Google Scholar] [CrossRef]
- Jenkinson, D.M.; Sengupta, B.; Blackburn, P. The distribution of nerves, monoamine oxidase and cholinesterase in the skin of cattle. J. Anat. 1966, 100, 593. [Google Scholar] [PubMed]
- Joshi, B.; McDowell, R.; Sadhu, D. Surface evaporation from the normal body surface and with sweat glands inactivated in Indian cattle. J. Dairy Sci. 1968, 51, 915–917. [Google Scholar] [CrossRef]
- Allen, T.; Bligh, J. A comparative study of the temporal patterns of cutaneous water vapour loss from some domesticated mammals with epitrichial sweat glands. Comp. Biochem. Physiol. 1969, 31, 347–363. [Google Scholar] [CrossRef]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef]
- Heimbürge, S.; Kanitz, E.; Otten, W. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 2019, 270, 10–17. [Google Scholar] [CrossRef]
- Mastromonaco, G.F.; Gunn, K.; McCurdy-Adams, H.; Edwards, D.B.; Schulte-Hostedde, A.I. Validation and use of hair cortisol as a measure of chronic stress in eastern chipmunks (Tamias striatus). Conserv. Physiol. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Palme, R. Measuring fecal steroids: Guidelines for practical application. Ann. N. Y. Acad. Sci. 2005, 1046, 75–80. [Google Scholar] [CrossRef]
- Idris, M. Behavioural and Physiological Responses of Beef Cattle to Hot Environmental Conditions. Ph.D. Thesis, The University of Queensland, Gatton, Australia, 2020. [Google Scholar]
- Nejad, J.G.; Lee, B.H.; Kim, J.Y.; Chemere, B.; Kim, S.C.; Kim, B.W.; Park, K.H.; Sung, K.I. Body temperature responses and hair cortisol levels in dairy Holstein cows fed high-and low-forage diet and under water deprivation during thermal-humidity exposure. Ann. Anim. Sci. 2019, 19, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Sokabe, T.; Tominaga, M. Molecular mechanisms underlying thermosensation in mammals. Brain Nerve. 2009, 61, 867–873. [Google Scholar] [PubMed]
- Alsaaod, M.; Büscher, W. Detection of hoof lesions using digital infrared thermography in dairy cows. J. Dairy Sci. 2012, 95, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.L.; Cook, N.J.; Bench, C.; Chabot, J.B.; Colyn, J.; Liu, T.; Okine, E.K.; Stewart, M.; Webster, J.R. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res. Vet. Sci. 2012, 93, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.E.; Leach, K.A.; Main, D.C.J.; Whay, H.R. An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet. J. 2012, 193, 674–678. [Google Scholar] [CrossRef]
- Church, J.S.; Hegadoren, P.; Paetkau, M.; Miller, C.; Regev-Shoshani, G.; Schaefer, A.; Schwartzkopf-Genswein, K. Influence of environmental factors on infrared eye temperature measurements in cattle. Res. Vet. Sci. 2014, 96, 220–226. [Google Scholar] [CrossRef]
- Lee, Y.; Bok, J.D.; Lee, H.; Lee, H.J.; Lee, H.G.; Kim, D.; Lee, I.; Kang, S.K.; Choi, Y.J. Body temperature monitoring using subcutaneously implanted thermo-loggers from holstein steers. Asian. Austral. J. Anim. 2016, 29, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Café, L.M.; Robinson, S.L.; Doyle, R.E.; Lea, J.M.; Small, A.H.; Colditz, I.G. Anxiety influences attention bias but not flight speed and crush score in beef cattle. Appl. Anim. Behav. Sci. 2018, 205, 210–215. [Google Scholar] [CrossRef]
- Vickers, L.A.; Burfeind, O.; Von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M.; Heuwieser, W. Comparison of rectal and vaginal temperatures in lactating dairy cows. J. Dairy Sci. 2010, 93, 5246–5251. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef]
- Burfeind, O.; Von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Repeatability of measures of rectal temperature in dairy cows. J. Dairy Sci. 2010, 93, 624–627. [Google Scholar] [CrossRef]
- Naylor, J.M.; Streeter, R.M.; Torgerson, P. Factors affecting rectal temperature measurement using commonly available digital thermometers. Res. Vet. Sci. 2012, 92, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Polsky, L.B.; Madureira, A.M.L.; Drago Filho, E.L.; Soriano, S.; Sica, A.F.; Vasconcelos, J.L.M.; Cerri, R.L.A. Association between ambient temperature and humidity, vaginal temperature, and automatic activity monitoring on induced estrus in lactating cows. J. Dairy Sci. 2017, 100, 8590–8601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitman, J.; Lefcourt, A.; Wood, D.L.; Stroud, B. Circadian and ultradian temperature rhythms of lactating dairy cows. J. Dairy Sci. 1984, 67, 1014–1023. [Google Scholar] [CrossRef]
- McCafferty, D.J.; Gallon, S.; Nord, A. Challenges of measuring body temperatures of free-ranging birds and mammals. Anim. Biotelemetry 2015, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Burdick, N.C.; Carroll, J.A.; Dailey, J.W.; Randel, R.D.; Falkenberg, S.M.; Schmidt, T.B. Development of a self-contained, indwelling vaginal temperature probe for use in cattle research. J. Therm. Biol. 2012, 37, 339–343. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Schaefer, A.L.; Cook, N.J.; Scott, S.L. Infrared thermography as a non-invasive tool to study animal welfare. Anim. Welf. 2005, 14, 319–325. [Google Scholar]
- Ipema, A.H.; Goense, D.; Hogewerf, P.H.; Houwers, H.W.J.; Van Roest, H. Pilot study to monitor body temperature of dairy cows with a rumen bolus. Comput. Electron. Agric. 2008, 64, 49–52. [Google Scholar] [CrossRef]
- Sellier, N.; Guettier, E.; STAUB, C. A review of methods to measure animal body temperature in precision farming. Am. J. Agric. Sci. Technol. 2014, 2, 74–99. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Verkerk, G.A.; Colyn, J.; Schaefer, A.L. Infrared thermography as a non-invasive measure of stress in dairy cows. J. Anim. Sci. 2005, 83, 374. [Google Scholar]
- Oikonomou, G.; Trojacanec, P.; Ganda, E.K.; Bicalho, M.L.S.; Bicalho, R.C. Association of digital cushion thickness with sole temperature measured with the use of infrared thermography. J. Dairy Sci. 2014, 97, 4208–4215. [Google Scholar] [CrossRef] [Green Version]
- Stelletta, C.; Gianesella, M.; Vencato, J.; Fiore, E.; Morgante, M. Thermographic applications in veterinary medicine. In Infrared Thermography; Prakash, R.V., Ed.; IntechOpen Limited: London, UK, 2012; pp. 117–140. Available online: http://www.intechopen.com/books/infrared-thermography/thermographic-applications-in-veterinary-medicine (accessed on 14 March 2016).
- Tamioso, P.R.; Rucinque, D.S.; Taconeli, C.A.; da Silva, G.P.; Molento, C.F.M. Behavior and body surface temperature as welfare indicators in selected sheep regularly brushed by a familiar observer. J. Vet. Behav. 2017, 19, 27–34. [Google Scholar] [CrossRef]
- Unruh, E.M.; Theurer, M.E.; White, B.J.; Larson, R.L.; Drouillard, J.S.; Schrag, N. Evaluation of infrared thermography as a diagnostic tool to predict heat stress events in feedlot cattle. Am. J. Vet. Res. 2017, 78, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Macmillan, K.; Colazo, M.G.; Cook, N.J. Evaluation of infrared thermography compared to rectal temperature to identify illness in early postpartum dairy cows. Res. Vet. Sci. 2019, 125, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Head, M.; Dyson, S.; Champney, W.S.; Pelt, J.; Tober, C.L. Talking the temperature of equine thermography. Vet. J. 2001, 162, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.; Schaefer, A.; Warren, L.; Burwash, L.; Anderson, M.; Baron, V. Adrenocortical and metabolic responses to ACTH injection in horses: An assessment by salivary cortisol and infrared thermography of the eye. Can. J. Anim. Sci. 2001, 81, 621. [Google Scholar]
- Metzner, M.; Sauter-Louis, C.; Seemueller, A.; Petzl, W.; Klee, W. Infrared thermography of the udder surface of dairy cattle: Characteristics, methods, and correlation with rectal temperature. Vet. J. 2014, 199, 57–62. [Google Scholar] [CrossRef]
- Byrne, D.T.; Berry, D.P.; Esmonde, H.; McHugh, N. Temporal, spatial, inter-, and intra-cow repeatability of thermal imaging. J. Anim. Sci. 2017, 95, 970–979. [Google Scholar] [CrossRef]
- Byrne, D.T.; Berry, D.P.; Esmonde, H.; McGovern, F.; Creighton, P.; McHugh, N. Infrared thermography as a tool to detect hoof lesions in sheep. Transl. Anim. Sci. 2019, 3, 577–588. [Google Scholar] [CrossRef]
- Gloster, J.; Ebert, K.; Gubbins, S.; Bashiruddin, J.; Paton, D.J. Normal variation in thermal radiated temperature in cattle: Implications for foot-and-mouth disease detection. BMC Vet. Res. 2011, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.; Webster, J.; Verkerk, G.; Schaefer, A.; Colyn, J.; Stafford, K. Non-invasive measurement of stress in dairy cows using infrared thermography. Physiol. Behav. 2007, 92, 520–525. [Google Scholar] [CrossRef]
- Stewart, M.; Stookey, J.M.; Stafford, K.J.; Tucker, C.B.; Rogers, A.R.; Dowling, S.K.; Verkerk, G.A.; Schaefer, A.L.; Webster, J.R. Effects of local anesthetic and a nonsteroidal antiinflammatory drug on pain responses of dairy calves to hot-iron dehorning. J. Dairy Sci. 2009, 92, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- McGreevy, P.; Warren-Smith, A.; Guisard, Y. The effect of double bridles and jaw-clamping crank nosebands on temperature of eyes and facial skin of horses. J. Vet. Behav. 2012, 7, 142–148. [Google Scholar] [CrossRef]
- George, W.D.; Godfrey, R.W.; Ketring, R.C.; Vinson, M.C.; Willard, S.T. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. J. Anim. Sci. 2014, 92, 4949–4955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanghi, B.M. Eye and ear temperature using infrared thermography are related to rectal temperature in dogs at rest or with exercise. Front. Vet. Sci. 2016, 3, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goma, A.A.; Pearce, G.P.; Uddin, J.; Rimon, E.; Davies, H.; Phillips, C.J.C. A forced lateralisation test for dairy cows and its relation to their behaviour. Appl. Anim. Behav. Sci. 2018, 207, 8–19. [Google Scholar] [CrossRef]
- Phillips, C.J.C.; Oevermans, H.; Syrett, K.L.; Jespersen, A.Y.; Pearce, G.P. Lateralization of behavior in dairy cows in response to conspecifics and novel persons. J. Dairy Sci. 2015, 98, 2389–2400. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J. Relevance of brain and behavioural lateralization to animal welfare. Appl. Anim. Behav. Sci. 2010, 127, 1–11. [Google Scholar] [CrossRef]
- Robins, A.; Phillips, C.J.C. Lateralised visual processing in domestic cattle herds responding to novel and familiar stimuli. Laterality. 2010, 15, 514–534. [Google Scholar] [CrossRef]
- Lees, A.M.; Salvin, H.E.; Colditz, I.; Lee, C. The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle. Animals 2020, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Uddin, J.; Phillips, C.J.C.; Auboeuf, M.; McNeill, D.M. Relationships between body temperatures and behaviours in lactating dairy cows. Appl. Anim. Behav. Sci. under review.
- Montanholi, Y.R.; Odongo, N.E.; Swanson, K.C.; Schenkel, F.S.; McBride, B.W.; Miller, S.P. Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). J. Therm. Biol. 2008, 33, 468–475. [Google Scholar] [CrossRef]
- Taylor, N.A.S.; Tipton, M.J.; Kenny, G.P. Considerations for the measurement of core, skin and mean body temperatures. J. Therm. Biol. 2014, 46, 72–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klir, J.J.; Heath, J.E. An infrared thermographic study of surface temperature in relation to external thermal stress in three species of foxes: The red fox (Vulpes vulpes), arctic fox (Alopex lagopus), and kit fox (Vulpes macrotis). Physiol. Biochem. Zool. 1992, 65, 1011–1021. [Google Scholar] [CrossRef]
- Van Den Heuvel, C.J.; Ferguson, S.A.; Gilbert, S.S.; Dawson, D. Thermoregulation in normal sleep and insomnia: The role of peripheral heat loss and new applications for digital thermal infrared imaging (DITI). J. Therm. Biol. 2004, 29, 457–461. [Google Scholar] [CrossRef]
- Cockcroft, P.D.; Henson, F.M.D.; Parker, C. Thermography of a septic metatarsophalangeal joint in a heifer. Vet. Rec. 2000, 146, 258–260. [Google Scholar] [CrossRef]
- Nikkhah, A.; Plaizier, J.C.; Einarson, M.S.; Berry, R.J.; Scott, S.L.; Kennedy, A.D. Infrared thermography and visual examination of hooves of dairy cows in two stages of lactation. J. Dairy Sci. 2005, 88, 2749–2753. [Google Scholar] [CrossRef] [Green Version]
- Proctor, H.S.; Carder, G. Nasal temperatures in dairy cows are influenced by positive emotional state. Physiol. Behav. 2015, 138, 340–344. [Google Scholar] [CrossRef]
- Schaefer, A.L.; Cook, N.; Tessaro, S.V.; Deregt, D.; Desroches, G.; Dubeski, P.L.; Tong, A.K.W.; Godson, D.L. Early detection and prediction of infection using infrared thermography. Can. J. Anim. Sci. 2004, 84, 73–80. [Google Scholar] [CrossRef]
- Munsell, B.A.; Beede, D.K.; Domecq, J.J.; Epperson, W.B.; Ragavendran, A.; Wright, N.; Zanella, A. Use of infrared thermography to non-invasively identify lesions in dairy cows. J. Anim. Sci. 2006, 84, 143. [Google Scholar]
- Eddy, A.L.; Van Hoogmoed, L.M.; Snyder, J.R. The role of thermography in the management of equine lameness. Vet. J. 2001, 162, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Turner, T.A. Thermography as an aid to the clinical lameness evaluation. Vet. Clin. N. Am. Equine Pract. 1991, 7, 311–338. [Google Scholar] [CrossRef]
- Dikmen, S.; Khan, F.; Huson, H.; Sonstegard, T.; Moss, J.; Dahl, G.; Hansen, P. The slick hair locus derived from senepol cattle confers thermotolerance to intensively managed lactating holstein cows. J. Dairy Sci. 2014, 97, 5508–5520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Schweinitz, D.G. Thermographic diagnostics in equine back pain. Vet. Clin. N. Am. Equine Pract. 1999, 15, 161–177. [Google Scholar] [CrossRef]
- Stothard, P.; Choi, J.W.; Basu, U.; Sumner-Thomson, J.M.; Meng, Y.; Liao, X.; Moore, S.S. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genet. 2011, 12, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purohit, R.C.; Hudson, R.S.; Riddell, M.G.; Carson, R.L.; Wolfe, D.F.; Walker, D.F. Thermography of the bovine scrotum. Am. J. Vet. Res. 1985, 46, 2388–2392. [Google Scholar] [PubMed]
- Nocek, J.E. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [Google Scholar] [CrossRef]
- Stone, W.C. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J. Dairy Sci. 2004, 87, 13–26. [Google Scholar] [CrossRef]
- Redden, K.D.; Kennedy, A.D.; Ingalls, J.R.; Gilson, T.L. Detection of estrus by radiotelemetric monitoring of vaginal and ear skin temperature and pedometer measurements of activity. J. Dairy Sci. 1993, 76, 713–721. [Google Scholar] [CrossRef]
- Lewis, G.S.; Newman, S.K. Changes throughout estrous cycles of variables that might indicate estrus in dairy cows. J. Dairy Sci. 1984, 67, 146–152. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Adams, W.R. Radiotelemetric measurement of body temperature in feedlot steers during winter. J. Anim. Sci. 1998, 76, 1830–1837. [Google Scholar] [CrossRef]
- Ingram, D.L.; Whittow, G.C. The effects of variations in respiratory activity and in the skin temperatures of the ears on the temperature of the blood in the external jugular vein of the ox (Bos taurus). J. Physiol. 1962, 163, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris-Bridge, G.; Young, L.; Handel, I.; Farish, M.; Mason, C.; Mitchell, M.; Haskell, M. The use of infrared thermography for detecting digital dermatitis in dairy cattle: What is the best measure of temperature and foot location to use? Vet. J. 2018, 237, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Proctor, H.S.; Carder, G. Can changes in nasal temperature be used as an indicator of emotional state in cows? Appl. Anim. Behav. Sci. 2016, 184, 1–6. [Google Scholar] [CrossRef]
- Gómez, Y.; Bieler, R.; Hankele, A.K.; Zähner, M.; Savary, P.; Hillmann, E. Evaluation of visible eye white and maximum eye temperature as non-invasive indicators of stress in dairy cows. Appl. Anim. Behav. Sci. 2018, 198, 1–8. [Google Scholar] [CrossRef]
- Jaddoa, M.A.; Al-Jumaily, A.; Gonzalez, L.; Cuthbertson, H. Automatic eyes localization in thermal images for temperature measurement in cattle. In Proceedings of the 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26 November 2017; pp. 1–6. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J.C. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals 2021, 11, 71. https://doi.org/10.3390/ani11010071
Idris M, Uddin J, Sullivan M, McNeill DM, Phillips CJC. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals. 2021; 11(1):71. https://doi.org/10.3390/ani11010071
Chicago/Turabian StyleIdris, Musadiq, Jashim Uddin, Megan Sullivan, David M. McNeill, and Clive J. C. Phillips. 2021. "Non-Invasive Physiological Indicators of Heat Stress in Cattle" Animals 11, no. 1: 71. https://doi.org/10.3390/ani11010071