The Effect of Yeast Fermentation of Two Lupine Species on the Digestibility of Protein and Amino Acids, Microflora Composition and Metabolites Production in the Ileum of Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lupine Seeds and Fermentation Process
2.2. Experiment on Animals
2.3. Chemical and Microbial Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Anim. Nutr. 2019, 5, 319–330. [Google Scholar] [CrossRef]
- Zentek, J.; Boroojeni, F.G. (Bio) Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed Sci. Technol. 2020, 11, 45–76. [Google Scholar] [CrossRef]
- Wang, C.; Wei, S.; Xu, B.; Hao, L.; Su, W.; Jin, M.; Wang, Y. Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow’s performance, immune status and gut microbiota. Microb. Biotechnol. 2021, 14, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shi, C.; Zhang, Y.; Song, D.; Lu, Z.; Wang, Y. Microbiota in fermented feed and swine gut. Appl. Microbiol. Biotechnol. 2018, 102, 2941–2948. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-H.; Yu-Hsiang, Y. Evaluation of Bacillus licheniformis-fermented feed additive as an antibiotic substitute: Effect on the growth performance, diarrhea incidence, and cecal microbiota in weaning piglets. Animal 2020, 10, 1649. [Google Scholar] [CrossRef] [PubMed]
- Zaworska, A.; Frankiewicz, A.; Kasprowicz-Potocka, M. The influence of narrow-leafed lupin seed fermentation on their chemical composition and ileal digestibility and microbiota in growing pigs. Archiv. Anim. Nutr. 2017, 71, 285–296. [Google Scholar] [CrossRef]
- Kasprowicz-Potocka, M.; Borowczyk, P.; Zaworska, A.; Nowak, W.; Frankiewicz, A.; Gulewicz, P. The effect of dry yeast fermentation on chemical composition and protein characteristics of blue lupin seeds. Food Technol. Biotechnol. 2016, 54, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Sugiharto, S.; Ranjitkar, S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, K.; Zhao, X.; Liu, S.; Wang, L.; Yang, X.; Jiang, Z. Fermented Feed Modulates Meat Quality and Promotes the Growth of Longissimus Thoracis of Late-Finishing Pigs. Animal 2020, 10, 1682. [Google Scholar] [CrossRef] [PubMed]
- Hanczakowska, E.; Swiatkiewicz, M. Legume seeds and rapeseed press cake as replacers of soybean meal in feed for fattening pigs. Ann. Anim. Sci. 2014, 14, 921. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, S.A.; Kasprowicz-Potocka, M.; Hejdysz, M.; Mikuła, R.; Rutkowski, A. The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. J. Anim. Feed Sci. 2014, 23, 160–166. [Google Scholar] [CrossRef]
- Sedláková, K.; Straková, E.; Suchý, P.; Krejcarová, J.; Herzig, I. Lupin as a perspective protein plant for animal and human nutrition–a review. Acta Vet. Brno 2016, 85, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Degola, L.; Jonkus, D. The influence of dietary inclusion of peas, faba bean and lupin as a replacement for soybean meal on pig performance and carcass traits. Agron. Res. 2018, 16, 389–397. [Google Scholar]
- Kasprowicz-Potocka, M.; Zaworska, A.; Kaczmarek, S.A.; Rutkowski, A. The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for fattening pigs. Arch. Anim. Nutr. 2016, 70, 209–223. [Google Scholar] [CrossRef]
- Kasprowicz-Potocka, M.; Zaworska, A.; Gulewicz, P.; Nowak, P.; Frankiewicz, A. The effect of fermentation of high alkaloid seeds of Lupinus angustifolius var. Karo by Saccharomyces cerevisieae, Kluyveromyces lactis and Candida utilis on the chemical and microbial composition of products. J. Food Proc. Preserv. 2018, 42, e13487. [Google Scholar] [CrossRef]
- Musco, N.; Cutrignelli, M.I.; Calabrò, S.; Tudisco, R.; Infascelli, F.; Grazioli, R.; Chiofalo, B. Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Mikuła, R.; Taciak, M.; Pruszyńska-Oszmałek, E.; Frankiewicz, A. Growth Performance, Gut Environment and Physiology of the Gastrointestinal Tract in Weaned Piglets Fed a Diet Supplemented with Raw and Fermented Narrow-Leafed Lupin Seeds. Animal 2020, 10, 2084. [Google Scholar] [CrossRef]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Nowak, P.; Wiśniewska, Z.; Rutkowski, A. The nutritional value of yellow lupin (Lupinus luteus) for growing pigs. J. Agric. Sci. Technol. A 2019, 9, 351–363. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, P.; van Kleef, D.J.; van Kempen, G.J.M.; Huisman, J.; Verstegen, M.W.A. The Post Valve T-Caecum cannulation technique in pigs applicated to determine the digestibility of amino acid in maize, groundnut and sunflower meal. J. Anim. Physiol. Anim. Nutr. 1991, 65, 183–193. [Google Scholar] [CrossRef]
- GfE [Gesellschaft für Ernährungsphysiologie]. Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen; DLG-Verlag: Frankfurt am Main, Germany, 2006; Volume 10. [Google Scholar]
- AOAC. Agricultural Chemicals. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Zalewski, K.; Lahuta, L.B.; Horbowicz, M. The effect of soil drought on the composition of carbohydrates in yellow lupin seeds and triticale kernels. Acta Physiol. Plant. 2001, 23, 73–78. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of Titanium Dioxide Added as an Inert Marker in Chicken Digestibility Studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical note: A procedure for the preparation and quantitative analy sis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barszcz, M.; Taciak, M.; Skomiał, J. A dose-response effects of tannic acid and protein on growth performance, caecal fermentation, colon morphology, and β-glucuronidase activity of rats. J. Anim. Feed Sci. 2011, 20, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Kasprowicz-Potocka, M.; Zaworska, A.; Frankiewicz, A.; Nowak, W.; Gulewicz, P.; Zduńczyk, Z.; Juśkiewicz, J. The nutritional value and physiological properties of diets with raw and Candida utilis-fermented lupin seeds in rats. Food Technol. Biotechnol. 2015, 53, 286–297. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Xu, Z.R.; Lu, Y.P.; Liu, Y.Y. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig. Dis. Sci. 2007, 2, 1845–1850. [Google Scholar] [CrossRef]
- Yabaya, A.; Akinyanju, J.A.; Jatou, E.D. Yeast enrichment of soybean cake. World J. Dairy Food Sci. 2009, 4, 141–144. [Google Scholar]
- Wakil, S.M.; Onilude, A.A. Microbiological and chemical changes during production of malted and fermented Cereal-Legume weaning foods. Adv. Food Sci. 2009, 31, 139–145. [Google Scholar]
- Sauer, W.C.; Fan, M.Z.; Mosenthin, R.; Drochner, W. Methods for measuring ileal amino acid digestibility in pigs. In Farm Animal Metabolism and Nutrition; CABI Publishing: Wallingford, UK, 2000; pp. 279–306. [Google Scholar]
- Grela, E.G.; Skomiał, J. Recommended Allowances and Nutritive Value of Feedstuffs for Swine; The Kielanowsk iInstitute of Animal Physiology and Nutrition, Polish Academy of Sciences: Jabłonna, Poland, 2020. (In Polish) [Google Scholar]
- Kong, C.; Kang, H.G.; Kim, B.G.; Kim, K.H. Ileal digestibility of amino acids in meat meal and soybean meal fed to growing pigs. Asian Australas. J. Anim. Sci. 2014, 7, 990–995. [Google Scholar] [CrossRef] [Green Version]
- Upadhaya, S.D.; Kim, I.H. Ileal digestibility of nutrients and amino acids in unfermented, fermented soybean meal and canola meal for weaning pigs. Anim. Sci. J. 2014, 86, 408–414. [Google Scholar] [CrossRef]
- Stanek, M.; Rotkiewicz, T.; Sobotka, W.; Bogusz, J.; Otrocka-Domagała, I.; Rotkiewicz, A. The effect of alkaloids presents in blue lupin (Lupinus angustifolius) seeds on the growth rate, selected biochemical blood indicators and histopathological changes in the liver of rats. Acta Vet. Brno 2015, 84, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Heo, P.S.; Jang, J.C.; Jin, S.S.; Hong, J.S.; Kim, J.J. Effect of different soybean meal type on ileal digestibility of amino acid in weaning pigs. J. Anim. Sci. Technol. 2015, 57, 11. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Mullan, B.P.; Nicholls, R.R.; Pluske, J.R. Effect of Australian sweet lupin (Lupinus angustifolius L.) inclusion levels and enzyme supplementation on the performance and meat quality of grower/finisher pigs. Anim. Prod. Sci. 2011, 51, 37–43. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z.; Wang, C.; Fu, J.; Zhang, Y.; Wang, Y.; Lu, Z. Effects of fermented feed supplementation on pig growth performance: A meta-analysis. Anim. Feed Sci. Technol. 2020, 259, 114315. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed]
Item % | Raw Seeds | Fermented Seeds | ||
---|---|---|---|---|
Narrow-Leaved Lupine | Yellow Lupine | Narrow-Leaved Lupine | Yellow Lupine | |
Dry matter | 87.94 ± 0.02 | 88.6 ± 0.22 | 96.33 ± 0.04 | 94.99 ± 0.13 |
Crude protein | 31.5 ± 0.6 | 37.3 ± 0.5 | 35.7 ± 0.2 | 47.0 ± 0.3 |
Lysine | 1.29 ± 0.02 | 1.65 ± 0.01 | 1.54 ± 0.02 | 2.02 ± 0.01 |
Methionine | 0.16 ± 0.01 | 0.20 ± 0.02 | 0.10 ± 0.01 | 0.17 ± 0.01 |
Cystine | 0.36 ± 0.04 | 0.71 ± 0.02 | 0.64 ± 0.02 | 0.90 ± 0.01 |
Threonine | 0.94 ± 0.05 | 1.08 ± 0.03 | 1.02 ± 0.01 | 1.24 ± 0.03 |
Crude ash | 3.4 ± 0.1 | 4.2 ± 0.1 | 3.5 ± 0.1 | 4.5 ± 0.1 |
ADF | 19.9 ± 0.2 | 18.7 ± 0.9 | 19.7 ± 0.5 | 16.1 ± 0.4 |
NDF | 24.7 ± 0.1 | 24.5 ± 1.0 | 21.1 ± 0.7 | 18.9 ± 1.3 |
Total alkaloids | 0.007 ± 0.001 | 0.016 ± 0.001 | 0.021 ± 0.003 | 0.042 ± 0.003 |
Total RFOs | 6.6 ± 0.2 | 7.9 ± 0.3 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Phytate phosphorus | 0.36 ± 0.07 | 0.59 ± 0.03 | 0.12 ± 0.01 | 0.42 ± 0.09 |
Item CFU/g | Raw Seeds | Fermented Seeds | ||
---|---|---|---|---|
Narrow-Leaved Lupine | Yellow Lupine | Narrow-Leaved Lupine | Yellow Lupine | |
pH | 5.5 ± 0.1 | 5.6 ± 0.2 | 4.11 ± 0.1 | 3.98 ± 0.1 |
Total bacteria | 5.4 × 105 ± 1.1 × 102 | 4.6 × 105 ± 1.4 × 103 | 2.5 × 106 ± 1.4 × 103 | 8.4 × 105 ± 1.1 × 103 |
Lactic acid bacteria | 2.4 × 104 ± 7.1 × 102 | 3.9 × 104 ± 1.2 × 102 | 4.8 × 105 ± 3.1 × 103 | 7.0 × 105 ± 1.1 × 103 |
Yeast | 2.3 × 104 ± 9.9 × 102 | 3.7 × 103 ± 1.1 × 102 | 4.0 × 106 ± 1.1 × 104 | 3.4 × 106 ± 2.1 × 103 |
Coliform bacteria | 5.5 × 104 ± 2.4 × 102 | 7.5 × 104 ± 4.2 × 102 | 1.5 × 103 ± 1.4 × 102 | 1.5 × 104 ± 9.1 × 102 |
Components % | SBM | RNL | FNL | RYL | FYL |
---|---|---|---|---|---|
Soybean meal | 35.00 | - | - | - | - |
Raw yellow/narrow-leaved lupine seeds | - | 51.38 | - | 42.00 | - |
Fermented yellow/narrow-leaved lupine seeds | - | - | 42.00 | - | 39.00 |
Maize starch | 51.51 | 32.00 | 43.18 | 41.38 | 46.18 |
Sugar | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Soya oil | 0.00 | 3.00 | 1.00 | 3.00 | 1.00 |
Limestone | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Calcium phosphate | 1.70 | 1.80 | 2.00 | 1.80 | 2.00 |
NaCl | 0.29 | 0.32 | 0.32 | 0.32 | 0.32 |
Premix * | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Titanium dioxide | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
ME MJ/kg | 14.3 | 14.1 | 14.1 | 14.1 | 14.2 |
Crude protein % | 16.5 | 16.3 | 16.2 | 16.2 | 16.4 |
Ca % | 0.86 | 0.86 | 0.88 | 0.88 | 0.87 |
P % | 0.62 | 0.60 | 0.62 | 0.62 | 0.61 |
Na % | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
Item % | Component Effect | Fermentation Effect (F) | Seeds Effect (S) | Interaction (F × S) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBM | RNL | FNL | RYL | FYL | P | SEM | NO | YES | P | NL | YL | P | P | |
CP | 74.88 a | 68.38 b | 73.47 a | 69.30 b | 70.20 b | 0.011 | 1.47 | 69.29 | 71.38 | 0.041 | 70.92 | 69.75 | 0.214 | 0.226 |
Lysine | 77.80 | 71.29 | 75.33 | 71.64 | 71.44 | 0.116 | 0.36 | 71.48 | 73.60 | 0.371 | 73.54 | 71.55 | 0.408 | 0.325 |
Methionine | 84.59 a | 63.61 b | 62.44 b | 64.72 b | 56.76 b | 0.001 | 2.26 | 63.78 | 59.91 | 0.169 | 62.51 | 61.18 | 0.535 | 0.187 |
Threonine | 66.65 a | 52.48 b | 66.08 a | 48.47 b | 52.84 b | 0.001 | 1.84 | 50.25 | 60.20 | 0.005 | 60.03 | 50.41 | 0.001 | 0.038 |
Isoleucine | 76.59 a | 73.61 ab | 75.38 a | 69.26 bc | 65.92 c | 0.001 | 1.05 | 71.19 | 71.18 | 0.633 | 74.60 | 67.77 | 0.001 | 0.133 |
Leucine | 73.02 a | 66.66 b | 72.56 a | 69.81 ab | 66.10 b | 0.010 | 0.85 | 68.41 | 69.69 | 0.489 | 69.94 | 68.16 | 0.299 | 0.007 |
Valine | 71.83 a | 63.17 ac | 68.19 ab | 58.81 cd | 56.06 d | 0.001 | 1.44 | 60.75 | 62.80 | 0.556 | 65.96 | 57.59 | 0.001 | 0.058 |
Histidine | 69.87 a | 62.56 b | 69.22 a | 56.41 b | 61.79 b | 0.001 | 1.34 | 59.40 | 66.26 | 0.007 | 63.53 | 62.13 | 0.767 | 0.014 |
Arginine | 83.57 bc | 85.26 b | 89.22 a | 80.46 | 83.68bc | 0.002 | 0.85 | 82.60 | 86.76 | 0.024 | 87.46 | 81.89 | 0.003 | 0.798 |
Cystine | 76.03 b | 82.10 a | 80.01 ab | 85.87 a | 82.63 a | 0.016 | 0.92 | 83.64 | 81.18 | 0.232 | 80.94 | 83.87 | 0.142 | 0.966 |
Phenylalanine | 76.81 | 68.26 | 74.66 | 69.48 | 68.08 | 0.084 | 1.27 | 68.93 | 71.73 | 0.374 | 71.81 | 68.86 | 0.342 | 0.174 |
Asparagine | 72.83 a | 65.23 b | 72.12 a | 59.90 b | 62.36 b | 0.001 | 1.37 | 62.27 | 67.78 | 0.036 | 69.06 | 60.99 | 0.002 | 0.289 |
Serine | 73.62 a | 67.67 b | 75.54 a | 67.81 b | 66.61 b | 0.002 | 1.03 | 67.75 | 71.57 | 0.070 | 72.05 | 67.28 | 0.022 | 0.019 |
Tyrosine | 71.27 a | 59.12 c | 68.48 ab | 55.35 c | 61.43 bc | 0.002 | 1.65 | 57.03 | 65.35 | 0.012 | 64.32 | 58.05 | 0.064 | 0.551 |
Proline | 59.89 | 62.97 | 60.82 | 55.31 | 52.34 | 0.794 | 2.69 | 59.14 | 59.58 | 0.729 | 61.89 | 53.83 | 0.291 | 0.956 |
Glutamine | 83.00 | 82.06 | 56.28 | 80.61 | 82.72 | 0.114 | 0.74 | 81.25 | 84.70 | 0.073 | 84.40 | 81.55 | 0.147 | 0.528 |
Glycine | 59.05 | 53.45 | 57.24 | 49.07 | 51.83 | 0.487 | 1.92 | 51.01 | 54.83 | 0.496 | 55.55 | 50.29 | 0.314 | 0.914 |
Alanine | 68.71 a | 58.72 bc | 60.81 b | 56.22 bc | 50.81 c | 0.002 | 1.60 | 57.33 | 56.36 | 0.548 | 59.88 | 53.81 | 0.036 | 0.186 |
log10 CFU/g | Component Effect | Fermentation Effect (F) | Seeds Effect (S) | Interaction (F × S) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBM | RNL | FNL | RYL | FYL | P | SEM | NO | YES | P | NL | YL | P | P | |
Total bacteria | 8.12 b | 8.43 b | 8.47 b | 8.26 b | 10.99 a | 0.001 | 0.259 | 8.35 | 9.87 | 0.001 | 8.45 | 9.78 | 0.001 | 0.001 |
Yeast | 4.60 bc | 5.04 abc | 6.14 a | 4.32 c | 5.72 ab | 0.042 | 0.224 | 4.68 | 5.91 | 0.023 | 5.59 | 5.10 | 0.262 | 0.749 |
Moulds | 0.54 b | 0.85 b | 4.97 a | 3.56 a | 0.00 b | 0.001 | 0.446 | 2.20 | 2.21 | 0.994 | 2.91 | 1.58 | 0.022 | 0.001 |
LAB | 8.20 | 8.12 | 8.52 | 8.55 | 7.47 | 0.204 | 0.163 | 8.33 | 7.93 | 0.319 | 8.32 | 7.95 | 0.359 | 0.041 |
Enterobacteriaceae | 6.95 | 7.51 | 7.89 | 7.52 | 6.54 | 0.140 | 0.187 | 7.52 | 7.14 | 0.435 | 7.70 | 6.98 | 0.092 | 0.089 |
Item | Component Effect | Fermentation Effect (F) | Seeds Effect (S) | Interactionb (F × S) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBM | RNL | FNL | RYL | FYL | P | SEM | NO | YES | P | NL | YL | P | P | |
Dry mater, % | 7.95 c | 12.03 a | 10.84 b | 11.77 ab | 11.24 ab | 0.001 | 0.16 | 11.92 | 11.04 | 0.012 | 11.46 | 11.50 | 0.898 | 0.884 |
pH | 6.54 b | 6.76 a | 6.72 a | 6.05 c | 6.52 b | 0.001 | 0.02 | 6.45 | 6.62 | 0.010 | 6.74 | 6.33 | 0.001 | 0.111 |
Ammonia, mmol/g | 15.66 c | 23.85 a | 21.67 b | 24.89 a | 20.15 b | 0.001 | 0.30 | 24.37 | 20.91 | 0.001 | 22.76 | 22.52 | 0.738 | 0.652 |
VFA mmol/g | 19.57 c | 40.11 b | 50.71 a | 50.85 a | 36.86 b | 0.001 | 1.45 | 45.48 | 43.78 | 0.682 | 44.41 | 43.86 | 0.707 | 0.254 |
Acetate, % VFA | 81.38 a | 74.12 b | 75.81 ab | 75.47 ab | 71.50 b | 0.029 | 0.94 | 74.80 | 73.65 | 0.604 | 74.96 | 73.49 | 0.505 | 0.321 |
Propionate % VFA | 13.89 | 19.66 | 17.63 | 15.74 | 18.97 | 0.107 | 0.74 | 17.70 | 18.30 | 0.725 | 18.64 | 17.35 | 0.454 | 0.188 |
Isobutyrate, % VFA | 0.23 c | 0.21 c | 0.30 bc | 0.34 ab | 0.40 a | 0.001 | 0.01 | 0.27 | 0.35 | 0.011 | 0.25 | 0.37 | 0.001 | 0.401 |
Butyrate, % VFA | 3.70 c | 4.27 bc | 4.66 bc | 6.35 ab | 7.13 a | 0.018 | 0.366 | 5.31 | 5.89 | 0.505 | 4.46 | 6.74 | 0.011 | 0.314 |
Isovalerate, % VFA | 0.19 c | 0.36 b | 0.52 a | 0.34 b | 0.55 a | 0.001 | 0.02 | 0.31 | 0.54 | 0.001 | 0.44 | 0.45 | 0.898 | 0.228 |
Valerate, % VFA | 0.62 | 1.38 | 1.08 | 1.76 | 1.45 | 0.114 | 0.14 | 1.57 | 1.26 | 0.357 | 1.23 | 1.60 | 0.257 | 0.455 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprowicz-Potocka, M.; Zaworska-Zakrzewska, A.; Taciak, M.; Frankiewicz, A. The Effect of Yeast Fermentation of Two Lupine Species on the Digestibility of Protein and Amino Acids, Microflora Composition and Metabolites Production in the Ileum of Growing Pigs. Animals 2021, 11, 2894. https://doi.org/10.3390/ani11102894
Kasprowicz-Potocka M, Zaworska-Zakrzewska A, Taciak M, Frankiewicz A. The Effect of Yeast Fermentation of Two Lupine Species on the Digestibility of Protein and Amino Acids, Microflora Composition and Metabolites Production in the Ileum of Growing Pigs. Animals. 2021; 11(10):2894. https://doi.org/10.3390/ani11102894
Chicago/Turabian StyleKasprowicz-Potocka, Małgorzata, Anita Zaworska-Zakrzewska, Marcin Taciak, and Andrzej Frankiewicz. 2021. "The Effect of Yeast Fermentation of Two Lupine Species on the Digestibility of Protein and Amino Acids, Microflora Composition and Metabolites Production in the Ileum of Growing Pigs" Animals 11, no. 10: 2894. https://doi.org/10.3390/ani11102894
APA StyleKasprowicz-Potocka, M., Zaworska-Zakrzewska, A., Taciak, M., & Frankiewicz, A. (2021). The Effect of Yeast Fermentation of Two Lupine Species on the Digestibility of Protein and Amino Acids, Microflora Composition and Metabolites Production in the Ileum of Growing Pigs. Animals, 11(10), 2894. https://doi.org/10.3390/ani11102894