Designing Calcium Phosphate Nanoparticles with the Co-Precipitation Technique to Improve Phosphorous Availability in Broiler Chicks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phase 1: Synthesis and Characterizing of Calcium Phosphate Nanoparticles
2.1.1. Reagents and Solutions
2.1.2. Manufacture of Nanoparticles
2.1.3. Characterization of the Calcium Phosphate Nanoparticles
Scanning Electron Microscopy
Transmission Electron Microscopy
Dynamic Lightscattering and Zeta Potential Measurements
Chemical Composition
2.2. Phase 2. Bird Performance, Digestibility, and Ca-P Content in Tissues
2.2.1. Animals Management and Diets
2.2.2. Bird Performance
2.2.3. Digestibility Trial
2.2.4. Tissues Collection and Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Phase 1: Synthesis and Characterizing of Phosphate Dicalcium Nanoparticles
3.1.1. Characterization
3.1.2. Composition
3.2. Phase 2. Bird Performance, Digestibility, and Ca-P Content in Tissues
Bird Performance
4. Discussion
4.1. Phase 1: Synthesis and Characterizing of Calcium Phosphate Nanoparticles
4.2. Phase 2. Bird Performance, Digestibility, and Ca-P Content in Tissues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delezie, E.; Bierman, K.; Nollet, L.; Martens, L. Impacts of calcium and phosphorus concentration, their ratio, and phytase supplementation level on growth performance, foot pad lesions, and hock burn of broiler chickens. J. Appl. Poult. Res. 2015, 24, 115–126. [Google Scholar] [CrossRef]
- Dinev, I.; Kanakov, D.; Kalkanov, B.; Nikolov, A.; Denev, B.S. Comparative Pathomorphologic Studies on the Incidence of Fractures Associated with Leg Skeletal Pathology in Commercial Broiler Chickens. Avian Dis. 2019, 63, 641–650. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Hu, Y.; Xuefei, X.; Tang, Y.; Chen, J.; Xiaohua, F.; Sun, Y. Water Organic Pollution and Eutrophication Influence Soil Microbial Processes, Increasing Soil Respiration of Estuarine Wetlands: Site Study in Jiuduansha Wetland. PLoS ONE 2015, 10, e0126951. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 8th ed.; National Academy of Sciences: Washington, DC, USA, 1984; 143p. [Google Scholar]
- Li, J.; Yuan, J.; Miao, Z.; Guo, Y. Effects of age on intestinal phosphate transport and biochemical values of broiler chickens. Asian-Australas J. Anim Sci. 2017, 30, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera Sommerfeld, V.; Omotoso, A.D.; Oster, M.; Reyer, H.; Camarinha-Silva, A.; Hasselmann, M.; Huber, K.; Ponsuksili, S.; Seifert, J.; Stefanski, V.; et al. Phytate Degradation, Transcellular Mineral Transporters, and Mineral Utilization by Two Strains of Laying Hens as Affected by Dietary Phosphorus and Calcium. Animals 2020, 10, 1736. [Google Scholar] [CrossRef]
- Han, J.; Chung, S. Synthesis and characterization of amorphous calcium phosphate nanoparticles. Appl. Chem. Eng. 2018, 29, 740–745. [Google Scholar] [CrossRef]
- Levingstone, J.; Herbaj, S.; Dunne, N. Review Calcium Phosphate Nanoparticles for Therapeutic Applications in Bone Regeneration. Nanomaterials 2019, 9, 1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedaghat, A.; Nikbakht, M.; Sadzak, A.; Van, P. Production of food nanomaterials by specialized equipment. In Handbook of Food Nanotechnology: Applications and Approaches; Academic Press: Cambridge, MA, USA, 2020; pp. 161–204, Chapter 5. [Google Scholar] [CrossRef]
- Ishikawa, K.; Garskaite, E.; Kareiva, A. Sol–gel synthesis of calcium phosphate-based biomaterials—A review of environmentally benign, simple, and effective synthesis routes. J. Sol.-Gel Sci. Technol. 2020, 2, 14. [Google Scholar] [CrossRef]
- NOM-033-ZOO-1995. Sacrifice of Domestic Animals and Wild. Diario Oficial Mexico. 1995. Available online: https://www.cuautitlan.unam.mx/descargas/cicuae/normas/Norma033.pdf (accessed on 5 November 2018).
- NOM-062-ZOO-1999. Technical Specifications for Production, Care and Use of Laboratory Animals. Diario Oficial Mexico. 1999. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 5 November 2018).
- NOM-008-ZOO-1994. Animal Health Specifications for Construction and Equipping Establishments for the Slaughter of Animals and Those Dedicated to the Industrialization of Meat Products. Diario Oficial Mexico. 1994. Available online: https://www.gob.mx/cms/uploads/attachment/file/203866/NOM-008-ZOO-1994_16111994.pdf (accessed on 5 November 2018).
- Cuca, G.M.; De la Rosa, C.G.; Pro, M.A.; Baeza, L.J. Disponibilidad del fósforo de la pasta de soya y sorgo-gluten de maíz, adicionadas con fitasa en pollos de engorda en iniciación. Téc. Pec. Méx. 2003, 41, 295–306. Available online: https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/1266 (accessed on 5 November 2018).
- NRC. Nutrient Requirements of Poultry. 10th Revised Edition; National Research Council, National Academy Press: Washington, DC, USA, 1994; 155p. [Google Scholar]
- Godoy, S.; Chicco, C.F. Relative bio-availability of phosphorus from Venezuelan raw rock phosphates for poultry. Anim. Feed Sci. Technol. 2001, 94, 103–113. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Rockville, MA, USA, 2016; p. 2850. ISBN 0-935584-87-0. [Google Scholar]
- SAS. The SAS System for Windows 9.4; Statistical Analysis System: Cary, NC, USA, 2012. [Google Scholar]
- Lamp, A.E.; Mereu, A.; Ruiz-Ascacibar, I.; Mortiz, J.S. Inorganic feed phosphate type determines mineral digestibility, broiler performance, and bone mineralization. J. Appl. Poult. Res. 2020, 29, 559–572. [Google Scholar] [CrossRef]
- Romero-Pérez, A.; García-García, E.; Zavaleta-Mancera, A.; Ramírez-Bribiesca, J.E.; Revilla-Vázquez, A.; Hernández, L.M.; López-Arellano, R.; Cruz-Monterrosa, R.G. Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Vet. Res. Commun. 2010, 34, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samy, A.; Hassan, H.M.A.; El-Sherbiny, A.E.; Abd-Elsamee, M.O.; Mohamed, M.A. Characterization of nano dicalcium phosphate (ndcp) synthesized by sol-gel method. Int. J. Recent Scient. Res. 2015, 6, 4091–4096. Available online: http://www.recentscientific.com (accessed on 9 April 2019).
- Sarig, S.; Kahana, F. Rapid formation of nanocrystalline apatite. J. Cryst. Growth 2002, 25, 237–239. [Google Scholar] [CrossRef]
- Huang, J.; Best, S.M.; Bonfield, W.; Brooks, R.A.; Rushton, N.; Jayasinghe, S.N.; Edirisinghe, M.J. In vitro assessment of the biological response to nano-sized hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 441–445. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Samy, A.; El-Sherbiny, A.E.; Mohamed, M.A.; Abd-Elsamee, M.O. Application of Nano-dicalcium Phosphate in Broiler Nutrition: Performance and Excreted Calcium and Phosphorus. Asian J. Anim. Vet. Adv. 2016, 11, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Isobe, T.; Senna, M. Hydroxyapatite Nano Sol Prepared via A Mechanochemical Route. J. Nanopart. Res. 2001, 3, 57–61. [Google Scholar] [CrossRef]
- Patra, A.; Lalhriatpuii, M. Progress and Prospect of Essential Mineral Nanoparticles in Poultry Nutrition and Feeding—A Review. Biol. Trace Elem. Res. 2020, 197, 233–253. [Google Scholar] [CrossRef]
- Machindra, Y.; Kanagaraju, P.; Srinivasan, G.; Rathnapraba, S.; Swapnil, S. Synthesis and characterization of feed grade nano dicalcium phosphate for poultry feeding. Int. J. Chem. Stud. 2019, 7, 726–729. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.H.; Moreau, J.L.; Sun, L.; Chow, L.C. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent. Mater 2011, 27, 762–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Xiuhua, L.; Zhang, D.; Yang, T.Y.; Bryden, W.L. Phosphorus Bioavailability: A Key Aspect for Conserving this Critical Animal Feed Resource with Reference to Broiler Nutrition. Agriculture 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Arias, A.; Godoy, S.; Pizzni, P.; Chicco, C. Validaton of productive response and bone mineralization in chicken fed with urea phosphate (up) in the feed and water. Rev. Cient. 2008, 18, 408–414. Available online: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-22592008000400011&lng=es&nrm=iso&tlng=en (accessed on 23 April 2018).
- Zyla, K.; Koreleski, J.; Swiatkiewicz, S.; Ledoux, D.R.; Piironen, J. Influence of supplemental enzymes on the performance and phosphorus excreation of broilers fed wheat-based diets to 6 weeks of age. Anim. Feed Sci. Technol. 2001, 89, 113–118. [Google Scholar] [CrossRef]
- Swain, P.S.; Rajendran, D.; Rao, S.B.N.; Dominic, G. Preparation and effects of nano mineral particle feeding in livestock: A review. Vet. World 2015, 8, 888–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manangi, M.K.; Coon, C.N. The effect of calcium particle size and solubility on the utilization of phosphorus from phytase for broilers. Int. J. Poult. Sci. 2007, 6, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Lalles, J.P. Intestinal alkaline phosphatase: Novel functions and protective effects. Nutr. Rev. 2014, 72, 82–94. [Google Scholar] [CrossRef]
- Jacquillet, G.; Unwin, R.J. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflügers Arch. -Eur. J. Physiol. 2019, 471, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.R.; Mendonca, J.R.; Alvarez, J.C.; Garzillo, J.M.F.; Chion, E.; Leal, P.M. Biological Evaluation of Commercial Dicalcium Phosphates as Spurces of Available Phosphorus for broiler chicks. Poult. Sci. 1997, 76, 1707–1713. [Google Scholar] [CrossRef]
- Potter, L.M.; Potchanakorn, M.; Ravindran, V.; Kornegay, E.T. Bioavailability of phosphorus in various phosphate sources using body weight and toe ash as response criteria. Poult. Sci. 1995, 74, 813–820. [Google Scholar] [CrossRef]
- Augspurger, N.R.; Webel, D.M.; Lei, X.G.; Baker, D.H. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J. Anim. Sci. 2003, 81, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Uculmana, M.C.; Martínez-Patiño, D.; Zea, M.O.; Vílchez, P.C. Effect of the calcium phosphorus ratio on bone characteristics, percent of ashes and skeletal integrity of broilers. Rev. Inv. Vet. Perú. 2018, 29, 1268–1277. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.; Zea, O.; Vílchez, C. Rendimiento productivo e integridad ósea de pollos de carne en respuesta a suplementación dietaria con cuatro fuentes de fitasa comercial. Rev. Inv. Vet. Perú. 2018, 29, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Applegate, T.J.; Lilburn, M.S. Growth of the femur and tibia of a commercial broiler line. Poult. Sci. 2002, 81, 1289–1294. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.; Martínez, S.; Augusto, L.; Barbosa, J.; Morais, A.; Rita, M.; Amoroso, L. Determination of broiler femur parameters at different growth phases. Int. J. Poult. Sci. 2011, 10, 849–853. [Google Scholar] [CrossRef] [Green Version]
- Bond, P.L.; Sullivan, T.W.; Douglas, J.H.; Robeson, L.G. Influence of age, sex, and method of rearing on tibia length and mineral deposition in broilers. Poult. Sci. 1991, 70, 1936–1942. [Google Scholar] [CrossRef]
- Driver, J.P.; Pesti, G.M.; Bakalli, R.I.; Edwards, H.M. Calcium requirements of the modern broiler chicken as influenced by dietary protein and age. Poult. Sci. 2005, 84, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Bar, A.; Shinder, D.; Yosefi, S.; Vax, E.; Plavnik, I. Metabolism and requirements for calcium and phosphorus in the fast-growing chicken as affected by age. Brit. J. Nutr. 2003, 89, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorland, C.J.; Stremke, E.R.; Moorthi, R.N.; Hill, K.M. Effects of excessive dietary phosphorus intake on bone health. Curr. Osteoporos. Rep. 2017, 15, 473–482. [Google Scholar] [CrossRef]
Control | Commercial | NDP | Analytical | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pa % | 0.13 | 0.24 | 0.35 | 0.46 | 0.24 | 0.35 | 0.46 | 0.24 | 0.35 | 0.46 |
Ingredients | ||||||||||
Sorghum | 58.64 | 58.21 | 57.74 | 57.31 | 58.22 | 57.81 | 57.38 | 58.48 | 58.30 | 58.14 |
Soybean meal | 31.90 | 31.99 | 32.09 | 32.18 | 31.99 | 32.07 | 32.16 | 31.93 | 31.97 | 32.00 |
Soybean oil | 5.35 | 5.48 | 5.62 | 5.75 | 5.48 | 5.60 | 5.73 | 5.40 | 5.45 | 5.50 |
CaCO3 1 | 2.52 | 2.21 | 1.91 | 1.60 | 2.11 | 1.70 | 1.30 | 2.10 | 1.69 | 1.27 |
Ca orthophosphate 2 | 0.00 | 0.52 | 1.05 | 1.57 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
NDP 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | 1.22 | 1.84 | 0.00 | 0.00 | 0.00 |
Analytical CaHPO4 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 1.00 | 1.50 |
L-Lysine | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
DL-Methionine | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 |
L-Threonine | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
L-Triptophane | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Vit and mineral mix 5 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
NaCl | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Nutritional intake calculated | ||||||||||
ME (Mcal kg−1) | 3200 | 3200 | 3200 | 3200 | 3200 | 3200 | 3200 | 3200 | 3200 | 3200 |
Crude protein, % | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 |
Lysine, % | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Methionine + Cystine, % | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
Threonine, % | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 |
Tryptophan, % | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 |
Ca, % | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
PT, % | 0.37 | 0.48 | 0.59 | 0.70 | 0.48 | 0.59 | 0.70 | 0.48 | 0.59 | 0.70 |
PT (analyzed), % | 0.36 | 0.50 | 0.60 | 0.72 | 0.48 | 0.59 | 0.68 | 0.50 | 0.59 | 0.71 |
P-Source/Pa (%) | Body Weight Gain (g) | Feed Intake (g) | Feed Conversion |
---|---|---|---|
Control | |||
0.13 | 228.40 d | 345.82 d | 1.55 |
EEM | 19.17 | 33.62 | 0.05 |
Commercial | |||
0.24 | 600.50 c | 815.10 c | 1.35 |
0.35 | 756.80 a | 1001.69 abc | 1.31 |
0.46 | 799.20 a | 1073.40 a | 1.34 |
EEM | 25.27 | 41.61 | 0.05 |
NDP | |||
0.24 | 616.90 bc | 862.34 bc | 1.40 |
0.35 | 745.20 ab | 1034.30 ab | 1.39 |
0.46 | 790.60 a | 1041.03 ab | 1.33 |
EEM | 24.17 | 40.52 | 0.05 |
Analytical | |||
0.24 | 592.30 c | 812.3 c | 1.37 |
0.35 | 757.20 a | 1074.00 a | 1.42 |
0.46 | 748.40 ab | 972.49 abc | 1.30 |
EEM | 23.27 | 36.62 | 0.05 |
Global | |||
Commercial | 718.83 | 963.39 | 1.33 |
NDP | 717.57 | 979.22 | 1.37 |
Analytical | 659.30 | 952.93 | 1.36 |
EEM | 21.18 | 26.45 | 0.06 |
P-Source/Pa (%). | PT Analyzed in Diet | Day 10 | Day 21 | ||||||
---|---|---|---|---|---|---|---|---|---|
TPI | TPE | TPA | ADP | TPI | TPE | TPA | ADP | ||
Control | |||||||||
0.13 | 0.36 | 0.68 d | 0.31b | 0.35 c | 58.43 c | 0.57 d | 0.19 d | 0.38 c | 64.06 b |
EEM | 0.07 | 0.08 | 0.07 | 5.29 | 0.21 | 0.22 | 0.19 | 4.32 | |
Commercial | |||||||||
0.24 | 0.50 | 1.17 c | 0.41 ab | 0.79 bc | 65.46 ad | 2.90 c | 0.87 bcd | 2.04 b | 70.17 a |
0.35 | 0.60 | 1.70 b | 0.70 ab | 0.99 ab | 59.79 c | 4.82 ab | 1.44 abc | 3.39 a | 70.32 a |
0.46 | 0.72 | 2.12 a | 0.77 a | 1.37 a | 64.01 ab | 5.66 a | 2.36 a | 3.30 a | 58.72 b |
EEM | 0.06 | 0.07 | 0.08 | 4.89 | 0.20 | 0.19 | 0.18 | 4.12 | |
NDP | |||||||||
0.24 | 0.48 | 1.21 c | 0.49 ab | 0.75 bc | 61.39 a | 2.97 c | 0.91 bcd | 2.06 b | 69.25 a |
0.35 | 0.59 | 1.68 b | 0.54 ab | 0.99 ab | 66.93 bd | 4.56 b | 1.75 abc | 2.81 b | 61.52 b |
0.46 | 0.68 | 1.94 ab | 0.73 a | 1.16 ab | 62.31 a | 5.25 ab | 1.90 ab | 3.34 a | 63.86 b |
EEM | 0.06 | 0.08 | 0.07 | 3.92 | 0.18 | 0.20 | 0.16 | 4.02 | |
Analytical | |||||||||
0.24 | 0.50 | 1.29 c | 0.55 ab | 0.72 bc | 55.65 c | 2.75 c | 0.81 cd | 1.94 b | 70.67 a |
0.35 | 0.59 | 1.67 b | 0.64 a | 0.84 b | 57.35 c | 4.69 ab | 1.78 abc | 2.91 b | 62.29 b |
0.46 | 0.71 | 1.92 ab | 1.00 a | 1.27 ab | 53.68 c | 4.68 ab | 1.39 abc | 3.29 b | 71.32 a |
EEM | 0.04 | 0.04 | 0.06 | 0.06 | 4.19 | 0.21 | 0.18 | 0.16 | 3.92 |
P-Source/Pa (%) | Breast PT (mg/100g) | Liver PT (mg/100g) | LTB PT (mg/100g) | LTB Ash, % | RTB TL (mm) | RTB TPD (mm) | RTB TMD (mm) | RTB TDD (mm) |
---|---|---|---|---|---|---|---|---|
Control | ||||||||
0.13 | 290 a | 360 a | 14980 b | 34.52 c | 52.27 c | 12.02 d | 4.27 c | 10.82 c |
EEM | 6.0 | 8.0 | 700 | 0.97 | 1.36 | 0.59 | 0.28 | 0.41 |
Commercial | ||||||||
0.24 | 310 b | 510 bc | 17430 ab | 44.03 b | 61.96 b | 16.19c | 5.55 b | 13.96 b |
0.35 | 320 b | 390 a | 19450 a | 50.14 a | 69.39 a | 17.67abc | 6.35 ab | 15.20 ab |
0.46 | 330 b | 430 b | 19450 a | 52.10 a | 69.86 a | 18.29ab | 6.19 ab | 15.17 ab |
EEM | 50 | 50 | 500 | 0.71 | 0.98 | 0.42 | 0.18 | 0.29 |
NDP | ||||||||
0.24 | 310 b | 470 bc | 17210 ab | 45.95 b | 62.78 b | 16.46abc | 5.60 ab | 14.25 ab |
0.35 | 390 c | 410 b | 17690 ab | 49.99 a | 69.27 a | 18.46a | 6.18 ab | 15.40 a |
0.46 | 400 c | 350 ª | 19120 a | 50.07 a | 69.46 a | 18.09abc | 6.44 a | 14.90 ab |
EEM | 50 | 50 | 600 | 0.71 | 1.00 | 0.43 | 0.18 | 0.30 |
Analytical | ||||||||
0.24 | 320 b | 480 bc | 17320 ab | 44.31 b | 61.97 b | 16.30 bc | 5.69 ab | 14.35 ab |
0.35 | 300 b | 350 ª | 18350 a | 50.60 a | 69.50 a | 17.92 abc | 6.26 ab | 15.46 a |
0.46 | 300 b | 530 c | 17360 ab | 53.21 a | 68.43 a | 17.74 abc | 5.99 ab | 14.67 ab |
EEM | 50 | 53 | 600 | 0.75 | 1.04 | 0.45 | 0.19 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Arenas, D.A.; Cuca-García, M.; Méndez-Rojas, M.A.; Pro-Martínez, A.; Becerril-Pérez, C.M.; Mendoza-Álvarez, M.E.; Ávila-Ramos, F.; Ramírez-Bribiesca, J.E. Designing Calcium Phosphate Nanoparticles with the Co-Precipitation Technique to Improve Phosphorous Availability in Broiler Chicks. Animals 2021, 11, 2773. https://doi.org/10.3390/ani11102773
Gutiérrez-Arenas DA, Cuca-García M, Méndez-Rojas MA, Pro-Martínez A, Becerril-Pérez CM, Mendoza-Álvarez ME, Ávila-Ramos F, Ramírez-Bribiesca JE. Designing Calcium Phosphate Nanoparticles with the Co-Precipitation Technique to Improve Phosphorous Availability in Broiler Chicks. Animals. 2021; 11(10):2773. https://doi.org/10.3390/ani11102773
Chicago/Turabian StyleGutiérrez-Arenas, Diana A., Manuel Cuca-García, Miguel A. Méndez-Rojas, Arturo Pro-Martínez, Carlos M. Becerril-Pérez, Maria Eugenia Mendoza-Álvarez, Fidel Ávila-Ramos, and Jacinto Efrén Ramírez-Bribiesca. 2021. "Designing Calcium Phosphate Nanoparticles with the Co-Precipitation Technique to Improve Phosphorous Availability in Broiler Chicks" Animals 11, no. 10: 2773. https://doi.org/10.3390/ani11102773
APA StyleGutiérrez-Arenas, D. A., Cuca-García, M., Méndez-Rojas, M. A., Pro-Martínez, A., Becerril-Pérez, C. M., Mendoza-Álvarez, M. E., Ávila-Ramos, F., & Ramírez-Bribiesca, J. E. (2021). Designing Calcium Phosphate Nanoparticles with the Co-Precipitation Technique to Improve Phosphorous Availability in Broiler Chicks. Animals, 11(10), 2773. https://doi.org/10.3390/ani11102773