The Youngest, the Heaviest and/or the Darkest? Selection Potentialities and Determinants of Leadership in Canarian Dromedary Camels
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. A Priori Definitions and Considerations
- (a)
- Initiator/leader: the individual moves directly towards the corridor, where they are restrained for veterinary and other official control activities or duties, and crosses it to a contiguous fenced pen without pausing for more than two seconds. To be considered as an initiation movement, at least two more individuals have to be positioned directly at the entrance of the corridor and just behind the animal crossing it. Three animals are the maximum that can fit, in single file, into the corridor at the same time.
- (b)
- Termination: the initiation movement ends when the initiator totally crosses the corridor, enters the contiguous fenced pen, and stops for at least 3 min.
- (c)
- Followers: those group members crossing the corridor behind the initiator. They have to arrive at the contiguous fenced pen no later than 3 min after the termination of the movement and approach the initiator at a minimum distance of 3 m.
- (d)
- Successful movement: a group movement was considered successful if the initiator had two followers minimum.
2.3. Rank Determination
2.4. Statistical Analysis
2.4.1. Prior Assumption Testing
2.4.2. Ordinal Logistic Regression
3. Results
3.1. Prior Assumption Testing
3.2. Ordinal Logistic Regression Model
3.2.1. Model Quality
3.2.2. Parameter Analysis
4. Discussion
4.1. Age-Influenced and Sexual Status-Mediated Effects
4.2. Leadership Inference from Physical External Appearance
4.3. Coat and Eye Color Genetics May Reflect Camel Temperament
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sueur, C.; Petit, O.; Deneubourg, J.-L. Selective mimetism at departure in collective movements of Macaca tonkeana: An experimental and theoretical approach. Anim. Behav. 2009, 78, 1087–1095. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tanaka, Y.; Yachida, M. Speed up reinforcement learning between two agents with adaptive mimetism. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications, IROS ‘97, Grenoble, France, 11 September 1997; Volume 592, pp. 594–600. [Google Scholar]
- Šárová, R.; Špinka, M.; Panamá, J.L.A.; Šimeček, P. Graded leadership by dominant animals in a herd of female beef cattle on pasture. Anim. Behav. 2010, 79, 1037–1045. [Google Scholar] [CrossRef]
- Petit, O.; Bon, R. Decision-making processes: The case of collective movements. Behav. Process. 2010, 84, 635–647. [Google Scholar] [CrossRef]
- Butt, B.; Shortridge, A.; Prins, W.A.M. Pastoral herd management, drought coping strategies, and cattle mobility in southern Kenya. Ann. Assoc. Am. Geogr. 2009, 99, 309–334. [Google Scholar] [CrossRef]
- Ramos, A.; Manizan, L.; Rodriguez, E.; Kemp, Y.J.; Sueur, C. How can leadership processes in European bison be used to improve the management of free-roaming herds. Eur. J. Wildl. Res. 2018, 64, 16. [Google Scholar] [CrossRef]
- Berry, P.S.; Bercovitch, F.B. Leadership of herd progressions in the Thornicroft’s giraffe of Zambia. Afr. J. Ecol. 2015, 53, 175–182. [Google Scholar] [CrossRef]
- McComb, K.; Moss, C.; Durant, S.M.; Baker, L.; Sayialel, S. Matriarchs as repositories of social knowledge in African elephants. Science 2001, 292, 491–494. [Google Scholar] [CrossRef] [Green Version]
- McComb, K.; Shannon, G.; Durant, S.M.; Sayialel, K.; Slotow, R.; Poole, J.; Moss, C. Leadership in elephants: The adaptive value of age. Proc. R. Soc. B Biol. Sci. 2011, 278, 3270–3276. [Google Scholar] [CrossRef] [Green Version]
- Klingel, H. Soziale organisation und verhaltensweisen von hartmann-und bergzebras (Equus zebra hartmannae und E. z. zebra). Z. Tierpsychol. 1968, 25, 76–88. [Google Scholar] [CrossRef]
- Feist, J.D.; McCullough, D.R. Behavior patterns and communication in feral horses. Z. Tierpsychol. 1976, 41, 337–371. [Google Scholar] [CrossRef] [PubMed]
- Krueger, K.; Flauger, B.; Farmer, K.; Hemelrijk, C. Movement initiation in groups of feral horses. Behav. Process. 2014, 103, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.; Sueur, C.; Deneubourg, J.L.; Petit, O. Social network influences decision making during collective movements in brown lemurs (Eulemur fulvus). Int. J. Primatol. 2011, 32, 721–736. [Google Scholar] [CrossRef]
- Sueur, C.; Petit, O. Organization of group members at departure is driven by social structure in Macaca. Int. J. Primatol. 2008, 29, 1085–1098. [Google Scholar] [CrossRef]
- Ihl, C.; Bowyer, R.T. Leadership in mixed-sex groups of muskoxen during the snow-free season. J. Mammal. 2011, 92, 819–827. [Google Scholar] [CrossRef]
- Ramos, A.; Petit, O.; Longour, P.; Pasquaretta, C.; Sueur, C. Collective decision making during group movements in European bison, Bison bonasus. Anim. Behav. 2015, 109, 149–160. [Google Scholar] [CrossRef]
- Fischhoff, I.R.; Sundaresan, S.R.; Cordingley, J.; Larkin, H.M.; Sellier, M.-J.; Rubenstein, D.I. Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Anim. Behav. 2007, 73, 825–831. [Google Scholar] [CrossRef]
- Ákos, Z.; Beck, R.; Nagy, M.; Vicsek, T.; Kubinyi, E. Leadership and path characteristics during walks are linked to dominance order and individual traits in dogs. PLoS Comput. Biol. 2014, 10, e1003446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackshaw, J.K.; Thomas, F.J.; Blackshaw, A. The relationship of dominance, forced and voluntary leadership and growth rate in weaned pigs. Appl. Anim. Behav. Sci. 1994, 41, 263–268. [Google Scholar] [CrossRef]
- Escós, J.; Alados, C.; Boza, J. Leadership in a domestic goat herd. Appl. Anim. Behav. Sci. 1993, 38, 41–47. [Google Scholar] [CrossRef]
- Sueur, C.; Kuntz, C.; Debergue, E.; Keller, B.; Robic, F.; Siegwalt-Baudin, F.; Richer, C.; Ramos, A.; Pelé, M. Leadership linked to group composition in Highland cattle (Bos taurus): Implications for livestock management. Appl. Anim. Behav. Sci. 2018, 198, 9–18. [Google Scholar] [CrossRef]
- Pastrana, I.C.; Navas, G.F.J.; Ciani, E.; Capote, B.C.J.; Bermejo, D.J.V. Effect of research impact on emerging camel husbandry, welfare and social-related awareness. Animals 2020, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidi, A.T.S.; Abdullah, H.S. Camel herds algorithm: A new swarm intelligent algorithm to solve optimization problems. Int. J. Perceptive Cogn. Comput. 2017, 3. [Google Scholar]
- Schulte, N.; Klingel, H. Herd structure, leadership, dominance and site attachment of the camel, Camelus dromedarius. Behaviour 1991, 118, 103–114. [Google Scholar] [CrossRef]
- Monaco, D.; Padalino, B.; Lacalandra, G. Distinctive features of female reproductive physiology and artificial insemination in the dromedary camel species. Emir. J. Food Agric. 2015, 328–337. [Google Scholar] [CrossRef]
- Zarrin, M.; Riveros, J.L.; Ahmadpour, A.; de Almeida, A.M.; Konuspayeva, G.; Vargas-Bello-Pérez, E.; Faye, B.; Hernández-Castellano, L.E. Camelids: New players in the international animal production context. Trop. Anim. Health Prod. 2020, 52, 903–913. [Google Scholar] [CrossRef]
- Schulz, U. El camello en Lanzarote; Aderlan: Las Palmas, Spain, 2008. [Google Scholar]
- Seltmann, A.; Majolo, B.; Schülke, O.; Ostner, J. The organization of collective group movements in wild Barbary macaques (Macaca sylvanus): Social structure drives processes of group coordination in macaques. PLoS ONE 2013, 8, e67285. [Google Scholar] [CrossRef]
- Ward, A.J.; Herbert-Read, J.E.; Jordan, L.A.; James, R.; Krause, J.; Ma, Q.; Rubenstein, D.I.; Sumpter, D.J.; Morrell, L.J. Initiators, leaders, and recruitment mechanisms in the collective movements of damselfish. Am. Nat. 2013, 181, 748–760. [Google Scholar] [CrossRef] [Green Version]
- Sueur, C.; Deneubourg, J.-L.; Petit, O. From the first intention movement to the last joiner: Macaques combine mimetic rules to optimize their collective decisions. Proc. R. Soc. B Biol. Sci. 2011, 278, 1697–1704. [Google Scholar] [CrossRef]
- Sueur, C.; Deneubourg, J.-L.; Petit, O. Sequence of quorums during collective decision making in macaques. Behav. Ecol. Sociobiol. 2010, 64, 1875–1885. [Google Scholar] [CrossRef]
- Bhakat, C.; Chaturvedi, D.; Sahani, M. Studies on behavioural pattern of camel calf in different systems of management. J. Eco-Physiol. 2004, 7, 17–22. [Google Scholar]
- Bhakat, C.; Chaturvedi, D. Studies on behavioural pattern of adult camel in different systems of management. J. Dairy. Foods Home Sci. 2004, 23, 192–196. [Google Scholar]
- Mohammed, A.A.-A.; Mohamed, R.D.; Osman, A. Effects of stocking density on some behavioral and some blood biochemical parameters in camel during the rut period. Egypt. J. Vet. Sci. 2020, 51, 253–262. [Google Scholar] [CrossRef]
- Prins, H.H.T. Buffalo herd structure and its repercussions for condition of individual African buffalo cows. Ethology 1989, 81, 47–71. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics, version 25.0; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Yoo, S.K.; Cotton, S.L.; Sofotasios, P.C.; Matthaiou, M.; Valkama, M.; Karagiannidis, G.K. The fisher–snedecor distribution: A simple and accurate composite fading model. IEEE Commun. Lett. 2017, 21, 1661–1664. [Google Scholar] [CrossRef] [Green Version]
- Addinsoft. XLSTAT Version 2014.5.03; Addinsoft Corp.: Paris, France, 2014. [Google Scholar]
- Iglesias, C.; Navas, F.; Ciani, E.; Arbulu, A.A.; González, A.; Marín, C.; Mérida, S.N.; Bermejo, J.V.D. Zoometric characterization and body condition score in Canarian camel breed. Arch. Zootec. 2020, 69, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Alhajeri, B.H.; Alhaddad, H.; Alaqeely, R.; Alaskar, H.; Dashti, Z.; Maraqa, T. Camel breed morphometrics: Current methods and possibilities. Trans. R. Soc. S. Aust. 2021, 145, 90–111. [Google Scholar] [CrossRef]
- Volpato, G.; Dioli, M.; Di Nardo, A. Piebald camels. Pastoralism 2017, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- El Wathig, M.; Faye, B. Surveillance of camel trypanosomosis in Al-Jouf región, Saudi Arabia. Camel 2013, 1, 65. [Google Scholar]
- Ishag, I.; Eisa, M.O.; Ahmed, M. Effect of breed, sex and age on body measurements of Sudanese camels (Camelus dromedarius). Aust. J. Basic Appl. Sci. 2011, 5, 311–315. [Google Scholar]
- Horová, E.; Brandlová, K.; Gloneková, M. The first description of dominance hierarchy in captive giraffe: Not loose and egalitarian, but clear and linear. PLoS ONE 2015, 10, e0124570. [Google Scholar] [CrossRef] [Green Version]
- Cesarani, A.; Pulina, G. Farm animals are long away from natural behavior: Open questions and operative consequences on animal welfare. Animals 2021, 11, 724. [Google Scholar] [CrossRef]
- Houpt, K.A.; Law, K.; Martinisi, V. Dominance hierarchies in domestic horses. Appl. Anim. Ethol. 1978, 4, 273–283. [Google Scholar] [CrossRef]
- Pal, S.; Ghosh, B.; Roy, S. Agonistic behaviour of free-ranging dogs (Canis familiaris) in relation to season, sex and age. Appl. Anim. Behav. Sci. 1998, 59, 331–348. [Google Scholar] [CrossRef]
- Kilgour, R. Livestock Behaviour: A Practical Guide; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Navas González, F.J.; Jordana Vidal, J.; León Jurado, J.M.; McLean, A.K.; Delgado Bermejo, J.V. Nonparametric analysis of noncognitive determinants of response type, intensity, mood, and learning in donkeys (Equus asinus). J. Vet. Behav. 2020, 40, 21–35. [Google Scholar] [CrossRef]
- Rodenburg, T.; Turner, S. The role of breeding and genetics in the welfare of farm animals. Anim. Front. 2012, 2, 16–21. [Google Scholar] [CrossRef]
- Spisak, B.R.; Grabo, A.E.; Arvey, R.D.; Van Vugt, M. The age of exploration and exploitation: Younger-looking leaders endorsed for change and older-looking leaders endorsed for stability. Leadersh. Q. 2014, 25, 805–816. [Google Scholar] [CrossRef]
- Horn, J.L.; Cattell, R.B. Age differences in fluid and crystallized intelligence. Acta Psychol. 1967, 26, 107–129. [Google Scholar] [CrossRef]
- Gilbert, G.R.; Collins, R.W.; Brenner, R. Age and leadership effectiveness: From the perceptions of the follower. Hum. Resour. Manag. 1990, 29, 187–196. [Google Scholar] [CrossRef]
- Lilley, M.K.; Kuczaj, S.A.; Yeater, D.B. Individual differences in nonhuman animals: Examining boredom, curiosity, and creativity. In Personality in Nonhuman Animals; Springer: Berlin/Heidelberg, Germany, 2017; pp. 257–275. [Google Scholar]
- Lee, P.C.; Moss, C.J. Wild female African elephants (Loxodonta africana) exhibit personality traits of leadership and social integration. J. Comp. Psychol. 2012, 126, 224. [Google Scholar] [CrossRef] [PubMed]
- Packard, J.M. Wolf behavior: Reproductive, social, and intelligent. In Wolves; University of Chicago Press: Chicago, IL, USA, 2010; pp. 35–65. [Google Scholar]
- Bourjade, M.; Thierry, B.; Hausberger, M.; Petit, O. Is leadership a reliable concept in animals? An empirical study in the horse. PLoS ONE 2015, 10, e0126344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaker, M.; Vanak, A.T.; Owen, C.R.; Ogden, M.B.; Slotow, R. Group dynamics of zebra and wildebeest in a woodland savanna: Effects of predation risk and habitat density. PLoS ONE 2010, 5, e12758. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.N.; Tromborg, C.T. Sources of stress in captivity. Appl. Anim. Behav. Sci. 2007, 102, 262–302. [Google Scholar] [CrossRef]
- Batrinos, M.L. Testosterone and aggressive behavior in man. Int. J. Endocrinol. Metab. 2012, 10, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, A.; Douard, J. Who’s flying the plane: Serotonin levels, aggression and free will. Int. J. Law Psychiatry 2011, 34, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giammanco, M.; Tabacchi, G.; Giammanco, S.; Di Majo, D.; La Guardia, M. Testosterone and aggressiveness. Med. Sci. Monit. 2005, 11, RA136–RA145. [Google Scholar]
- Oliveira, R.F. Social behavior in context: Hormonal modulation of behavioral plasticity and social competence. Integr. Comp. Biol. 2009, 49, 423–440. [Google Scholar] [CrossRef] [Green Version]
- Hume, J.M.; Wynne-Edwards, K.E. Castration reduces male testosterone, estradiol, and territorial aggression, but not paternal behavior in biparental dwarf hamsters (Phodopus campbelli). Horm. Behav. 2005, 48, 303–310. [Google Scholar] [CrossRef]
- Williamson, G.; Payne, W.J.A. An Introduction to Animal Husbandry in the Tropics; Longman: London, UK, 1978. [Google Scholar]
- Faye, B. Guide de L'élevage du Dromadaire; Sanofi: Paris, France, 1997. [Google Scholar]
- Pigière, F.; Henrotay, D. Camels in the northern provinces of the Roman Empire. J. Archaeol. Sci. 2012, 39, 1531–1539. [Google Scholar] [CrossRef]
- Ucko, P.J.; Dimbleby, G.W. The Domestication and Exploitation of Plants and Animals; Transaction Publishers: Piscataway, NJ, USA, 2007. [Google Scholar]
- Wilson, R. Natural and man-induced behaviour of the one-humped camel. J. Arid Environ. 1990, 19, 325–340. [Google Scholar] [CrossRef]
- Montgomery, G.G. Some aspects of the sociality of the domestic horse. Trans. Kans. Acad. Sci. 1957, 60, 419–424. [Google Scholar] [CrossRef]
- Giles, S.L.; Nicol, C.J.; Harris, P.A.; Rands, S.A. Dominance rank is associated with body condition in outdoor-living domestic horses (Equus caballus). Appl. Anim. Behav. Sci. 2015, 166, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locati, M.; Lovari, S. Clues for dominance in female chamois: Age, weight, or horn size? Aggress. Behav. 1991, 17, 11–15. [Google Scholar]
- Bellone, R. Pleiotropic effects of pigmentation genes in horses. Anim. Genet. 2010, 41, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Brunberg, E.; Gille, S.; Mikko, S.; Lindgren, G.; Keeling, L.J. Icelandic horses with the silver coat colour show altered behaviour in a fear reaction test. Appl. Anim. Behav. Sci. 2013, 146, 72–78. [Google Scholar] [CrossRef]
- Ducrest, A.-L.; Keller, L.; Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 2008, 23, 502–510. [Google Scholar] [CrossRef]
- Trut, L.N. Early canid domestication: The farm-fox experiment: Foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development. Am. Sci. 1999, 87, 160–169. [Google Scholar] [CrossRef]
- Keeler, C.E. The association of the black (non-agouti) gene with behavior: In the Norway rat. J. Hered. 1942, 33, 371–384. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Lopez-Rodríguez, R.; Muñoz-Serrano, A. Heritability of dominant–aggressive behaviour in English Cocker Spaniels. Appl. Anim. Behav. Sci. 2006, 100, 219–227. [Google Scholar] [CrossRef]
- Podberscek, A.L.; Serpell, J.A. The English cocker spaniel: Preliminary findings on aggressive behaviour. Appl. Anim. Behav. Sci. 1996, 47, 75–89. [Google Scholar] [CrossRef]
- Finn, J.L.; Haase, B.; Willet, C.E.; van Rooy, D.; Chew, T.; Wade, C.M.; Hamilton, N.A.; Velie, B.D. The relationship between coat colour phenotype and equine behaviour: A pilot study. Appl. Anim. Behav. Sci. 2016, 174, 66–69. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, S.S.; Oh, S.I.; Kim, J.S.; Suh, E.H.; Houpt, K.A.; Lee, H.C.; Lee, H.J.; Yeon, S.C. Behavioural reactivity of the Korean native Jindo dog varies with coat colour. Behav. Process. 2010, 84, 568–572. [Google Scholar] [CrossRef]
- Loehr, J.; Carey, J.; Ylönen, H.; Suhonen, J. Coat darkness is associated with social dominance and mating behaviour in a mountain sheep hybrid lineage. Anim. Behav. 2008, 76, 1545–1553. [Google Scholar] [CrossRef]
- West, P.M.; Packer, C. Sexual selection, temperature, and the lion’s mane. Science 2002, 297, 1339–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almathen, F.; Elbir, H.; Bahbahani, H.; Mwacharo, J.; Hanotte, O. Polymorphisms in MC1R and ASIP genes are associated with coat color variation in the Arabian camel. J. Hered. 2018, 109, 700–706. [Google Scholar] [CrossRef]
- Finch, V.A.; Bennett, I.; Holmes, C. Coat colour in cattle: Effect on thermal balance, behaviour and growth, and relationship with coat type. J. Agric. Sci. 1984, 102, 141–147. [Google Scholar] [CrossRef]
- Komáromy, A.M.; Rowlan, J.S.; La Croix, N.C.; Mangan, B.G. Equine multiple congenital ocular anomalies (MCOA) syndrome in PMEL17 (silver) mutant ponies: Five cases. Vet. Ophthalmol. 2011, 14, 313–320. [Google Scholar] [CrossRef]
- Schonthaler, H.B.; Lampert, J.M.; von Lintig, J.; Schwarz, H.; Geisler, R.; Neuhauss, S.C. A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev. Biol. 2005, 284, 421–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holl, H.; Isaza, R.; Mohamoud, Y.; Ahmed, A.; Almathen, F.; Youcef, C.; Gaouar, S.; Antczak, D.F.; Brooks, S. A frameshift mutation in KIT is associated with white spotting in the Arabian camel. Genes 2017, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Launois, M.; Faye, B.; Kriska, M.A. Le Dromadaire Pédagogique; FAO: Rome, Italy, 2002. [Google Scholar]
- Amat, M.; Manteca, X.; Mariotti, V.M.; de la Torre, J.L.R.; Fatjó, J. Aggressive behavior in the English cocker spaniel. J. Vet. Behav. 2009, 4, 111–117. [Google Scholar] [CrossRef]
- Trut, L.N.; Plyusnina, I.; Oskina, I. An experiment on fox domestication and debatable issues of evolution of the dog. Russ. J. Genet. 2004, 40, 644–655. [Google Scholar] [CrossRef]
- Grandin, T.; Deesing, M.J. Genetics and animal welfare. In Genetics and the Behavior of Domestic Animals; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- González, N.F.J.; Vidal, J.J.; Jurado, L.J.M.; Arbulu, A.A.; McLean, A.K.; Bermejo, D.J.V. Genetic parameter and breeding value estimation of donkeys’ problem-focused coping styles. Behav. Process. 2018, 153, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Worthy, M. Eye Color: A Key to Human and Animal Behavior; iUniverse: Bloomington, IN, USA, 1999. [Google Scholar]
- Wilhelmy, J.; Serpell, J.; Brown, D.; Siracusa, C. Behavioral associations with breed, coat type, and eye color in single-breed cats. J. Vet. Behav. 2016, 13, 80–87. [Google Scholar] [CrossRef]
- Monteil, V. Essai sur le Chameau au Sahara Occidental. S. Afr. Archaeol. Bull. 1954, 9, 36. [Google Scholar] [CrossRef]
- Migeon, C. Ma vie de chameau. Roadbook 2006, 2, 54–62. [Google Scholar]
Statistic | DF | Chi-Square | Pr > Chi2 |
---|---|---|---|
−2 Log(Likelihood) | 19 | 39.753 | 0.004 |
Score | 19 | 41.264 | 0.002 |
Wald | 19 | 35.518 | 0.012 |
Statistic | Full Model |
---|---|
Observations | 100 |
Sum of weights | 100 |
Df | 32 |
−2 Log (Likelihood) | 720.675 |
R2 (McFadden) | 0.052 |
R2 (Cox and Snell) | 0.328 |
R2 (Nagelkerke) | 0.328 |
AIC | 856.675 |
SBC/BIC | 857.173 |
Iterations | 6 |
Source | Hierarchy Categories | Standardized Regression Coefficient (β) | Standard Error | Wald Chi-Square | Pr > Wald Χ2 | Wald Lower Bound (95%) | Wald Upper Bound (95%) |
---|---|---|---|---|---|---|---|
Intercept | 1 | 63.212 | 44.324 | 2.034 | 0.154 | −23.662 | 150.087 |
2 | 62.437 | 44.313 | 1.985 | 0.159 | −24.415 | 149.289 | |
3 | 61.965 | 44.306 | 1.956 | 0.162 | −24.873 | 148.802 | |
4 | 61.613 | 44.300 | 1.934 | 0.164 | −25.213 | 148.440 | |
5 | 61.325 | 44.295 | 1.917 | 0.166 | −25.491 | 148.142 | |
6 | 61.072 | 44.290 | 1.901 | 0.168 | −25.734 | 147.878 | |
7 | 60.848 | 44.285 | 1.888 | 0.169 | −25.949 | 147.645 | |
8 | 60.650 | 44.283 | 1.876 | 0.171 | −26.142 | 147.442 | |
9 | 60.466 | 44.282 | 1.865 | 0.172 | −26.325 | 147.257 | |
10 | 60.287 | 44.281 | 1.854 | 0.173 | −26.502 | 147.076 | |
11 | 60.110 | 44.278 | 1.843 | 0.175 | −26.674 | 146.894 | |
12 | 59.939 | 44.275 | 1.833 | 0.176 | −26.839 | 146.717 | |
13 | 59.773 | 44.273 | 1.823 | 0.177 | −27.001 | 146.546 | |
14 | 59.608 | 44.271 | 1.813 | 0.178 | −27.161 | 146.377 | |
15 | 59.443 | 44.269 | 1.803 | 0.179 | −27.322 | 146.208 | |
16 | 59.277 | 44.268 | 1.793 | 0.181 | −27.487 | 146.042 | |
17 | 59.114 | 44.268 | 1.783 | 0.182 | −27.651 | 145.878 | |
18 | 58.949 | 44.267 | 1.773 | 0.183 | −27.813 | 145.711 | |
19 | 58.785 | 44.265 | 1.764 | 0.184 | −27.973 | 145.543 | |
20 | 58.619 | 44.264 | 1.754 | 0.185 | −28.136 | 145.374 | |
21 | 58.445 | 44.262 | 1.744 | 0.187 | −28.308 | 145.198 | |
22 | 58.326 | 44.261 | 1.737 | 0.188 | −28.424 | 145.077 | |
23 | 58.206 | 44.260 | 1.729 | 0.188 | −28.542 | 144.955 | |
24 | 58.085 | 44.259 | 1.722 | 0.189 | −28.662 | 144.831 | |
25 | 57.959 | 44.258 | 1.715 | 0.190 | −28.786 | 144.703 | |
26 | 57.828 | 44.256 | 1.707 | 0.191 | −28.913 | 144.569 | |
27 | 57.689 | 44.254 | 1.699 | 0.192 | −29.048 | 144.425 | |
28 | 57.539 | 44.251 | 1.691 | 0.194 | −29.191 | 144.270 | |
29 | 57.379 | 44.248 | 1.682 | 0.195 | −29.345 | 144.102 | |
30 | 57.295 | 44.246 | 1.677 | 0.195 | −29.425 | 144.015 | |
31 | 57.211 | 44.245 | 1.672 | 0.196 | −29.508 | 143.931 | |
32 | 57.129 | 44.246 | 1.667 | 0.197 | −29.592 | 143.849 | |
33 | 57.046 | 44.247 | 1.662 | 0.197 | −29.678 | 143.769 | |
34 | 56.961 | 44.248 | 1.657 | 0.198 | −29.764 | 143.686 | |
35 | 56.871 | 44.250 | 1.652 | 0.199 | −29.856 | 143.599 | |
36 | 56.778 | 44.251 | 1.646 | 0.199 | −29.952 | 143.509 | |
37 | 56.680 | 44.253 | 1.641 | 0.200 | −30.053 | 143.414 | |
38 | 56.577 | 44.254 | 1.634 | 0.201 | −30.160 | 143.313 | |
39 | 56.467 | 44.256 | 1.628 | 0.202 | −30.273 | 143.207 | |
40 | 56.348 | 44.257 | 1.621 | 0.203 | −30.394 | 143.090 | |
41 | 56.218 | 44.258 | 1.614 | 0.204 | −30.525 | 142.961 | |
42 | 56.075 | 44.258 | 1.605 | 0.205 | −30.669 | 142.819 | |
43 | 55.915 | 44.258 | 1.596 | 0.206 | −30.829 | 142.659 | |
44 | 55.740 | 44.258 | 1.586 | 0.208 | −31.003 | 142.483 | |
45 | 55.545 | 44.257 | 1.575 | 0.209 | −31.198 | 142.288 | |
46 | 55.313 | 44.258 | 1.562 | 0.211 | −31.430 | 142.057 | |
47 | 55.015 | 44.258 | 1.545 | 0.214 | −31.729 | 141.759 | |
48 | 54.597 | 44.260 | 1.522 | 0.217 | −32.151 | 141.344 | |
49 | 53.893 | 44.266 | 1.482 | 0.223 | −32.867 | 140.652 | |
Animal inherent | HW (cm) | −0.050 | 0.016 | 9.452 | 0.002 | −0.082 | −0.018 |
CG (cm) | −0.016 | 0.010 | 2.646 | 0.104 | −0.035 | 0.003 | |
HG (cm) | −0.015 | 0.005 | 8.186 | 0.004 | −0.026 | −0.005 | |
Weight (kg) | 0.001 | 0.000 | 8.087 | 0.004 | 0.000 | 0.002 | |
Age (months) | 0.000 | 0.000 | 8.976 | 0.003 | 0.000 | 0.000 | |
Sex | Female | 0.000 | 0.000 | ||||
Male | 1.233 | 1.675 | 0.542 | 0.462 | −2.050 | 4.517 | |
Coat color | Roan | 0.000 | 0.000 | ||||
Chestnut | 3.396 | 1.729 | 3.858 | 0.050 | 0.007 | 6.785 | |
Bay | 6.261 | 2.545 | 6.052 | 0.014 | 1.273 | 11.249 | |
Cinnamon | 5.820 | 1.948 | 8.922 | 0.003 | 2.001 | 9.639 | |
Blonde | 4.315 | 2.869 | 2.263 | 0.132 | −1.307 | 9.938 | |
Black | 8.267 | 11.400 | 0.526 | 0.468 | −14.076 | 30.610 | |
White | −0.415 | 15.652 | 0.001 | 0.979 | −31.094 | 30.263 | |
Coat particularities (delimited white-haired zones) | All over | 0.000 | 0.000 | ||||
Extremities | 2.012 | 2.226 | 0.817 | 0.366 | −2.351 | 6.375 | |
Extremities, head and neck | 3.635 | 1.692 | 4.616 | 0.032 | 0.319 | 6.951 | |
Solid color (no white) | 2.125 | 2.231 | 0.907 | 0.341 | −2.248 | 6.497 | |
Head and neck | 12.766 | 7.532 | 2.873 | 0.090 | −1.996 | 27.529 | |
Eye color | Brown | 0.000 | 0.000 | ||||
Blue | 6.669 | 2.936 | 5.159 | 0.023 | 0.914 | 12.423 | |
Brownish with blue spots | 2.158 | 13.531 | 0.025 | 0.873 | −24.363 | 28.678 | |
Sex status | Whole | 0.000 | 0.000 | ||||
Gelded | 5.938 | 1.883 | 9.948 | 0.002 | 2.248 | 9.627 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias Pastrana, C.; Navas González, F.J.; Ciani, E.; Arando Arbulu, A.; Delgado Bermejo, J.V. The Youngest, the Heaviest and/or the Darkest? Selection Potentialities and Determinants of Leadership in Canarian Dromedary Camels. Animals 2021, 11, 2886. https://doi.org/10.3390/ani11102886
Iglesias Pastrana C, Navas González FJ, Ciani E, Arando Arbulu A, Delgado Bermejo JV. The Youngest, the Heaviest and/or the Darkest? Selection Potentialities and Determinants of Leadership in Canarian Dromedary Camels. Animals. 2021; 11(10):2886. https://doi.org/10.3390/ani11102886
Chicago/Turabian StyleIglesias Pastrana, Carlos, Francisco Javier Navas González, Elena Ciani, Ander Arando Arbulu, and Juan Vicente Delgado Bermejo. 2021. "The Youngest, the Heaviest and/or the Darkest? Selection Potentialities and Determinants of Leadership in Canarian Dromedary Camels" Animals 11, no. 10: 2886. https://doi.org/10.3390/ani11102886
APA StyleIglesias Pastrana, C., Navas González, F. J., Ciani, E., Arando Arbulu, A., & Delgado Bermejo, J. V. (2021). The Youngest, the Heaviest and/or the Darkest? Selection Potentialities and Determinants of Leadership in Canarian Dromedary Camels. Animals, 11(10), 2886. https://doi.org/10.3390/ani11102886