Blood Biochemical Variables Found in Lidia Cattle after Intense Exercise
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguilera-Tejero, E.; Estepa, J.C.; López, I.; Bas, S.; Mayer-Valor, R.; Rodríguez, M. Quantitative analysis of acid–base balance in show jumpers before and after exercise. Res. Vet. Sci. 2000, 68, 103–108. [Google Scholar] [CrossRef]
- Assenza, A.; Bergero, D.; Congiu, F.; Tosto, F.; Giannetto, C.; Piccione, G. Evaluation of serum electrolytes and blood lactate concentration during repeated maximal exercise in horse. J. Equine Vet. Sci. 2014, 34, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Barreto, C.A.M.; Pérez, T.E.; Cardona, E.R.; Salgado, M.R.; Troncoso, J.A.R. Comportamiento de los electrolitos: Sodio, cloro y potasio pre y post ejercicio en equinos atletas de alto rendimiento en salto en Bogotá. Rev. Med. Vet. 2007, 14, 85–91. [Google Scholar] [CrossRef]
- Bayly, W.M.; Grant, B.D.; Breeze, R.G.; Kramer, J.W. The effects of maximal exercise on acid-base balance and arterial blood gas tension in Thoroughbred horses. Equine Exerc. Physiol. 1983, 1, 400–407. [Google Scholar]
- Fazio, F.; Gugliandolo, E.; Nava, V.; Piccione, G.; Giannetto, C.; Licata, P. Bioaccumulation of mineral elements in different biological substrates of athletic horse from Messina, Italy. Animals 2020, 10, 1877. [Google Scholar] [CrossRef] [PubMed]
- Goundasheva, D.; Sabev, S. Influence of exercise on acid-base, blood gas and electrolyte status in horses. Trakia J. Sci. 2011, 9, 63–67. [Google Scholar]
- Judson, G.J.; Frauenfelder, H.C.; Mooney, G.J. Biochemical changes in Thoroughbred racehorses following submaximal and maximal exercise. Equine Exerc. Physiol. 1983, 1, 408–415. [Google Scholar]
- Kruljc, P.; Čebulj-Kadunc, N.; Frangež, R.; Svete, A.N. Changes in blood antioxidant, biochemical and haematological parameters in police horses on duty. Slov. Vet. Res. 2014, 51, 119–129. [Google Scholar]
- Rose, R.J.; Allen, J.R.; Hodgson, D.R.; Stewart, J.H.; Chan, W. Responses to submaximal treadmill exercise and training in the horse: Changes in haematology, arterial blood gas and acid base measurements, plasma biochemical values and heart rate. Vet. Rec. 1983, 113, 612–618. [Google Scholar] [PubMed]
- Taylor, L.E.; Ferrante, P.L.; Kronfeld, D.S.; Meacham, T.N. Acid-base variables during incremental exercise in sprint-trained horses fed a high-fat diet. J. Anim. Sci. 1995, 73, 2009–2018. [Google Scholar] [CrossRef]
- Forero López, J.H.; Lozano Martínez, P.A.; Camargo Roncancio, B.O. Parámetros fisiológicos en caninos pre y post competencia de agility en Bogotá, Colombia. (Canine physiological parameters pre and post agility competition at Bogotá, Colombia). Rev. Med. Vet. 2006, 12, 57–72. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, E.C.; Jose-Cunilleras, E.; Hinchcliff, K.W.; Holbrook, T.C.; Royer, C.; Payton, M.E.; Williamson, K.; Nelson, S.; Willard, M.D.; Davis, M.S. Serum chemistry alterations in Alaskan Sled Dogs during five successive days of prolonged endurance exercise. J. Am. Vet. Med. Assoc. 2007, 230, 1486–1492. [Google Scholar] [CrossRef] [PubMed]
- Snow, D.H.; Harris, R.C.; Stuttard, E. Changes in haematology and plasma biochemistry during maximal exercise in Greyhounds. Vet. Rec. 1988, 123, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Knight, P.K.; Rose, R.J.; Evans, D.L.; Cluer, D.; Henckel, P.; Saltin, B. Metabolic responses to maximal intensity exercise in the racing camel. Acta Physiol. Scand. Suppl. 1994, 150, 61–77. [Google Scholar]
- Agüera Buendía, E.; Rubio, M.D.; Vivo, R.; Escribano, B.M.; Muñoz, A.; Villafuerte, J.L.; Castejón, F. Adaptaciones fisiológicas a la lidia en el Toro Bravo. Parámetros plasmáticos y musculares. Res. Vet. México 1998, 29, 399–403. [Google Scholar]
- Aceña, M.C.; García-Belenguer, S.; Gascón, M.; Purroy, A. Modifications hématologiques et musculaires pendant la corrida chez le taureau de combat. Rev. Médecine Vét. 1995, 146, 277–282. [Google Scholar]
- Alonso, M.E.; Sánchez, J.M.; Robles, R.; Zarza, A.M.; Gaudioso, V.R. Relation entre la fréquence des chutes et différents paramètres hématologiques chez le taureau de combat. Rev. Médecine Vét. 1997, 148, 999–1004. [Google Scholar]
- Escalera-Valente, F.; González-Montaña, J.R.; Alonso de la Varga, M.E.; Lomillos-Perez, J.M.; Gaudioso-Lacasa, V.R. Influence of intense exercise on acid-base, blood gas and electrolyte status in bulls. Res. Vet. Sci. 2013, 95, 623–628. [Google Scholar] [CrossRef]
- Escribano, B.M.; Tunez, I.; Requena, F.; Rubio, M.D.; De Miguel, R.; Montilla, P.; Tovar, P.; Agüera, E. Effects of an aerobic training program on oxidative stress biomarkers in bulls. Vet. Med. 2010, 55, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.M.; Castro, M.J.; Alonso, M.E.; Gaudioso, V.R. Adaptive metabolic responses in females of the fighting breed submitted to different sequences of stress stimuli. Physiol. Behav. 1996, 60, 1047–1052. [Google Scholar] [CrossRef]
- Buckham Sporer, K.R.; Weber, P.S.D.; Burton, J.L.; Earley, B.; Crowe, M.A. Transportation of young beef bulls alters circulating physiological parameters that may be effective biomarkers of stress. J. Anim. Sci. 2008, 86, 1325–1334. [Google Scholar] [CrossRef]
- Earley, B.; Fisher, A.D.; O’Riordan, E.G. Effects of pretransport fasting on the physiological responses of young cattle to 8-hour road transport. Ir. J. Agric. Food Res. 2006, 45, 51–60. [Google Scholar]
- Earley, B.; O’Riordan, E.G. Effects of transporting bulls at different space allowances on physiological, haematological and immunological responses to a 12-h journey by road. Ir. J. Agric. Food Res. 2006, 45, 39–50. [Google Scholar]
- Castillo, C.; Benedito, J.L.; Pereira, V.; Vázquez, P.; Gutiérrez, C.; Hernández, J. Acid–base status and serum l-lactate in growing/finishing bull calves fed different high-grain diets. Livest. Sci. 2009, 120, 66–74. [Google Scholar] [CrossRef]
- Castillo, C.; Benedito, J.L.; Pereira, V.; Vázquez, P.; López Alonso, M.; Méndez, J.; Hernández, J. Malic Acid supplementation in growing/finishing feedlot bull calves: Influence of chemical form on blood acid–base balance and productive performance. Anim. Feed Sci. Technol. 2007, 135, 222–235. [Google Scholar] [CrossRef]
- Castillo, C.; Hernández, J.; Méndez, J.; Llena, J.; Pereira, V.; López-Alonso, M.; Benedito, J.L. Influence of grain processing on acid–base balance in feedlot steers. Vet. Res. Commun. 2006, 30, 823–837. [Google Scholar] [CrossRef]
- Beatty, D.T.; Barnes, A.; Taylor, E.; Pethick, D.; Mc Carthy, M.; Maloney, S.K. Physiological responses of Bos Taurus and Bos Indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci. 2006, 84, 972–985. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.D.; Rhoads, R.P.; Sanders, S.R.; Duff, G.C.; Baumgard, L.H. Metabolic adaptations to heat stress in growing cattle. Domest. Anim. Endocrinol. 2010, 38, 86–94. [Google Scholar] [CrossRef]
- Maden, M.; Ozturk, A.S.; Bulbul, A.; Avci, G.E. Acute-phase proteins, oxidative stress and enzyme activities of blood serum and peritoneal fluid in cattle with abomasal displacement. J. Vet. Intern. Med. 2012, 26, 1470–1475. [Google Scholar] [CrossRef]
- Morgante, M.; Gianesella, M.; Casella, S.; Ravarotto, L.; Stelletta, C.; Giudice, E. Blood gas analyses, ruminal and blood pH, urine and faecal ph in dairy cows during subacute ruminal acidosis. Comp. Clin. Pathol. 2009, 18, 229–232. [Google Scholar] [CrossRef]
- Rodríguez Montesinos, A. Prototipos Raciales del Vacuno de Lidia (Breed. Prototypes of Fighting Cattle); MAPA: Madrid, España, 2002. [Google Scholar]
- BOE Real Decreto 60/2001, de 26 de Enero, Sobre Prototipo Racial de la Raza Bovina de Lidia. Boletín Oficial del Estado, 13 February 2001; 5255–5261.
- Lomillos, J.M.; Alonso, M.E. The Lidia Breed: Management and Medicine. In Animal Reproduction in Veterinary Medicine; IntechOpen: London, UK, 2020; pp. 1–22. [Google Scholar]
- Lomillos Pérez, J.M.; Alonso De La Varga, M.E.; Sánchez García-Abad, C.; Gaudioso Lacasa, V.R. Evolución del sector de la producción del toro de Lidia en España. Censos y Ganaderías. ITEA Inf. Téc. Económica Agrar. 2012, 108, 207–221. [Google Scholar]
- Kingston, J.K. Hematologic and serum biochemical responses to exercise and training. In Equine Exercise Physiology: The Science of Exercise in the Athletic Horse; Hinchcliff, K.W., Kaneps, A.J., Geor, R.J., Eds.; Saunders Elsevier: Philadelphia, MA, USA, 2008; pp. 398–409. [Google Scholar]
- Art, T.; Lekeux, P. Exercise-induced physiological adjustments to stressful conditions in sports horses. Livest. Prod. Sci. 2005, 92, 101–111. [Google Scholar] [CrossRef]
- Balogh, N.; Gaal, T.; Ribiczeyné, P.; Petri, A. Biochemical and antioxidant changes in plasma and erythrocytes of pentathlon horses before and after exercise. Vet. Clin. Pathol. 2001, 30, 214–218. [Google Scholar] [CrossRef]
- Jagrič-Munih, S.; Nemec-Svete, A.; Zrimšek, P.; Kramarič, P.; Kos-Kadunc, V.; Vovk, T.; Kobal, S. Plasma malondialdehyde, biochemical and haematological parameters in Standardbred horses during a selected field Exercise Test. Acta Vet. Beogr. 2012, 62, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Snow, D.H.; Kerr, M.G.; Nimmo, M.A.; Abbott, E.M. Alterations in blood, sweat, urine and muscle composition during prolonged exercise in the horse. Vet. Rec. 1982, 110, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Zobba, R.; Ardu, M.; Niccolini, S.; Cubeddu, F.; Dimauro, C.; Bonelli, P.; Dedola, C.; Visco, S.; Pinna Parpaglia, M.L. Physical, hematological and biochemical responses to acute intense exercise in Polo horses. J. Equine Vet. Sci. 2011, 31, 542–548. [Google Scholar] [CrossRef]
- Kaneko, J.J. Carbohydrate metabolism and its diseases. In Clinical Biochemistry of Domestic Animals, 6th ed.; Bruss, J.J., Kaneko, J.W., Harvey, M.L., Eds.; Academic Press: San Diego, CA, USA, 2008; Volume 6, pp. 45–80. [Google Scholar]
- Jordán, D.; Villa, N.A.; Gutiérrez, M.; Gallego, Á.B.; Ochoa, G.A.; Ceballos, A. Indicadores bioquímicos sanguíneos en ganado de Lidia mantenido en pastoreo en la Cordillera Central Colombiana. Rev. Colomb. Cienc. Pecu. 2006, 19, 18–26. [Google Scholar]
- González, F.H.D.; Scheffer, J.F.S. Perfil sangüíneo: Ferramenta de análise clínica, metabólica e nutricional. Simpósio Patol. Clínica Veterinária Reg. Sul Bras. 2003, 1, 73–79. [Google Scholar]
- BOCyL Decreto 57/2008, de 21 de Agosto, por el que se Aprueba el Reglamento General Taurino de la Comunidad de Castilla y León. Boletín Oficial de Castilla y León, 27 August 2008; 17317–17333.
- BOE Ley 32/2007, de 7 de Noviembre, Para el Cuidado de los Animales, en su Explotación, Transporte, Experimentación y Sacrificio. Boletín Oficial del Estado, 8 November 2007; 45914–45920.
- European-Union Directive 63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Official Journal of the European Union L, 20 October 2010; 33–79.
- BOE Real Decreto 53/2013, de 1 de Febrero, por el que se Establecen las Normas Básicas Aplicables Para la Protección de los Animales Utilizados en Experimentación y Otros Fines Científicos, Incluyendo la Docencia. Boletín Oficial del Estado, 8 February 2013; 11370–11420.
- Constable, P.; Hinchcliff, K.W.; Done, S.; Gruenberg, W. Veterinary Medicine. In A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 11th ed.; Elsevier: St. Louis, MO, USA, 2017. [Google Scholar]
- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Veterinary Medicine. In A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 10th ed.; Saunders Ltd.: New York, NY, USA, 2006. [Google Scholar]
- González, F.H.; Barcellos, J.; Patiño, H.O.; Ribeiro, L.A. (Eds.) Perfil metabólico em ruminantes. Seu uso em nutrição e doenças nutricionais. Bibl. Seorial Fac Med. Vet. UFRGS Porto Alegre 2000, P438, 108. [Google Scholar]
- Otter, A. Diagnostic Blood biochemistry and haematology in cattle. Practice 2013, 35, 7–16. [Google Scholar] [CrossRef]
- Castro, M.J.; Sánchez, J.M.; Riol, J.A.; Gaudioso, V.R. Valoración del Esfuerzo Metabólico de Adaptación en Animales de la Raza de Lidia Cuando Son Sometidos a Diferentes Secuencias de Estímulos; Consejo General de Colegios de Veterinarios de España: Córdoba, España, 1997. [Google Scholar]
- Méndez, A.; Moyano, R.; García, A.; Fernández, A.I.; Méndez, J.L.; Pérez, J. Lesiones en ganado de lidia tras la intoxicacion por alcaloides pirrolizidínicos [Lesions in fighting cattle after intoxication by pyrrolizidine alkaloids]. In Proceedings of the VI Symposium del Toro de Lidia; MAPA: Zafra, Spain, 2003; p. 349. [Google Scholar]
- Bartolomé, D.J.; Alonso, M.E.; Ferrero, R.; García, J.J.; Gaudioso, V.R. Correlación entre pH sanguíneo de reses de lidia y diversos parámetros hemáticos. In V Congreso Mundial Taurino de Veterinaria; Consejo General de Colegios de Veterinarios de España, Colegio Oficial de Veterinarios de Valladolid: Valladolid, Spain, 2005; pp. 117–122. [Google Scholar]
- Kataria, N.; Kataria, A.K. Use of serum gamma glutamyl transferase as a biomarker of stress and metabolic dysfunctions in Rathi cattle of arid tract in India. J. Stress Physiol. Biochem. 2012, 8, 23–29. [Google Scholar]
- Purroy, A.; García-Belenguer, S.; Gonzalez, J.; Gascón, M.; Barberán, M. Lésions musculaires et activités enzymatiques chez les bovins de combat. Ann. Rech. Vét. 1992, 23, 29–62. [Google Scholar]
- Purroy Unanua, A.; Gonzalez Buitrago, J.M. Les chutes des taureaux de combat pendant la Corrida [Falls of bulls during Bull fight]. Bull. Académie. Vét. Fr. 1984, 57, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Tarrant, P.V.; Kenny, F.J.; Harrington, D.; Murphy, M. Long distance transportation of steers to slaughter: Effect of stocking density on physiology, behaviour and carcass quality. Livest. Prod. Sci. 1992, 30, 223–238. [Google Scholar] [CrossRef]
- Gupta, S.; Earley, B.; Ting, S.T.L.; Crowe, M.A. Effect of repeated regrouping and relocation on the physiological, immunological, and hematological variables and performance of steers. J. Anim. Sci. 2005, 83, 1948–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mench, J.A. Farm animal welfare in the USA: Farming practices, research, education, regulation, and assurance programs. Appl. Anim. Behav. Sci. 2008, 113, 298–312. [Google Scholar] [CrossRef]
- Sevi, A.; Taibi, L.; Albenzio, M.; Muscio, A. Behavioral, adrenal, immune, and productive responses of lactating ewes to regrouping and relocation. J. Anim. Sci. 2001, 79, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- Knowles, T.G. A Review of the road transport of cattle. Vet. Rec. 1999, 144, 197–201. [Google Scholar] [CrossRef]
- Tadich, N.; Gallo, C.; Bustamante, H.; Schwerter, M.; Van Schaik, G. Effects of transport and lairage time on some blood constituents of Friesian-Cross steers in Chile. Livest. Prod. Sci. 2005, 93, 223–233. [Google Scholar] [CrossRef]
- Tadich, N.; Gallo, C.; Alvarado, M. Efectos de 36 horas de transporte terrestre con y sin descanso sobre algunas variables sanguíneas indicadoras de estrés en bovinos [Effects on cattle of transporation by road up to 36 hrs with and without a rest on some blood variables indictors of stres in cattle]. Res. Arch. Med. Vet. 2000, 32, 171–183. [Google Scholar] [CrossRef]
- Knowles, T.G.; Warriss, P.D.; Brown, S.N.; Edwards, J.E. Effects on cattle of transportation by road for up to 31 hours. Vet. Rec. 1999, 145, 575–582. [Google Scholar] [CrossRef]
- Warriss, P.D.; Brown, S.N.; Knowles, T.G.; Kestin, S.C.; Edwards, J.E.; Dolan, S.K.; Phillips, A.J. Effects on cattle of transport by road for up to 15 hours. Vet. Rec. 1985, 136, 319–323. [Google Scholar] [CrossRef]
- Doornenbal, H.; Tong, A.K.; Murray, N.L. Reference values of blood parameters in beef cattle of different ages and stages of lactation. Can. J. Vet. Res. Rev. 1988, 52, 99–105. [Google Scholar]
- Jagoš, P.; Illek, J.; Doubek, J.; Jurajdova, J. Metabolic profile in beef bulls under conditions of industrial technologies. Acta Vet. Brno 1985, 54, 41–51. [Google Scholar] [CrossRef]
- Kahn, C.M. El Manual Merck de Veterinaria; Oceano Difusión Editorial: Barcelona, Spain, 2007. [Google Scholar]
- Parker, A.J.; Hamlin, G.P.; Coleman, C.J.; Fitzpatrick, L.A. Quantitative analysis of acid-base balance in Bos Indicus steers subjected to transportation of long duration. J. Anim. Sci. 2003, 81, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Carpintero Hervas, C.M.; Fernandez Zapata, C.; Gómez Ballesteros, J.P.; Gómez Muñoz, S.; Gómez Pérez, J.A.; Martínez Carrillo, A.; Merchante Carrizo, J.; Morales Fernández, J.; Pizarro Díaz, M.; Urquía García, J.J.; et al. Estudio de las variaciones de ciertos parámetros hematológicos y bioquímicos sanguíneos del Toro Bravo tras la Lidia. Vet. Madrid. 1996, 34, 22–26. [Google Scholar]
- González, F.H.D. Indicadores sanguíneos do metabolismo mineral em ruminantes. In Perfil Metabólico em Ruminantes: Seu uso em Nutrição e Doenças Nutricionais; González, F.H., Barcellos, J.O., Ospina, H., Ribeiro, L.A., Eds.; Gráfica da Universidade Federal do Rio Grande do Sul: Porto Alegre, Brasil, 2000; pp. 31–51. [Google Scholar]
- Tateo, A.; Padalino, B.; Boccaccio, M.; Maggiolino, A.; Centoducati, P. Transport stress in horses: Effects of two different distances. J. Vet. Behav. Clin. Appl. Res. 2012, 7, 33–42. [Google Scholar] [CrossRef]
- Sevinç, M.; Başoğlu, A.; Öztok, İ.; Sandikçi, M.; Birdane, F. The clinical-chemical parameters, serum lipoproteins and fatty infiltration of the liver in ketotic cows. Turk. J. Vet. Anim. Sci. 1998, 22, 443–448. [Google Scholar]
- Aguiló, A.; Tauler, P.; Pilar Guix, M.; Villa, G.; Córdova, A.; Tur, J.A.; Pons, A. Effect of exercise intensity and training on antioxidants and cholesterol profile in cyclists. J. Nutr. Biochem. 2003, 14, 319–325. [Google Scholar] [CrossRef]
- Bahr, R.; Hansson, P.; Sejersted, O.M. Triglyceride/fatty acid cycling is increased after exercise. Metabolism 1990, 39, 993–999. [Google Scholar] [CrossRef]
- Maldonado, M.D.; Manfredi, M.; Ribas-Serna, J.; García-Moreno, H.; Calvo, J.R. Melatonin administrated immediately before an intense exercise reverses oxidative stress, improves immunological defenses and lipid metabolism in football players. Physiol. Behav. 2012, 105, 1099–1103. [Google Scholar] [CrossRef]
- Warren, L.K.; Lawrence, L.M.; Thompson, K.N. The Influence of betaine on untrained and trained horses exercising to fatigue. J. Anim. Sci. 1999, 77, 677–684. [Google Scholar] [CrossRef]
- Cullinane, E.; Siconolfi, S.; Saritelli, A.; Thompson, P.D. Acute decrease in serum triglycerides with exercise: Is there a threshold for an exercise effect? Metabolism 1982, 31, 844–847. [Google Scholar] [CrossRef]
- Petibois, C.; Déléris, G. Alterations of lipid profile in endurance over-trained subjects. Arch. Med. Res. 2004, 35, 532–539. [Google Scholar] [CrossRef]
- Annuzzi, G.; Jansson, E.; Kaijser, L.; Holmquist, L.; Carlson, L.A. Increased removal Rate of exogenous triglycerides after prolonged exercise in man: Time course and effect of exercise duration. Metabolism 1987, 36, 438–443. [Google Scholar] [CrossRef]
- Stein, R.A.; Michielli, D.W.; Glantz, M.D.; Sardy, H.; Cohen, A.; Goldberg, N.; Brown, C.D. Effects of different exercise training intensities on lipoprotein cholesterol fractions in healthy middle-aged men. Am. Heart J. 1990, 119, 277–283. [Google Scholar] [CrossRef]
- Tateo, A.; Valle, E.; Padalino, B.; Centoducati, P.; Bergero, D. Change in some physiologic variables induced by italian traditional conditioning in Standardbred yearling. J. Equine Vet. Sci. 2008, 28, 743–750. [Google Scholar] [CrossRef]
- Lennon, D.L.F.; Stratman, F.W.; Shrago, E.L.; Nagle, F.J.; Hanson, P.G.; Madden, M.; Spennetta, T. Total cholesterol and HDL-cholesterol changes during acute, moderate-intensity exercise in men and women. Metabolism 1983, 32, 244–249. [Google Scholar] [CrossRef]
- Huang, C.T.; Shigeo, U. Effect of exercise on the serum myoglobin, uric acid and creatine kinase levels in trained runners and non-runners. Chung Shan Med. J. 1991, 2, 117–126. [Google Scholar]
- Aslan, R.; Şekeroğlu, M.R.; Tarakçioğlu, M.; Bayiroğlu, F.; Meral, I. Effect of acute and regular exercise on antioxidative enzymes, tissue damage markers and membrane lipid peroxidation of erythroytes in sedentary students. Turk. J. Med. Sci. 1998, 21, 19–25. [Google Scholar]
- Hazar, S.; Hazar, M.; Korkmaz, S.; Bayil, S.; Gürkan, A. The Effect of graded maximal aerobic exercise on some metabolic hormones, muscle damage and some metabolic end products in sportsmen. Sci. Res. Essays 2011, 6, 1337–1343. [Google Scholar] [CrossRef]
- Bayly, W.M. The interpretation of clinicopathologic data from the equine athlete. Vet. Clin. North. Am. Equine Pract. 1987, 3, 631–647. [Google Scholar] [CrossRef]
- Rose, R.J.; Ilkiw, J.E.; Arnold, K.S.; Backhouse, J.W.; Sampson, D. Plasma Biochemistry in the horse during 3-day event competition. Equine Vet. J. 1980, 12, 132–136. [Google Scholar] [CrossRef]
- Aadland, E.; Høstmark, A.T. Very light physical activity after a meal blunts the rise in blood glucose and insulin. Open Nutr. J. 2008, 2, 94–99. [Google Scholar] [CrossRef]
- Fallon, K.E.; Sivyer, G.; Sivyer, K.; Dare, A. The biochemistry of runners in a 1600 km ultramarathon. Br. J. Sports Med. 1999, 33, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Kenny, F.J.; Tarrant, P.V. The reaction of young bulls to short-haul road transport. Appl. Anim. Behav. Sci. 1987, 17, 209–227. [Google Scholar] [CrossRef]
- Requena Domenech, F. Evaluación de la capacidad física del toro de Lidia con el entrenamiento. Doctoral Thesis, Universidad de Córdoba, Córdoba, España, 2012. [Google Scholar]
- Arias, L.F.; Mejía, N.; Sánchez, C.; Peláez, C.; Ceballos, A. Actividad de la aspartato aminotransferasa y la creatinkinasa y su relación con la actividad de la glutatión peroxidasa en caballos Pura Sangre Inglés, antes y después de una carrera de 1100 metros. Rev. Colomb. Cienc. Pecu. 2009, 17, 134–140. [Google Scholar]
- Soeder, G.; Golf, S.W.; Graef, V.; Temme, H.; Brüstle, A.; Róka, L.; Bertschat, F.; Ibe, K. Enzyme catalytic concentrations in human plasma after a marathon. Clin. Biochem. 1989, 22, 155–159. [Google Scholar] [CrossRef]
- Burdick, N.C.; Carroll, J.A.; Randel, R.D.; Willard, S.T.; Vann, R.C.; Chase, C.C.; Lawhon, S.D.; Hulbert, L.E.; Welsh, T.H. Influence of temperament and transportation on physiological and endocrinological parameters in bulls. Livest. Sci. 2011, 139, 213–221. [Google Scholar] [CrossRef]
- Nowakowicz-Dębek, B.; Mazur, A.; Ondrašovičová, O.; Kaproń, B.; Saba, L.; Wnuk, W.; Vargová, M. The influence of short time exercise on glucose and cortisol concentrations in the blood serum of the Polish horse. Folia Vet. 2006, 50, 139–141. [Google Scholar]
- Grandin, T. Assessment of stress during handling and transport. J. Anim. Sci. 1997, 75, 249–257. [Google Scholar] [CrossRef] [Green Version]
- McGowan, C. Clinical pathology in the racing horse: The role of clinical pathology in assessing fitness and performance in the Racehorse. Vet. Clin. North. Am. Equine Pract. 2008, 24, 405–421. [Google Scholar] [CrossRef]
- Nagata, S.; Takeda, F.; Kurosawa, M.; Mima, K.; Hiraga, A.; Kai, M.; Taya, K. Plasma adrenocorticotropin, cortisol and catecholamines response to various exercises. Equine Vet. J. 1999, 31, 570–574. [Google Scholar] [CrossRef]
- Von Borell, E.H. The biology of stress and its application to livestock housing and transportation assessment. J. Anim. Sci. 2001, 79, E260–E267. [Google Scholar] [CrossRef]
- Tadich, N.; Gallo, C.; Echeverría, R.; Van Schaik, G. Efecto del ayuno durante dos tiempos de confinamiento y de transporte terrestre sobre algunas variables sanguíneas indicadoras de estrés en novillos. Arch. Med. Vet. 2003, 35, 171–185. [Google Scholar] [CrossRef]
- Gomez, R.R. Characterization of Feed Efficiency Traits and Relationships with Temperament, Serum Hormones and Serum Metabolites in Growing Brangus Heifers. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2010. [Google Scholar]
- Coppo, J.A.; Coppo, N.B.; Slanac, A.L.; Revidatti, M.A.; Capellari, A. Valores de cortisol en vacas precozmente destetadas. relaciones con recuentos totales y diferenciales de leucocitos. Actas Cienc Téc. UNNE 1999, 35, 125–128. [Google Scholar]
- Chaves, S.P.; García, G.J.; Miguel, R.J.; López, S.M. Estudio Comparativo de los Valores de Calcio, Glucosa, Sodio, Potasio y Cortisol en Ganado Bravo de Lidia Ordinaria y en Toros de Suelta con Referencia al Ganado Vacuno; V Simposium Nacional del Toro de Lidia: Zafra, Spain, 2001; pp. 222–225. [Google Scholar]
- González-Buitrago, J.M.; Purroy, A.; García-Belenguer, S.; Gascón, M.; Barbaerán, M. Niveles de cortisol sérico en ganado Bravo. Inf. Téc. Económica. Agrar. 1989, 9, 185–187. [Google Scholar]
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Gupta, S.; Earley, B.; Crowe, M.A. Effect of 12-hour road transportation on physiological, immunological and haematological parameters in bulls housed at different space allowances. Vet. J. 2007, 173, 605–616. [Google Scholar] [CrossRef]
- Desmecht, D.; Linden, A.; Amory, H.; Art, T.; Lekeux, P. Relationship of plasma lactate production to cortisol release following completion of different types of sporting events in horses. Vet. Res. Commun. 1996, 20, 371–379. [Google Scholar] [CrossRef]
- Miyashiro, P.; Michima, L.E.S.; Bonomo, C.C.M.; Fernandes, W.R. Plasma cortisol level attributable to physical exercise in endurance horses [concentração plasmática de cortisol decorrente do exercício físico em cavalos de enduro]. Ars Vet. 2012, 28, 85–89. [Google Scholar]
- Zavy, M.T.; Juniewicz, P.E.; Phillips, W.A.; VonTungeln, D.L. Effect of initial restraint, weaning, and transport stress on baseline and acth-stimulated cortisol responses in beef calves of different genotypes. Am. J. Vet. Res. 1992, 53, 551–557. [Google Scholar]
- Curley, K.O.; Paschal, J.C.; Welsh, T.H.; Randel, R.D. Exit velocity as a measure of cattle temperament is repeatable and associated with serum concentration of cortisol in Brahman bulls. J. Anim. Sci. 2006, 84, 3100–3103. [Google Scholar] [CrossRef]
- Grandin, T. Behavioral agitation during handling of cattle is persistent over time. Appl. Anim. Behav. Sci. 1993, 36, 1–9. [Google Scholar] [CrossRef]
- Marcus, G.J.; Durnford, R. A Simple enzyme-linked immunosorbent assay for testosterone. Steroids 1985, 46, 975–986. [Google Scholar] [CrossRef]
- Kilroy, C.S.M.; Dobson, H. Inter-Relationships between plasma luteinizing hormone, testosterone and cortisol as revealed by frequent blood sampling of mature bulls. Br. J. Nutr. 1987, 143, 454–461. [Google Scholar] [CrossRef]
- Reinartz Estrada, M.; Echeverri Ruiz, N.P. Effect of stress caused by high intensity exercise over cortisol and testosterone concentrations in English Pure blood horses. Rev. Fac. Nac. Agron. Medellín 2007, 60, 3985–3999. [Google Scholar]
- Geor, R.J.; Mc Cutcheon, L.J.; Hinchcliff, K.W.; Sams, R.A. Training-induced alterations in glucose metabolism during moderate-intensity exercise. Equine Vet. J. 2002, 34 (Suppl. S34), 22–28. [Google Scholar] [CrossRef] [PubMed]
- Lemazurier, E.; Toquet, M.P.; Fortier, G.; Séralini, G.E. Sex Steroids in serum of prepubertal male and female horses and correlation with bone characteristics. Steroids 2002, 67, 361–369. [Google Scholar] [CrossRef]
- Esteban, R.; Illera, J.C. Influencia de la Lidia en los perfiles de testosterona plasmatica en toros y novillos. Med. Vet. 1993, 10, 675–681. [Google Scholar]
- Gil-Cabrera, F.; Sanz, M.; Silván, G.; Gozález, A.; Illera, J.C. Relación Entre las Concentraciones Plasmáticas de Serotonina y Testosterona y el Comportamiento Agresivo Durante la Lidia en el Bos Taurus L.; MAPA: Zafra, Spain, 2003; pp. 327–333. [Google Scholar]
- Dunlop, R.H.; Malbert, C.H. Fisiopatologia Veterinaria; Acribia, SA: Zaragoza, Spain, 2007. [Google Scholar]
Total Protein | Albumin | Triglycerides | Cholesterol | Glucose | |
---|---|---|---|---|---|
(g/L) | (g/L) | (mmol/L) | (mmol/L) | (mmol/L) | |
n | 438 | 438 | 438 | 438 | 24.1 |
Mean | 85.8 | 37.4 | 0.45 | 2.44 | 22.2 |
Geometric Mean | 85.1 | 37.1 | 0.42 | 2.36 | 20.2 |
Harmonic Mean | 84.5 | 36.9 | 0.39 | 2.27 | 18.2 |
Sum | 37,580.0 | 16,380.0 | 196.1 | 1068.0 | 9733.1 |
Minimum | 38.5 | 20.0 | 0.11 | 1.01 | 3.3 |
Maximum | 147.8 | 48.5 | 1.17 | 5.30 | 58.7 |
Lower Quartile | 79.4 | 34.5 | 0.34 | 2.00 | 15.6 |
Upper Quartile | 91.5 | 40.2 | 0.54 | 2.86 | 26.4 |
Standard Deviation | 10.8 | 4.3 | 0.16 | 0.65 | 9.6 |
González et al., 2000 [50] a | 66–90 | 29–41 | - | 3.0–5.0 | 2.5–4.1 |
Earley et al., 2006 [22] a | 81.3 ± 0.92 | 37.6 ± 0.03 | - | - | 5.0 ± 0.07 |
Radostits et al., 2006 [49] a | 57–81 | 21–36 | 0–0.2 | 1.0–5.6 | 2.5–4.2 |
Kaneko et al., 2008 [41] a | 67.4–74.6 | 30.3–35.5 | 0–0.2 | 2.07–3.11 | 2.5–4.1 |
Buckham et al., 2008 [21] a | 75.3 ± 0.92 | 28.2 ± 0.25 | - | - | - |
Otter, 2013 [51] a | 61–81 | 27–39 | |||
Constable et al., 2017 [48] a | 57–81 | 21–36 | 0–0.2 | 1.0–5.6 | 2.5–4.2 |
Sánchez et al., 1996 [20] b | 74.0 ± 6.8 | - | 0.29 ± 0.06 | - | 3.50 ± 0.42 |
Alonso et al., 1997 [17] b | 91.8 | - | 0.39 | 1.0 | 20.5 |
Castro et al., 1997 [52] b | 73.0–84.3 | 0.20–0.29 | 2.9–6.7 | 63.1–236.3 | |
Méndez et al., 2003 [53] b | - | 24 | - | - | 8.3 |
Bartolomé et al., 2005 [54] b | 79.8 | 39.7 | 2.07 | 5.0 | 9.3 |
Uric Acid | Creatinine | Urea | Cortisol | Testosterone | |
---|---|---|---|---|---|
(μmol/L) | (μmol/L) | (mmol/L) | (nmol/L) | (nmol/L) | |
n | 393 | 438 | 438 | 326 | 326 |
Mean | 340 | 236.91 | 5.93 | 117.5 | 20.20 |
Geometric Mean | 328 | 2.65 | 5.79 | 107.33 | 13.68 |
Harmonic Mean | 301 | 2.61 | 5.65 | 93.81 | 10.56 |
Sum | 133,692 | 1174.0 | 2595.4 | 38,294.9 | 6585.9 |
Minimum | 27 | 0.97 | 2.73 | 27.59 | 2.04 |
Maximum | 637 | 4.43 | 11.12 | 386.26 | 104.10 |
Lower Quartile | 290 | 2.43 | 5.03 | 102.36 | 7.91 |
Upper Quartile | 388 | 2.92 | 6.68 | 130.50 | 19.78 |
Standard Deviation | 80 | 0.41 | 1.27 | 46.63 | 23.86 |
González et al., 2000 [50] a | 2.6–7.0 | ||||
Earley et al., 2006 [22] a | 5.1 ± 0.15 | ||||
Radostits et al., 2006 [49] a | - | 67–175 | 2.0–7.5 | 13–21 | - |
Kaneko et al., 2008 [41] a | 0–119 | 88.4–177 | 7.14–10.7 | 17 ± 2 | - |
Buckham et al., 2008 [21] a | - | - | 3.60 | 13.2 ± 1.3 | 15.4 ± 1.8 |
Kataria and Kataria, 2012 [55] a | |||||
Otter, 2013 [51] a | - | 44–165 | 3.4–7.3 | 13–21 | - |
Constable et al., 2017 [48] a | - | 88–175 | 2.0–9.6 | 13–21 | |
Sánchez et al., 1996 [9] b | 36.88 | 122 ± 16.8 | 12.8 ± 5.1 | 165.3 ± 187.6 | - |
Alonso et al., 1997 [17] b | 315 | 277.6 | 5.8 | - | - |
Méndez et al., 2003 [53] b | - | - | 16.5 | - | - |
Bartolomé et al., 2005 [54] b | 284 | 318.2 | 14.0 | - | - |
Jordan et al., 2006 [42] b | - | - | 5.2–10.3 | - | - |
LDH | CK | AST | ALP | GGT | ALT | |
---|---|---|---|---|---|---|
n | 438 | 438 | 438 | 438 | 438 | 438 |
Mean | 2828 | 6729 | 495 | 90 | 50 | 59 |
Geometric Mean | 2517 | 3720 | 386 | 84 | 43 | 52 |
Harmonic Mean | 2324 | 2319 | 321 | 79 | 39 | 48 |
Sum | 1,238,734 | 2,947,371 | 216,967 | 39,223 | 21,805 | 25,706 |
Minimum | 1130 | 167 | 96 | 31 | 11 | 19 |
Maximum | 24,931 | 93,641 | 4476 | 287 | 403 | 384 |
Lower Quartile | 1853 | 1886 | 243 | 67 | 31 | 38 |
Upper Quartile | 3120 | 6838 | 602 | 104 | 55 | 67 |
Standard Deviation | 1975 | 10931 | 462 | 33 | 34 | 35 |
Radostits et al., 2006 [49] a | 692–1445 | 35–280 | 78–132 | 0–500 | 6.1–17.4 | 11–40 |
Kaneko et al., 2008 [41] a | 692–1445 | 4.8–12.1 | 78–132 | 0–488 | 6.1–17.4 | 11–40 |
Buckham et al., 2008 [21] a | 554.6 ± 68.0 | |||||
Kataria and Kataria, 2012 [55] a | 21.5 ± 0.24 | |||||
Otter, 2013 [51] a | - | - | - | - | 0.30 | - |
Constable et al., 2017 [48] a | 692–1445 | 35–280 | 78–132 | 0–200 | 6.1–17.4 | 11–40 |
Purroy (1984, 1985) [56,57] b | 3013–4838 | 21.1 | ||||
Sánchez et al., 1996 [20] b | - | 532.9 ± 387.5 | 86.0 ± 15.9 | - | - | 26.2 ± 3.5 |
Alonso et al., 1997 [17] b | - | 3139.1 | 318.5 | 95.5 | 178.1 | 49.7 |
Méndez et al., 2003 [53] b | 3483 | 4286 | 308 | - | - | - |
Bartolomé et al., 2003 [54] b | - | 1582.8 | 171.1 | - | 178.1 | 77.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escalera-Valente, F.; Alonso, M.E.; Lomillos-Pérez, J.M.; Gaudioso-Lacasa, V.R.; Alonso, A.J.; González-Montaña, J.R. Blood Biochemical Variables Found in Lidia Cattle after Intense Exercise. Animals 2021, 11, 2866. https://doi.org/10.3390/ani11102866
Escalera-Valente F, Alonso ME, Lomillos-Pérez JM, Gaudioso-Lacasa VR, Alonso AJ, González-Montaña JR. Blood Biochemical Variables Found in Lidia Cattle after Intense Exercise. Animals. 2021; 11(10):2866. https://doi.org/10.3390/ani11102866
Chicago/Turabian StyleEscalera-Valente, Francisco, Marta E. Alonso, Juan M. Lomillos-Pérez, Vicente R. Gaudioso-Lacasa, Angel J. Alonso, and J. Ramiro González-Montaña. 2021. "Blood Biochemical Variables Found in Lidia Cattle after Intense Exercise" Animals 11, no. 10: 2866. https://doi.org/10.3390/ani11102866
APA StyleEscalera-Valente, F., Alonso, M. E., Lomillos-Pérez, J. M., Gaudioso-Lacasa, V. R., Alonso, A. J., & González-Montaña, J. R. (2021). Blood Biochemical Variables Found in Lidia Cattle after Intense Exercise. Animals, 11(10), 2866. https://doi.org/10.3390/ani11102866